

Integrated Graphic and Computer Modelling

Frontispiece: OBLIX: Honey hill dam location, planning studies:
texture mapping and scan conversion Harvard University 1969

Adrian Thomas

Integrated Graphic

123

and Computer Modelling

Adrian Thomas, B.Arch, PhD, MCD
University of Sussex
UK

ISBN: 978-1-84800-178-7 e-ISBN: 978-1-84800-179-4
DOI: 10.1007/978-1-84800-179-4

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008927486

© Springer-Verlag London Limited 2008
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Dedicated to

Elizabeth, Jessica and Christopher

Preface

Background and Motivation

When setting out to write this book the initial target was to produce a relatively
straightforward introduction to basic computer graphics algorithms. As work has
progressed the goal posts have moved! This is partly because there were already
many excellent books covering this aspect of the subject, but partly because there
seemed to be other important approaches to the subject that needed to be addressed
beyond merely how to automate the production of drawings and pictures.

The evolution of information processing technology and its deployment is still
under way, and the role of computer graphics within it is being extended and
modified year by year. Though it remains necessary to present the technical side of
the subject in order to understand the constraints that limit its use on one hand and
establish the potential it has on the other: it now seems important to present graphics
as one among a series of modelling techniques that can be integrated together using
computers, in a way that makes a far better use of the new technology than merely
automating what was previously done.

The subject of computer graphics draws on results from a variety of disciplines:
the properties of analogue and digital electronics, and even device physics that allow
computing and display devices to work; the computer science topics that cover the
computer languages, operating systems, data-structures and algorithms needed to
program these systems; the perception studies that range from the experience of the
artist to the scientific experiments employed in perception psychology that underpin
the way interactive and animated displays can be designed: are all important but they
only make up part of the subject. There are also all the application areas that create
their own specialist demands and contributions to the subject: cartography,
engineering and architectural design, scientific visualisation, medical imaging, robot

viii Preface

control, as well as a full range of educational and entertainment applications. This

background needed to make intelligent or creative use of material they offer.
The contribution made by these disciplines to the subject of computer graphics

can be grouped under various headings. A useful classification scheme is that given
in Figure 1. This presents three axes, the vertical one being concerned with
representing information. This covers modelling types and their structure and
properties: mathematics, both computing and natural languages, analogue systems
and graphic and scale modelling systems. The applications of these representational
schemes to the real world, based on experiments and empirical observation,
essentially cover scientific research and its topics can be laid out along the B axis.
Finally axis C represents activities that apply the results from A and B to the design
and production of new goods and services.

Figure 1 A modelling classification space

Clearly the various disciplines listed above occupy different places in this

classification space. Although the treatment of the subject of this book would seem to
lie along the A axis, the decision to present it from a programmer’s perspective,
moves the approach towards the C axis. Designing and producing programs to
support graphic and other modelling systems will need to draw on results from both
A and B, but will be a study of how algorithms can be implemented in a working
system as much as a study of the mathematical properties that make them possible.

The approach adopted in this book is therefore to treat the subject as a design and
modelling task. The design process can be presented in a variety of ways. Computer
science is rediscovering and renaming processes well known in other older design
disciplines. In particular a graphics-modelling scheme with an associated language
called the Universal Modelling Language UML, is being developed to help design
large software systems. The problem this addresses is the difficulty seeing structure
in thousands of lines of complex programming code: more to the point managing the

Representing Information
Languages, Mathematics,

Graphics, Scale and
Analogue Models

Design and Production
Using Models in the Design

Process Applying both A
and B to producing new
products and services

The Scientific Method
Empirical Studies to Find

the best models to
represent the physical

world

A

C B

spread of relevant topics by itself poses a presentation problem, let alone providing the

Preface ix

choices and changes that are integral to their design and development work. A simple
schematic for the design process is given in Figure 2. An important new term for an
old idea is that of “refactoring”, which covers the tasks involved in design integration
and optimisation

Figure 2 The design process

The starting idea was to present the design and implementation of a basic two and
three-dimensional graphic modelling system. This would allow related topics to be
examined only in the depth needed to make design choices, but this still presented
difficulties. If existing graphic libraries are examined it is clear that in order to
provide a fully working system there is a lot of code which is there to provide error-
checking, diagnostic messages, recovery routes for example if “undo” commands are
provide – all very necessary in interactive environments but obscuring the structure
of the key modelling operations. Consequently a compromise approach has evolved.
The first two stages, in Figure 2, are explored for important display and modelling
tasks but some of the work is only presented as “work-in-progress”. This allows key
issues that affect the design and programming choices to be highlighted and
examined that might otherwise be overlooked, but it means that some of the code and
examples are at different levels of development and in some cases all that is done is
to show that links between the more detailed studies are possible.

Setting a Design Brief

The first step in any design study is to explore the context for the new product. This
includes the environment that determines the service the new system or product is
expected to provide, but also the technical constraints, arising from materials,
expected costs, and the speed or size of available components, which may affect the
performance that can be provided.

Traditional graphics is divided into many camps, depending on the medium
employed. Line drawing, engraving, watercolour painting, oil colours, fresco painting
all require considerable skill to master and therefore tend to separate out as
independent areas of expertise. There are further subdivisions depending on the
preferred subject matter: high art, portraiture, cartooning and many more. Research is
being carried out to allow graphic display devices to simulate the colour and texture
effects produced by traditional media such as watercolour or oil colour paints. Not
only does the use of computer graphics offer a unifying force to this area, but it also
links in sculptural art forms and three-dimensional shape modelling. Underpinning
computer graphics are various forms of spatial models based on the mathematical

Preliminary Design
Exploring and
developing a brief:

Detailed Design
Integration and
Optimisation

Prototyping testing
manufacture and
marketing

x Preface

representations of geometric-relationships. These modelling schemes also support
numerically controlled machine tools; laser lithography and related techniques, and
robot controlled manufacturing cells, and potentially provide a unifying link between
two dimensional graphic models and fully three dimensional models. In order to
cover the full range of possibilities for new systems it seems necessary to place the
use of graphics within this larger evolving framework of compatible computer-based
facilities.

The Context: Computer Based Information Processing Systems

Figure 3 The place of graphics in future computer based systems

As a change in basic technology, automating information processing systems
fundamentally affects the cost, speed and size of many processes and products. This
in turn rearranges many existing patterns of use and in turn employment, removing
some ways of earning a living but creating many new ways to replace those that are
lost. To provide a context in which to understand and predict the consequences of
these developments, it seems necessary to study the flows of information that support
the essential activities in the system as well as the activities that are being modified
by the changes. This involves identifying those tasks traditionally carried out
manually that are now more effectively automated, those where human capabilities
are still essential, and perhaps most important of all, in a way, the form of the
communication interface between the two, needed to maintain an operational and
efficient working system. The diagram in Figure 3 gives an abstract framework for
this kind of information flow analysis.

Computer systems, which generate more work than they remove, for the same
result, clearly are not worth developing. A variation on this observation was a

Environment
Physical

Machine
Actuators

&
Robots

People
Natural Language

Organisation

Computer
System

Measure Control

Perception Action

Language Graphics

Remote
Sensing

Machine
Vision

Symbolic
Data

Command
Data

Analogue
Data Motion

Preface xi

criticism of the San Francisco Bay Area planning simulation model: that it would
take more people to collect the data to feed the model than the model in action would
service. This can be contrasted with many practical and successful remote-sensing
systems where data capture is automated.

One explanation for the desire of governments to issue electronically read identity
cards to people is that the automatic logging of transactions such as occurs in
supermarkets provides the kind of human activity data that would allow economic
planning simulation models to become more practical. The fear of Big Brother is
clearly a sensitive political issue, here. A balanced flow of information, or the data
that carries it, has to be maintained without bottlenecks if efficient but practical
working computer-based systems are to evolve successfully.

Another framework that is necessary to consider when working with information
processing applications is the level at which information is represented: the nature of
the data. The input of image data in Figure 3 to the computer system is at a
completely different level to the language data input by human beings. As they stand
they are incompatible without human intervention. The development of machine
vision algorithms is necessary if this divide is to be crossed automatically. Figure 4
outlines the layers in information processing systems that have evolved or are
evolving as the technology expands and matures and diffuses into everyday usage.

Programmable Hardware

+ Language translators & Operating Systems
Computer Systems

+ Communication & Parallel Processing
Networked & Distributed Systems

+ Remote Sensing & Automatic Data Capture & Storage
Information Systems

+ Feedback & Control
Management & Control Systems

+ Mobility & Articulated Motion
Robots & Autonomous Systems

+ Manufacture & Repair
Self-Replicating Autonomous Systems

Figure 4 Computer Based Information System Hierarchy

Finally the third contextual framework, which needs to be explored, is the

communication between people and machines within computer-based information
systems. In early systems the mismatch between the speed of central processing units
and data entry led to the creation of multi-tasking and then time-sharing systems. For
human beings the eyes provide a very fast input for information. This allows
dangerous situations to be recognised and avoided, it allows body language to be
interpreted, and signalling using hands and arms to be responded to in real time.

More sophisticated physical forms of communication that require the use of the
eyes: such as drawings, diagrams, maps and pictures, all take time to construct and
are not generally the basis for real time interactive communication. In contrast
hearing has supported the development of language forms of communication. Speech
and conversation clearly support real time interaction.

xii Preface

Eyes: Vision Based Symbolic Interface Hearing Based: Ears

Figure 5 Evolving communications: Vision v Hearing: Graphics v Speech

CAT,
MRI and
PET
scanner

Sculpture

Cave painting

Hieroglyphics & Cuneiform

Roman Alphabet & Numerals
Murals

Printing

Musical Notation

Arabic Numerals

Natural Languages

Singing

Dance

Photography

Algebra

Classical Music
& Opera

Gramophone

Painting

Drawing

Geometry

Technical Drawing

Engraving

Musical
Instruments

Image
Processing

Computer
Vision

Camera

TV Camera

Abacus

Model Based Three Dimensional Television

Robots

Video Telephone

Signing

Grammars

Computer
Aided Design

Computer Graphics

Geometric
Modelling

Television
Radio Telephone

Computer Languages

Interactive Systems

Natural Language
Recognition

Mobile Telephone

Microphone

Video
Recorder Tape

Recorder

Digital Recorder

Computer
Aided

Manufacture

Computer
Aided

Musical
Composition

Speech
Synthesis

Computers

Preface xiii

Speech is ephemeral. People need to remember what has been said for its content
to have any lifetime. In contrast graphics and text are physical artefacts that last for
thousands of years, and as long as there are people who know how to interpret them,
provide a long term memory or storage for the information they contain, particularly
from generation to generation as the basis for education, maintaining cultural
systems, and providing a form of memory for the whole community.

The evolution of the relationship between these two modes of communication
based on hearing and seeing can be laid out against a rough time line in the way
shown in Figure 5.

The ability to create animated images in real time from symbolic language inputs
and the automated translation of spoken to text forms of language-input introduces a
new “threshold of practical usage” for graphic modes of communication which is
only now beginning to be explored. Similarly the development of machine vision
systems that can create higher-level models of the environment and bridge to
language levels of communication again offer a new “threshold of practical usage”
for systems such as TV broadcasting, particularly as they become digitally based.
The transfer of storage from graphics and text forms to computer memory systems
itself offers new possibilities since this data is physical and can have a long life, but
can be turned from passive storage forms into active usable forms without necessarily
involving a human agent to interpret it.

These new options cannot be developed by considering computer graphics in
isolation. All the related modelling schemes for representing the real world and any
virtual worlds under discussion need to be brought together. This is again too large a
brief for one book. Consequently the idea is to present graphics algorithms as the
primary theme but explore it as a thread through a wider domain.

As an analogy consider prospective developments to be an archaeological site. It
is possible to cut “trenches” across the site to get a broad view of what is hidden and
it is also possible to dig “pits” more carefully examining material in greater detail
where key finds appear. The main story line from chapter to chapter can be
considered to be a linking “trench”, while the separate studies in each chapter
correspond to the more detailed studies in the “pits”! This reflects the hope that an
understanding of the overall potential can be provided, but acknowledges it leaves
“unexplored” regions that could still contain important material and even contain
“finds” capable of changing the interpretation of the whole “site”. This approach also
allows the specialist information needed to interpret the material in the “pits” to be
presented only in the outline needed to give the bigger picture or support the main
theme, but will demand further reading from other sources if more detail is required!

Specific Objectives

As an introduction to this book it is necessary to identify who might be interested in
its contents. The initial objective was to present “the essentials of computer
graphics”, in other words to enable people to create graphical products using a
computer. The problem with this statement is that there are many levels at which this
task can be approached in a modern computer system.

xiv Preface

If a computer system is set up with a graphics user interface already in place, then
learning to use it can be considered to be very close to learning “the essentials of
graphics”. This is because such a computer system can provide a working context
similar to that in which artists, designers and draughtsmen have traditionally worked.
Physically moving a “mouse” can be used to push a “pointer” around a display
surface leaving marks of various kinds. Different “brushes” can be associated with
the mouse, which allow areas to be painted, textured or shaded, as the artist or
designer chooses. Similarly text and symbols can be created, selected and placed as
desired anywhere on the display surface.

Consequently the “essentials of computer graphics”, has been taken to mean the
task of making a computer system produce displays without an interactive display
system being in place between the user and the computing system. In this exercise
the initial targets of the presentation are constructing the components of a system,
which can provide the display environment required by an interactive graphics user
interface.

What is the essential ingredient of this approach? It is that all images or drawings
have to be constructed by issuing computer language commands. For an artist this
amounts to producing a painting or drawing “indirectly”, issuing verbal instructions
to a second party while blindfold. This restricts the process to those actions that can
be defined in unambiguous language statements. A very difficult task if all the
sophisticated internalised knowledge and experience of the artist is to be accessed. In
fact it is virtually impossible which is why a “computer-aided” environment
employing an interactive graphics-user-interface (GUI) must be provided for many
application that need to use feedback from this kind of human expertise.

At the risk of oversimplifying the situation, there seem to be two communities of
readers for a book outlining the essentials of a computer graphics system in this way.
Those who already can produce graphics manually, or within a graphics painting or
drawing environment, but have not either needed to, nor had the opportunity to learn
to express their actions in an explicit computer language form. And those who can
program computers and therefore are accustomed to working in this way, but who
have not yet explored the use of a computer language to generate pictures.

The aim is to satisfy both these groups, because once this has been done then a
next stage can be moved into: “using an interactive graphics environment” to build
customised application systems: a subject of interest to both communities. This can
then be extended to address the more general theme, which can be presented as
“integrated computer and graphic modelling”. In this context graphics becomes a
primary medium for communication between users and the computing system. The
emphasis is providing support for content generation in specialist application work.

For example making a system to help in the post-production work on films, but
not the post-production work itself. Where the interest becomes “content generation”
for a particular application this becomes the subject matter for a different book.

In conclusion the technical foundation of this subject can be summarised as the
use of algebra to represent geometrical relationships in order to use computer
language statements to create pictures. The overall subject of graphics as a modelling
medium opens up a wide range of topics that are too extensive to cover even in a pair
of books. Consequently only the main ideas are presented that are required for the
graphics and spatial modelling tasks that are examined in the text.

Preface xv

For some of the mathematical topics a full treatment will have to be found in
specialist texts. Similarly a full treatment of the programming language Java will
need to be found from other sources. Java code is provided wherever possible
because in general-outline, an algorithm can appear simple, but the real programming
difficulties lie in the special cases and the details of implementing the algorithm as a
robust working program.

What is interesting is the range of mathematics that is needed to set up useful
graphic and three dimensional models within the context of computer programming
is small compared with the range of mathematical results that exist, that are
potentially applicable to this area of work. The starting point could hardly be simpler:
write a program to generate a list of properties such as colour values for each cell in
an array of pixels and allow the display hardware to present this list as an image.

Selected Java programs to support the text will be added to the website at
www.springer.com/978-1-84800-178-7.

Acknowledgments

The work in these two books is the result of an extended research effort that started in
an undergraduate study in Liverpool University, School of Architecture, called
Models in Design Procedures, supervised by Dr Morcos. The scope of this work was
extended in the Department of Civic Design on being introduction to the use of
computer based urban simulation models to predict the impact of a variety of
planning actions, from road layouts to locating housing, shops and other essential
amenities.

A Kennedy Memorial Scholarship to Harvard and MIT allowed this study of
computer applications to architecture and planning work to be continued. The initial
focus of the work under the guidance of Howard Fisher and Alan Schmidt was the
application of computer cartography to urban and regional planning problems. Carl
Steinitz, extended this experience in a course which involved constructing an Urban
Data Base for the Metropolitan area of Boston, and then using a variety of modelling
schemes some of them computer based, predicting the future growth and
development of the region. The frontispiece showing studies using Honey Hill data for
a dam location project shows studies of hidden-line removal, texture mapping and
scan conversion completed in 1969 in the Laboratory for Computer Graphics and
Spatial Analysis, in Harvard University.

Howard Slavin a fellow student convinced me that programming computers to
carry out useful tasks could be done by correctly implementing the Sutherland line-
clipping algorithm as a “joint” homework for the PDP 1 computer. Subsequently
Thomas Waugh worked with me to produce several basic computer programs for
graphic and spatial operations. Perhaps the most interesting being a pre-processor to
a redistricting program for the Democratic Party, to avoid gerrymandering. The
important developments were experiments using the OBLIX program to develop an
early hidden-line removal algorithm for curved surfaces 1969, and with Tom Waugh
the development of a full Geographic Information System called GIMMS
(Geographic Information Management and Mapping System) 1970.

Work was continued in Edinburgh University on a Ph. D. subject titled “Spatial
Models in Computer Based Information Systems”. My supervisor for this work was
Professor Coppock. Collaboration on the GIMMS system continued with Tom
Waugh, to develop the Thiessen polygon and Delaunay tessellation algorithms for the
mapping package and the network overlay program for sieve mapping. Work then
progressed to three-dimensional modelling interacting with the Architectural
Research unit. Initially this extended the networking approach used in the

cartographic system to model object surfaces. This led to a hardware design to
display volume models based on Boolean expressions, again related to the overlay
labelling process developed for GIMMS. John Oldfield and John Gray provided
tutorials on logic design that supported this work. John Downie by using a hybrid
computer simulation helped the development of these ideas, in particular the
perspective transformation of plane surfaces to the unit display cube, which made the
subsequent digital designs possible.

I owe both John Downie and Ian Morrison in the Geography department in
Edinburgh University a major vote of thanks for help and moral support when the
work hit dark days!

Support for the work on the display processor was taken up by Professor Heath in
Heriot Watt University and a Science Research Council grant was obtained to
develop “Aspect01: A sequential parallel electronic colour terminal”. Again tutorial
instruction from Bernard Howard on advance logic design was important in taking
this work to a successful conclusion. Research colleagues: Patrick O’Callaghan,
provided an introduction to programming in C, and John Mclean provided much
needed practical electronics advice that allowed the prototype systolic processor
eventually to work! Jim Braid and his colleagues in Ferranti Edinburgh were also
involved in developing a corresponding prototype hardware system with a view to
developing an integrated circuit to provide a fast processor for real time avionic
displays.

An application for a further research grant to develop a model based machine
vision system to link to the real-time display system unfortunately did not get
support. The concept of model based TV was regarded as fanciful in 1978!

xviii

Acknowledgements

The work was moved to Durham University in 1980, where a further research
grant from the Science and Engineering Research Council in 1983 provided support
to continue the exploration of the VLSI circuit design. Tector Ltd a small simulator
company was able to apply the basic display algorithm to introduce a target aircraft
into its pilot training simulator

In 1986 the project was moved to Sussex University where related work on
simulators had been started. A research group to study “Model Based Animation and
Machine Vision” was set up and carried out a series of studies related to the model
based TV project. Acknowledgement for the work of Ph.D. students in this group go
to A Cavusoglu, H. Sarnel, H. Sue, G. Jones, U. Cevic, N. Papadoupolos, D. Joyce,
A. Lim, S. Zhang, B. Rey and C. Morris. In particular Hoylen Sue produced the
texture-mapped duck in the title of the preface. An EPSRC, DTI Faraday project was
carried out in collaboration with John Patterson from Glasgow University capturing
3D shape from image, equal brightness contours. The objective was identifying shape
in the presence of specular reflection. Professor J Herschfeld from the Mathematics
department provided a basic geometric construction that gave a way to factor a
specular reflection field into two or three overlaid Lambertian reflection fields.

Finally thanks must go to Professor John Vince from Bournemouth University,
who provided the initial push and then the continued positive support needed to get
this book into production. The project has taken a long time as work has had to be
carried out as a spare time activity. The tolerance of Springer’s Editors waiting for
the text also needs to be acknowledged with thanks.

Contents

Preface

 vii

Chapter 1 Models: Language, Graphic, Analogue, Scale,
Mathematical & Computer Models

1

 A review of modelling types, in particular the key
manual processes involved in graphics.

Chapter 2 Computer Languages: & Java Programming 33
 An introduction to the computer-programming envi-

ronment, particularly the structured programming
constructs that will act as the language framework for
defining graphic algorithms and commands.

Chapter 3 Programming Development Environment for Graphics 71
 An introduction to the basic drawing commands that

will be used to build illustrative programs, starting with
simple imperative commands.

Chapter 4 Conditional Action - Spatial Searching & Problem
Solving 103

 An extension of examples from chapter 3 to introduce
conditional and repeat commands for solving spatial
searching tasks.

Chapter 5 Display System and Hardware Programming
Primitives 135

 Display system hardware, the primitive display
functions from which useful graphic systems have to
be constructed.

Chapter 6 Computer Hardware and Low Level Machine
Language Programming 177

 Introducing the hardware of the computer system using
a simplified system simulation to present the lowest
level of language programming.

xx Contents

Chapter 7 Intermediate, Assembler Language Programming

Macro Expansions, and Expression Translation 223

 Demonstrating the development of an intermediate,
assembly language to give a more flexible
programming system.

Chapter 8 Higher Level Languages – Translation,
Interpretation and Scripting 273

 Introducing a simple high level language translation
system with extensions to the hardware simulation
system to support recursive procedure calling, context
switching and interactive graphics work.

Chapter 9 Primitive, Raster-Infill Operations: Line
Interpolation 321

 Returning to the graphics primitives introducing line
interpolation on a raster grid and a series of direct
imperative operations.

Chapter 10 Area Fill, Masks, Circles and Thick Line
Interpolation 359

 Extending the infill procedures to include area shading
and area masking operations.

Chapter 11 Parametric Line Interpolation & Keyframe Infill
“Inbetweening” Film Animation 403

 Introducing inbetweening for key frame animation
using parametric lines and curves. Extending these to
include area shading for curved boundary regions.

Chapter 12 Geometry, Algebras, Co-ordinate Systems,
and Transformations 457

 Introducing geometric transformations to give rigid body
animation movements, and other transformations useful
for editing and constructing drawings and images.

Chapter 13 Spatial Relationships Overlap & Adjacency: Point
to Line to Area 499

 Returning to conditional spatial commands. Exploring
the relational tests of adjacency and overlap for points,
lines and polylines.

Chapter 14 Spatial Relationships Overlap & Adjacency Polygon
on Polygon 533

 Area on area relational tests for polygons. Boundary
intersection for overlaid polygons. Edge and area
labelling in networks. Boolean operations on areas.

xxiContents

Chapter 15 Spatial Relationships Overlap & Adjacency
Rectangle-Rectangle Window on Window 571
Area on area relational tests for rectangles. Interactive
window based systems. Exploiting block memory
transfers and base displacement addressing in fast
display system operations.

Chapter 16 GUI: Graphic User Interfaces: Control Design
Animation & Simulation Systems 615

 Bringing all these studies together to give a two-
dimensional drawing system. This also provides the
graphic framework for simulation systems based on
diagrams.

Index 679

PLAN

ELEVATION 1

ELEVATION 2

OBJECT

1
Models: Language,
Graphic, Analogue,
Scale, Mathematical
& Computer Models

Introduction

Interactive graphics with computer languages have between them become the
primary forms of communication between the computer system and its users for a
large and growing number of application systems.

The developing emphasis on computer based modelling systems employing this
new picture-making or image capturing technology, is reflected by the adoption of
system design frameworks with the title of information system, rather than the older,
more restrictive sub-system titles: computer graphics, image processing, machine
vision, image databases and the adoption of the overall subject-area title of
informatics to cover all the topics relevant to information capture, representation and
processing.

This widening of the working context for system analysis and design, allows
“digital convergence” to be explored and fully exploited: the unifying effect that
adopting digital systems can have, and in fact needs to have to obtain the greatest
advantage from using computers. It also gives a better starting point for developing
the new or modified products that the changes in information technology are making
possible.

Models

Modelling or representing and describing aspects of the real world, is the underlying
theme of this book. It is also an essential supporting activity for most design work. At
first sight models are distinct from description, though both are used to represent

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_1, © Springer-Verlag London Limited 2008

2 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

“the real world”. The difference lies in the way that relationships in a physical model
are constrained by the modelling medium. It is possible to describe in words many
relationships that are impossible to realise within the real world. The reason for
building physical models is usually to determine the consequence of interacting
physical constraints. A very simple example would be to define a triangle with sides
of length 2, 3 and 9 units, attempting to build it physically quickly shows it is not
possible! Models can be single purpose in the sense that one resulting relationship is
sought as a consequence of setting up initial model conditions, or multi-purpose
where for example, the interaction of many relationships, which have to be co-
ordinated in a design study, needs to be investigated.

There are several well-established classes of model: the simplest being the
prototype. This is the object itself, but created as a trial example before say a mass
production run, to ensure problems posed by a new product are reduced to a
minimum. Prototyping is expensive for large objects, inappropriate for one-off
objects such as buildings, and often not very useful for very small objects. A solution
to cost and size for many such modelling tasks is to change the scale of models.

Scaled Models: Geometrical and Physical Models

Scale models are of two types: geometric models where spatial relationships are the
primary issue, and physical models where not only scaled spatial relationships are
important but also the physical properties of the materials used to build the models.
The distinction between the two can be highlighted by the difficulty of scaling
the density of water to estimate the behaviour of a half scale model of a boat.
Similar problems accompany the use of wind tunnel models for variously sized test
objects.

These difficulties are not insuperable, but their solution depends on empirically
establishing the relationships that hold between the physical properties of the system,
which is being modelled. What can be done is based on identifying “dimensionless
products” of these properties in the full size system, and then ensuring the values of
these products are maintained in the scaled model. In other words by multiplying
together the measured values of properties which in combination give a
dimensionless value, a pure number, rather than values such as velocity which would
be measured in distance per unit time interval, it is possible to obtain usable results
from scaled physical systems.

Geometrically scaled models have been used for design purposes since early on in
history. If the historical record is to be believed, many of the large-scale engineering
works of the ancient world were conceived and tested-out by using models of this
type. Although closely related: the use of drawings to support the same design work
was probably a later development. The rigorous study of the geometric rules needed
to construct two-dimensional models, (as drawings in a sandpit), is generally
attributed to Greek mathematicians, though other ancient civilisations: the Egyptians,
Sumerians, Chinese, and the people who lived in the Indus valley appear to have had
a working knowledge of many of them.

Drawing and Two Dimensional Scale Models 3

Drawing and Two Dimensional Scale Models

There is a series of basic geometrical relationships that are necessary to construct any
line drawing or to program matching computer graphic algorithms. These basic
relationships need to be reviewed, before the more complex operations, which
depend on them, can be developed. The simplest geometrical relationships are those
between straight lines and angles. Where two lines cross, opposite angles are equal,
and angles on the same side of a straight line add up to 180o.

Figure 1.1 Parallel lines alternate and complementary angles

Lines that intersect a transverse line at the same angle are parallel. This gives the
angular relationships shown in Figure 1.1. This allows the sum of the angles of a
triangle to be calculated in the way shown in Figure 1.2.

180180

180180

=β+α+β−α−=∠+∠+∠∴

β−α−=∠−=∠∴

β+α=∠=∠

α=∠=∠

ACBBACCBA

ACEACB

ACEDAC

DABABC

Figure 1.2 Angles in a triangle

α

α
180−α 180−α

β β

β

β

β

β

α

α

α+β
180−α−β

A

C

B

D

E

β

4 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

Congruent Triangles

Demonstrating the conditions that show two triangles have an exactly matching
shape, in other words are congruent, is often used as a bridge to establish other
relationships required in more complex geometric reasoning. There are several
standard tests for congruence.

If two triangles have sides of the same length then they are congruent.

If two triangles have two sides of the same length and the same angle between
them then the triangles are congruent.

If two triangles have two angles the same and a corresponding side of the
same length then the triangles are congruent.

Figure 1.3 Congruent triangles

A

Z

Y

C
B

X

α α

A

Z

Y

C
B

X

A

Z

Y

C
B

X

α α

β β

5

Pythagoras

Figure 1.4 Pythagoras’ theorem

The next relationship relating the sides of a triangle that is important is provided by
Pythagoras’ theorem for a right angle triangle. In Figure 1.4 the triangle ABC is a
right angled triangle with sides of length BC = a, AC = b and AB = c. On each side
of this triangle squares BADE, CBFG and ACHJ are constructed. The objective is to
show that the area of BADE is equal to the sum of the areas of CBFG and ACHJ. If
the sides of the squares BF and AJ are extended in the way shown, and lines DM and
EN constructed parallel to these sides to generate the triangles ADL, DEM, EBN and
BAK and the rectangle NKLM, then the following relationships hold. The triangles
ADL, DEM, EBN and BAK are all congruent, they each have a side of length c and
all their corresponding angles are equal. This makes the rectangle a square with sides
a-b. The area of the square ABED is therefore the sum of the four triangles and this
square NKLM:

() ()
222

2222

2

 ..2.2 ..2
1.4 4

bac

babaabbabaNKLMADLc

cNKLMBAKEBNDEMADLABDE

+=

−++=−+=+×=

=++++=

E

A

D

H J

G C

F B K
N

M
L

a a

c

b - a

c

b

b - a

a

c

c

α

α
α

α

90−α

90−α

90−α

90−α

a

a

α

90−α

Pythagoras

6 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

The area of a triangle can be calculated from the construction given in Figure 1.5.

Figure 1.5 Area of a triangle: half base times perpendicular height

() ABEBBFAFEBACB

BFEBAFEBBCFACFACB

BFEBBECFBCF

AFEBADCFACF

ABEBADEBAEB

××=−××=Δ

××−××=Δ−Δ=Δ

××==Δ

××==Δ

××==Δ

2121 Area

2121 Area Area Area

BCF oconguent t BCE 21 Area 21 Area

ACF oconguent t ACD 21 Area 21 Area

AEB oconguent t AED 21 Area 21 Area

Once two triangles have been shown to be congruent then each pair of

corresponding sides and angles are equal. However two triangles can have the same
shape without necessarily being the same size.

The area of a triangle can be used to demonstrate an important relationship
between the angles and the sides of a triangle in the following way.

Figure 1.6 Angle ratios

The area of triangle AFC can be calculated in two ways:

A B

C D E

F

A B C

E

F

D

b

a

c

d

7

Triangles ADB and DFE are not congruent because they can be any size, but they

have the same shape because their corresponding angles are the same. Such triangles
are called similar triangles. In this case the two triangles are similar but they are also
right angled triangles. This means the sides of the triangles AD and DF can be
calculated using Pythagoras and their ratio can be calculated in the following way:

()

2222

22

22

2222

22

22

22

2

222

22

2

2222

22

2
2

22

22

22

:ratios thegives into . of onsubstitutisimilar A

angles equal torelating ratios are again which

....

.

dc
c

ba
a

dc
ba

a
cbd

dc
d

ba
b

dc
ba

d
b

DF
AD

dc
d

dcb

dc
d

dbcb

dc

b
d

cb

DF
AD

d
cba

dc
ba

DF
AD

+
=

+

+

+
=

+
=

+
∴

+

+
==∴

+

+

=
+

+

=
+

+
=∴

=
+

+
=

The way these ratios of the sides of similar, right angled triangles give the same

value for the same angle whatever the size of the triangle allows these ratios to be
used as a measure of the angle.

Pythagoras

() () ()

DFE as shape same theis ADB because also

DAB and FDE angles equal the torelate ratios twohese t

 ..

..2......

...21..21 Area Area Area

 Area Area Area Area

....21..21Area

ΔΔ=

∠∠=∴

=∴

++=+++∴

++=+Δ+Δ

+Δ+Δ=Δ

+++=++=Δ

b
d

a
c

c
d

a
b

cbda

cbdcbacdcbdaba

cbdcbaDECBDFEADB

DECBDFEADBAFC

cdcbdabadbcaAFC

owever H

8 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

The simplest condition to establish this relationship of similarity is that two
triangles have identical corresponding angles. This leads to a more general set of
relationships for all similar triangles between their sides and angles, that is easiest to
demonstrate using the trigonometrical functions which are the ratios of the sides of
right angled triangles shown in Figure 1.7.

 22 bac +=

 () () ()
b
a

c
b

c
a

=θ=θ=θ tan cos sin

Figure 1.7 Trigonometric functions

The trigonometric functions of double angles provide key relationships with many
applications.

()

() () () ()

()

() () () ()βα−βα=

−=

−=−==β+α

βα+βα=

+=

+=+==β+α

sin.sincos.cos

 . .

cos

sin.coscos.sin

 . .

sin

DA
AB

AB
GB

DA
DB

DB
DC

DA
GB

DA
DC

DA
EC

DA
DC

DA
DE

DA
AB

AB
AG

DA
DB

DB
BC

DA
AG

DA
BC

DA
AG

DA
GE

DA
AE

Figure 1.8 Double angle functions

The geometrical construction given in Figure 1.8 sets up a right angled triangle

ABD. By drawing vertical lines through points A and B and a horizontal line through
B, angles BDC and DBG both equal α because GB is parallel to DC. Angle GBA is
90-α which makes angle GAB also equal α. This construction allows the formulae
for the sine and cosine of the sum of two angles α+β to be determined in the way
shown in Figure 1.8.

D

G

A

C E

B

H

α

α

α
β

a

b

c

θ

9

In the triangle ABC in Figure 1.9 if a perpendicular is dropped from vertex A to
the base BC at the point D, then the double angle formula allows the relationship
between the length of the sides of the triangle and the angles at its vertices to be set
up in the following way.

() () () () ()

()

()

()

()
ACAC

AB
AD

ABAB
AC

AD

ACAB
AD

BC

ACAB
AD . BC

ACAB
DCBDAD

AB
AD

AC
DC

AC
AD

AB
BD

φ
==

γ
==

=
β+α

=

+
=

+=

αβ+βα=β+α

sin

sin

 .
sin

 .

 .
 .

 . .

cos.sincos.sinsin

Figure 1.9 Sine law

If two triangles are similar and therefore have a matching set of angles, the ratio
between the length of the corresponding sides from the two triangles will be the same.

Figure 1.10 Similar triangles

() () () () () ()

AB
DE

AC
FD

BC
FE

DEFDFEABACBC

==

γ
=

β
=

αγ
=

β
=

α

 :ianglessimilar trfor Hence

sinsinsin sinsinsin

A

B

C

D
α
β

γ

φ

γ

α

β

A

C

B

γ

α

β

F

E

D

Pythagoras

10 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

The double angle formula can also be used to extend Pythagoras to cover triangles
that are not right angle triangles in the following way:

Figure 1.11 Cosine law

()

()

() () () () () ()

)cos(...2

)cos(...2

. .
.
1..sin.sincos.coscos

However

..2..2.2

..2

.2

 togetherresults two theseAdding

 eIn triangl

 eIn triangl

222

222

2

222222

2222

22222

222

222

θ+=+∴

β+α+=+∴

−=−=βα−βα=β+α

−+=−+=+

++=+=

++=+

+=

+=

bacba

bacba

edf
bab

e
a
d

b
f

a
f

edfcedfcba

edededc

fedba

efbADC

dfaABD

Many of these triangle properties can be extended to polygons by partitioning the

polygons into triangles in the following way:

A

B

C

D

α
β

γ

φ

a

c

b

e

d

f

θ

11

Figure 1.12 Polygon properties

Sum of a polygon’s angles:

Add the angles of the triangles
formed by linking each polygon
vertex to a point inside the polygon
then subtract the sum of the angles
round this point:

radians .2.

360180.

π−π=

−=

n

nSum oo

Polygon area:

Add the areas of the set of triangles
formed by partitioning the polygon
into non-overlapping triangles.

Similar triangles can be used to give the same number of equally spaced

subdivisions in lines of different length, using a ruler. If a triangle is formed by drawing
a line at an angle through one end of the target line, in the way shown in Figure 1.13,
then the number of equal length subdivisions can be marked off along the new line
using a ruler. If the ends of these two lines are then linked to complete the triangle then
a set of parallel lines constructed through the marks on the measuring line will intersect
the original line to give the same number of equally spaced points.

Figure 1.13 Geometrically scaling a measuring line

All the triangles formed by the lines parallel to the base of the triangle OAB are
similar, as their corresponding angles are all the same. This generalises to give the
relationships:

OC
OD

CA
DB

OC
CA

OD
DB

OC
CAOC

OD
DBOD

BA
DC

OA
OC

OB
OD

=→+=+→
+

=
+

→== 1 1

Projections in three dimensions can be carried out in a similar way using parallel

planes through lines and points, transferring relationships from one location to
another in a variety of useful ways.

a a

b

a a a

b
b

b

b
b

a
O A

B

D

C

Pythagoras

12 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

Three Dimensional Graphic Models

Geometric techniques for drawing three-dimensional scenes were developed in Italy
during the Renaissance to give accurate realistic paintings of landscapes and
buildings. However, it was a French mathematician, just after the French revolution,
Gaspard Monge who first established the geometrical approach that led to the
technical drawing techniques in use today.

Figure 1.14 illustrates a manual, graphic technique based on “descriptive
geometry” which represents three-dimensional objects as a set of drawings using
orthographic projections: in other words projections onto mutually perpendicular
plane surfaces to give plan, section and elevation drawings of the objects.

The advantage of this approach was that measurements could be taken directly
from the drawings. The French army used this development of “descriptive
geometry” to layout building installations, and the way it was kept a military secret
for quarter of a century is some indication of its effectiveness over previous methods.
The import of these techniques to Britain, by Isimbard Brunell’s father must have
contributed greatly to his son’s prodigious output of engineering projects during the
19th century.

PLAN

ELEVATION 1

ELEVATION 2

OBJECT

Figure 1.14 Descriptive-geometry: orthographic projections

If a point is recorded using perpendicular projections to three plane drawing

surfaces that are mutually orthogonal, then the position of the point is uniquely
defined, in the same way as giving it a Cartesian co-ordinate. This property and the
use of parallel projection techniques gave a flexible and easy-to-use system for

13

generating a model of an object in the form of cross-referenced drawings. A parallel
projection of lines was generated by setting up a set of planes that were all
perpendicular to a common plane (usually the new drawing) through the lines. A
property of this system was that these planes through parallel lines were themselves
parallel, and so would cut other transverse planes in new sets of parallel lines. This
made it possible to manipulate the projected drawings of objects with very few
geometric rules and to construct them for objects in any required orientation relative
to the orthogonal drawing planes.

In Figure 1.15 the process of generating the projected drawings of a rotated cube,
is illustrated. The first step is to rotate the plan view about the chosen axis. This will
not affect the vertical heights of the cube’s vertices, shown in the existing elevation-
view: only their horizontal positions. These can be re-established, by projecting the
new vertex positions from the cube’s changed plan-view back to the elevation
drawing, then matching and intersecting horizontal projection lines for corresponding
vertices from the original elevation drawing. This will create a new elevation
drawing for the rotated cube. This new representation can then itself be rotated about
the other axis perpendicular to the elevation plane by a similar sequence of
operations. The two operations together will allow any orientation of the object to be
constructed. This process is simple to implement. Rotating or translating a copy of an
object’s projection, using tracing paper, into a new position, can be used to freely
rearrange its orientation in any elevation plane. The corresponding projections in
other elevation-drawings can then be matched-up using parallel lines. The tee-square
and setsquare, compass and drawing-scale being the only tools, along with sheets of
tracing paper, needed to put together complete descriptions of complex engineering
shapes.

Figure 1.15 Rotation using orthographic projections

ELEVATION

To Figure 1.18

PLAN

rotate

rotate

a d b c

e h g f

d a

h e

h

c

g

b

f

d
a c

b

e
g

f

a e b f

d h c g

a e

b f

c g

d h

e a

f b
h

d

g c

Three Dimensional Graphic Models

14 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

This use of drawings as a modelling process for engineering and design work has to
be distinguished from the development of perspective-drawing which evolved during
the early Renaissance in Italy, as a technical aspect of producing realism in paintings. It
is possible, employing the rules of descriptive geometry, to generate perspective
drawings from plan section and elevation drawings using the constructions shown in
Figure 1.16. The perspective projection results from intersecting the rays of light from
points in a scene that enter the eye of an observer, with a transparent viewing screen.
Rays from this “perspective” projection onto this screen will consequently be
indistinguishable to the eye, from those coming from the original scene.

OBSERVER

SIDE
ELEVATION FRONT

ELEVATION

PLAN

IMAGE

OBJECT

PICTURE
PLANE

Figure 1.16 Perspective projection from orthographic projections

OBSERVER

SIDE ELEVATION

PLAN

OBJECT

PICTURE
PLANE

Figure 1.17 Folding down the orthographic construction planes

15

It is possible to use perpendicular projections of these viewing rays onto the
orthogonal planes of appropriately chosen plan, sections and elevation drawings, to
construct the position at which these viewing rays will pass through the picture plane
or viewing screen, in the way shown in Figure 1.16. Figure 1.17 shows the way in
which the orthographic projections of the elevations can be folded down, along with
the picture plane, onto the plan to give one drawing. By carefully placing these
drawings as overlays on one sheet of paper it is possible to move from one to the
other, transferring scaled size-information in a procedure which allows the
perspective drawing of the object to be constructed in a relatively easy way.

Figure 1.18 Perspective projection from orthographic projections

In Figure 1.18 the picture plane has been folded down and slid towards the
observer. The ground line indicates the position it would have cut the plan, marked

Picture
Plane
Line

Elevation
Ground

Line

From Figure 1.15 PLAN ELEVATION

Picture Plane
Ground Line

Picture
Plane

Three Dimensional Graphic Models

16 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

by the “picture-plane” line on both plan and elevation drawings. This arrangement
means the projections of viewing rays onto the plan can be continued downwards by
parallel lines on the picture plane drawing, from the points where they intersect the
“picture-plane” line on the plan drawing. The equivalent intersections with the
picture plane for the projections of these rays on the side elevation (folded sideways)
have to be transferred by a ruler (in magenta) to the side of the picture plane drawing,
measured up from the ground line, or by using the construction shown in Figure 1.19.

Figure 1.19 Perspective projection using an alternative construction

This approach gives a set of simple rules, which are easy to use. The only draw
back to this approach, in operation, is that very high accuracy is needed in projecting
points from one drawing to another, and errors can be cumulative. For this reason,
and to allow perspectives to be set up directly from measurement information, an
alternative approach to their construction has evolved. This involves the use of
vanishing points and measuring points. The image of converging railway lines
meeting at a point on the horizon is the usual example of the geometric property, on

From Figure 1.15
PLAN

ELEVATION

Ground
Lines

Picture
Plane
Line Picture

Plane

17

which this approach depends. It can be illustrated and explained using the various
relationships, which can exist between three planes in three-dimensional space,
shown in Figure 1.20.

PARALLEL PLANES

PARALLEL INTERSECTION L INES

INTERSECTION POINT

a b c

d e

Figure 1.20 Interactions of three planes

Three planes can form a “pencil” of planes shown in 1.20a, where all the planes
intersect in a common line. If two planes are parallel then the third will intersect them
in two parallel lines, as shown in Figure 1.20b. Alternatively where a plane intersects
two other planes which are not parallel in two parallel lines, the two original planes
will themselves intersect in a third line parallel to the first two lines, as shown in
Figure 1.20c. In contrast three planes which are parallel will never intersect shown in
Figure 1.20d, and planes which intersect in non-parallel lines will intersect in a single
point, as shown in 1.20e.

Where the rays of light from the end points of two lines which are parallel to the
picture plane are projected to the eye, they define two planes as shown in Figure
1.21. The relationship between these planes and the picture plane and their
intersection lines corresponds to Figure 1.20c. This means that the lines projected on
the picture plane are themselves parallel. If the original pair of parallel lines is now
rotated about the observer’s position the result will be that shown in Figure 1.22. The
relationship between the planes, generated by the rays from the end points of these
parallel lines to the eye, and the picture plane will be that shown in Figure 1.20e. In
other words the three planes will intersect in a single point. Since the images of the
original lines will fall on the intersection lines between their projection planes and
the picture plane, it can be seen that the image lines will converge and if they were
extended they would like the railway lines in Figure 1.23 meet at a single point, their
vanishing point.

a
b c

d e

Three Dimensional Graphic Models

18 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

OBSERVER

PICTURE
PLANE

ELEVATION 1

ELEVATION 2

PLAN

Figure 1.21 Lines parallel to the picture plane project as parallel lines

α

Vanishing Point

PLAN

OBSERVER

PICTURE
PLANE

Figure 1.22 Projection of a rotated set of parallel lines to give vanishing points

This construction allows vanishing points to be set up for each set of parallel lines

in a scene. If a construction technique based on drawing boxes is employed then

19

again a relatively easy-to-follow drawing procedure evolves. The vanishing points
can be constructed by projecting the three lines through the eye, parallel to the box’s
edges, onto the plan or ground plane, and onto the elevation planes, and then onto the
picture plane as before. All subsequent lines parallel to the box’s sides can then be set
up to pass through one of the three related vanishing points.

Figure 1.23 Railway lines perpendicular to the picture plane

Vanishing points make it easy, centred on the eye, to accurately project lines in a
scene onto the picture plane. And where the projection of an edge onto the picture
plane surface is constructed in this way, it allows its scaled size to be measured onto
the drawing as though onto the picture plane directly. This mechanism provides a
neat way of constructing correctly dimensioned elements and relationships in a
perspective picture-space, in the way illustrated in Figure 1.24.

Scaled
Height

Scaled Width

Vanishing
Point

Ground Line

Viewing
Height

PICTURE PLANE

Figure 1.24 Scaling distances onto the picture plane.

ELEVATION

OBSERVER

PLAN

PICTURE
PLANE

Three Dimensional Graphic Models

20 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

An extension of the same idea is shown in Figure 1.25 where by setting up a
vanishing-point for the diagonals of a square checkerboard, aligned with the picture
plane, depth measurements can be scaled onto the picture plane and then projected
correctly back “into” the drawing. In this example these direct measurements are
made along the ground line. The use of square tiles in Figure 1.25 to transfer
distances along the ground line to distances in depth along lines perpendicular to the
display screen is a special case. Vanishing points for measurement lines can be set up
for any set of parallel lines, which converge to the same vanishing point in the way
shown in Figure 1.27.

Scaled Width

Vanishing
Point

Ground Line

Viewing
Height

PICTURE PLANE

Scaled Depth Scaled Depth

OBSERVER

Measuring
Point

Line parallel to the diagonals
of the checkerboard pattern

projected onto the plan

Figure 1.25 Scaling distances in depth using measuring points

The secondary vanishing point is usually referred to as a measuring point. In the

case of lines in planes parallel to the ground plane the technique is to project
distances from the ground line onto oblique lines in the way shown in the plan view
in Figure 1.26 using isosceles triangles. The vanishing point for the base of these
triangles gives the measuring point for oblique lines in the way shown. This can be
constructed by projecting a line through the viewing position parallel to the base of
these isosceles triangles to intersect the picture plane. This position can be
constructed on the plan drawing and then projected up to the horizontal line through
the vanishing point.

The measuring point is the same distance from the vanishing point as the viewing
position, and traditionally has been constructed using a compass centred on the
vanishing point: striking two arcs of the same radius, the first through the viewing
position and the second through the measuring point on the plan view.

21

Figure 1.26 Scaling distances in depth along oblique lines

α

Vanishing Point

PLAN

OBSERVER

Measuring Point

D

Centre of Vision

Line Length

Measuring Point Construction

Figure 1.27 Scaling line lengths using measuring points

The compass is an important tool for the draughtsman: it allows equal length lines

to be marked off along straight lines, and to be transferred to different places in a
drawing. It also allows circles to be drawn. The geometric relationships between

D

a

a

a

a

Measuring
Point Ground Line

Vanishing
Point

PLAN

View Point

α

90-α/2

90-α/2

Three Dimensional Graphic Models

22 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

circles lines and triangles are consequently important in the construction of many
graphic models.

A Circle Through the Vertices of a Triangle

The centre of the circle enclosing a triangle: its Circumcircle can be determined in
the following way:

Figure 1.28 Circumcircle centre

If the vertices of a triangle are joined to the
centre of the Circumcircle then each of the
three new triangles ABO, BCO and CAO
are isosceles since their sides are the radii
of the same circle. If the perpendiculars
from the centre of the circle to the sides of
the triangle ABC are drawn in then the
pairs of triangles AEO & BOE, BFO &
COF and CDO & DOA are congruent.
This makes the marked angles in Figure
equal and the sides AE=EB, BF=FC, and
CD=DA. Consequently the perpendicular
bisectors of the sides of the original
triangle ABC intersect through O the
centre of the Circumcircle.

An Inner Circle Tangent to a Triangle’s Sides

The centre of the circle enclosed by a triangle can be constructed in the following
way:

Figure 1.29 Inner circle centre

Link the vertices of the triangle ABC to the
centre of the inner circle O. Drop
perpendiculars from the centre O to the
sides of the triangle ABC. Note AOF, BOD
and COE in the general case are not
straight lines.

The triangle pairs AEO & DAO, BFO &
EBO and CDO & FCO are congruent. OE
OF and OD are all equal being radii of the
circle, AO, BO and CO are common to
each of the pairs of triangles respectively,
and each triangle is a right angle triangle.

These relationships make it possible to
locate the centre of the inner circle of a
triangle by intersecting the lines that bisect
the angles at each of its vertices.

Triangles on the same side of a common side with a common Circumcircle have the
same angle opposite the common side.

A

B

C

O

E

D

F

B

O

E

F

D

C

α

α

β
β

γ γ

γ
γ

β

β

α

α

23

Figure 1.30 Angles on the same side of a

common edge AC

The angle ABC is half the angle at the
centre of the Circumcircle: AOC.

∠ AOB = 180 − 2α
∠ COB = 180 − 2β
∠ AOC = 360 − ∠ AOB− ∠ COB
∠ AOC= 2α+2β = 2(α+β)

∠ AOC = 2 ∠ ABC

∠ AOC = ∠ DOC − ∠ DOA
∠ DOC = 180 − 2 ∠ ODC
∠ DOA = 180 − 2 ∠ ADO

∠ AOC = 2 ∠ ADO − 2 ∠ ODC
∠ AOC = 2(∠ ADO − ∠ ODC)

∠ AOC = 2 ∠ ADC

Triangles on opposite sides of a common side within a common Circumcircle

have angles opposite the common side that add up to °180 .

Figure 1.31 Angles on opposite sides of a

common edge AC

ABCD is a cyclic quadrilateral. The
diagram in Figure 1.31 illustrates its
opposite angles add to °180 .

360DOACODBOCAOB =∠+∠+∠+∠

δ−=∠
χ−=∠
β−=∠
α−=∠

2180DOA
2180COD
2180BOC
2180AOB

)(180

3602222

δ+χ−=β+α

=δ+χ+β+α

CDA180ABC ∠−=∠

If AC is the diameter of the
Circumcircle then:

∠ ABC = ∠ CDA = °90

These constructions can be used to build accurate line drawings of scenes. They
are also very useful for setting up a correct spatial framework for exploratory design
sketches and planning complex image sequences such as those used in storyboards

α β

α

β

D

C

B

O

A

χ

χ

δ

δ

α β

α

β

A

C

B

O
D

 An Inner Circle Tangent to a Triangle’s Sides

24 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

for film and cartoon work. This is usually done, by setting up a grid framework
within which, more complex details can be drawn in, accurately enough to provide a
working model for many applications. In essence this provides a three dimensional
measuring grid or framework projected onto the picture plane.

Where this framework is made up from lines parallel or perpendicular to the
display plane the result is one point perspective (a single vanishing point and a single
measuring point). Where the framework is rotated about a vertical axis through the
viewing position in the way shown in Figure 1.22, the result is two-point perspective
(two vanishing points and two measuring points). A useful relationship for setting up
this scheme for sketching is shown in Figure 1.32. The two vanishing points and the
viewing point on the plan view must lie on a semi-circle. This arrangement ensures
the direction of the two line sets are at right angles to each other: the angle subtended
by the diameter of a circle at any point on its circumference being 90o.

Figure 1.32 Two point perspective construction

Circles and spheres are also useful for visualising and setting up the relationships
between vanishing points and viewing points for a three dimensional grid when the
framework is rotated about a horizontal axis through the viewing point. The same
approach is applicable: lines parallel to the grid lines can be drawn through the
viewing position, and where they hit the picture plane defines their vanishing points.
This gives three-point perspective (three vanishing points and three measuring
points). The lines linking the vanishing points to the viewing position form a
tetrahedron with its triangular base on the picture plane. Each of the other three faces
of the tetrahedron still have to obey the relationship shown in Figure 1.32 as these
faces are right angled triangles. The circumcircles for each of these triangles
constructed in the planes of the faces all lie in the surface of the same sphere in the
way illustrated in Figure 1.33. If the faces of the tetrahedron are reflected across their
base edge to create a complete rectangular box in the way shown in Figure 1.33, then

Viewing Points

Principal Viewing Directions

PLAN

Vanishing
Point 1

Vanishing
Point 2

P1

P2

Picture Plane

P3

25

symmetry shows that a single sphere passes through the viewing position and the
three vanishing points.

Figure 1.33 Three point perspective: three vanishing points and a viewing point

The circle round the triangle faces will be the circular edges of slices cut through
this sphere. This property makes it clear that once the vanishing points have been set
up on a picture plane the position of the principal viewing position (the perpendicular
projection of the viewing position on the picture plane), is also fixed by the
relationships shown in Figure 1.34.

Figure 1.34 Three-point perspective: defining the viewing position

view from
above

view from
below

An Inner Circle Tangent to a Triangle’s Sides

A

vanishing
points

 viewing
position

B

C

M

L
V

K

26 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

Figure 1.35 Constructing vanishing points and measuring points

Figure 1.35 shows the construction lines in the picture plane used to establish the

relationships between the viewing-position the vanishing points and the measuring
points. A, B, C are the vanishing points and D, G, F are their corresponding
measuring points. The lengths AD, BG and CF are the same lengths as the
corresponding sides of the viewing tetrahedron AI, BJ and CH respectively. This
gives the isosceles triangles needed to define the measuring points. This construction
also shows that the corresponding sides of the triangles CHB, AJB, AIC, the faces of
the viewing tetrahedron, match, constructed (in the way shown in Figure 1.32) using
the blue circles which have the sides of the main triangle ABC as diameters.

A B

C

F

V

J

H

I

M

L D

K

G

27

Figure 1.36 Constructing the viewing pyramid

This match can be seen in Figure 1.35, looking at the circles drawn with red lines.
Figure 1.36 shows how these triangles can be folded upwards to meet giving the
right-angled viewing pyramid with its apex at the eye E. Figure 1.36 shows the
viewing pyramid embedded in a sphere. The Circumcircle of triangle ABC shown
crosshatched in both Figures 1.35 and 1.36 is the intersection of the picture plane
with this sphere. The facets of the viewing pyramid lie in the planes cutting this
sphere shown as blue circles in Figure 1.36. These circles correspond to the blue
circles in Figure 1.35, which have the edges of the triangle ABC as diameters. The
eight vertices of the orthogonal box AYBECXWZ lie on the surface of the sphere.

These geometric constructions used in combination allow shadows to be
constructed, as well as reflections and other illumination effects. Drawing
rectangular objects is easy, curved objects are much more complex but can be done
by using a sequence of profile sections. Systematic ray tracing and projection can
even construct reflections in glass spheres, though manually it is a tedious and
time-consuming task!

A

B

C

E

Y

W

X
Z

An Inner Circle Tangent to a Triangle’s Sides

28 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

Figure 1.37 Constructing measuring points for oblique lines

E

F

K

C

D

H

G

B

A

V

O
M

A

B H

G
E

V

F

Plane AA

F

A

B

C
D

K

Plane BB

Plane PP

F

M

G H

C
D

V

K

V

Plane CC

E

O

M

O

29

In the construction for three-point perspective given in Figures 1.35 and 1.36 the
measuring points lie on the lines joining the related vanishing point and the principal
viewing point -- the perpendicular projection of the position of the eye onto the
display surface of the picture plane.

Just as in Figure 1.27 showing the construction for a two-point perspective,
measurements cannot be made along these lines. Figure 1.37 gives the relationships
that illustrate how the measuring points can be used in the general case. The picture
plane is shown as PP. The eye’s position is labelled E and the principal viewing point
O. The plane CC is the blue plane through O, the vanishing point V and E. The
vanishing point V is where the projection of a line through E parallel to the line AB
in the scene space, hits the picture plane. If the line AB is projected until it hits the
picture-plane at F it gives a new plane labelled AA, coloured pink, containing V, F
and AB. Finally a fourth plane BB, coloured green, can be set up through the line FK
parallel to OV, and the line BAF. M is placed on line OV so that MV is the same
length as VE, to give the necessary isosceles triangle MVE to transfer measurements
into the scene space. The similar triangles in these planes establish the following
relationships.

CDAB

FBDFAC

FBFDFAFC

MVEMVVE

FHBVEH
FB
VE

FH
VH

FGAVEG
FA
VE

FG
VG

EVABAA

FHDMVH
FH
VH

FD
MV

FGCMVG
FG
VG

FC
MV

FKMVPP

=

ΔΔ

==

Δ=

=

=

=

=

 therefore

isosceles are and therefore

 and therefore

isosceles on constructiby but

 and ianglesSimilar tr and

 and ianglesSimilar tr therefore

 toparallel is : planein

 and ianglesSimilar tr and

 and ianglesSimilar tr therefore

 toparallel is : plane picture In the

Consequently measurements made along line FK projected back onto the

measuring point M will give the correctly scaled length for the perspective projection
of the line AB as GH on the picture plane. In Figure 1.38, measuring points and
measuring lines are used to draw a cube using the construction given in Figure 1.35.
An edge of the cube through the vertex S is projected to hit the picture plane at T,
and the intersections of planes parallel to the cube’s facets are constructed as lines
through T parallel to the lines KA, LB and MC to give the measuring lines in the
picture plane.

An Inner Circle Tangent to a Triangle’s Sides

30 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

Figure 1.38 Constructing a cube using three point perspective

Though the drawing in Figure 1.38 looks complicated, in practice, construction lines

are drawn in and erased as they are needed giving a clear and simple process that
allows perspective drawings of complex scenes to be constructed relatively easily.

Analogue Models

The analogue model is one where one physical system which maintains the same
relationships among a set of properties as those among a target-set of properties in a
second physical system, is used as a surrogate to investigate the behaviour of the
target system. As a physical system once it is set, it has the advantage of maintaining
complex multiple relationships in parallel in real time. For this reason the analogue
and physical model can often provide single step parallel modelling operations, rather

w w

w

vanishing
point C

measuring
point G

measuring-lines
parallel to KA ,
LB and MC

edge
line
through
S cuts
picture
plane
at T

measuring
point F

measuring
point D

principal viewing
position

length of the
cube’s sides w

vanishing
point A

vanishing
point B

L

K

C

T

S

B

M
A

31

than the sequential or incremental model building provided, for example, by a
language model where the required relationships can only be presented one at a time.
Setting up the physical model essentially establishes all the required relationships at
the same time. A simple example is sorting a set of values. If a rod with an
appropriately scaled length models each value, lining up all the ends of a bundle of
rods on a flat surface allows the largest to be located in one step. If the largest rod is
removed in sequence the result is an ordered list of values. The sorting operation to
find the largest is a single step operation once the system has been set up. The
consequences of changing one relationship on the others in the system, is found in
one step. This distinction is important when considering the behaviour of computer
and mathematical models. The distinction between this one-shot evaluation using a
physical model and the sequential step-by-step evaluation of an operation such as
finding the largest in a set of numbers, using a computer program, is discussed in the
next chapter on basic Java programming. In a slightly different but related way
quantum-computing promises to establish all the required relationships between input
values as a single operation. The difficult task in both cases is getting the resulting
information from the models.

Geometric Graphical Models

A geometric diagram such as a graph can be thought of as an analogue model.
Drawing out the graph of two functions allows their common values to be determined
by the positions where the two function lines cross.

Language Models

The fastest rough and ready “model” to generate, is probably a verbal description of
an object. However, to define an object accurately it is necessary to specify all the
relationships that are necessary to determine its structure in a non-ambiguous
manner. One way in which this can be done is to describe the building of a prototype,
scale or graphic model of the object, in steps that will lead to its correct construction.

There are many natural languages and they can be used to express the same
information in completely different ways. Where they are represented in text format
the alphabets may be different. Even when they are not they will be made up from
different sequences of characters. These different representations have many
structural similarities. It is possible within the rules of each language to establish the
strings of characters that form correct words and which in turn obey the grammar
rules that allow a person who knows the language to understand what language
statements mean.

Mathematical Models

A mathematical model can be regarded an extension of this kind of language model,
but it is based on more exacting rules than those that govern natural language
descriptions, to ensure that its statements remain correct and reliable. Basic
relationships between entities in the model are defined, and from these only correct
deductions, or consequential relationships, are then permitted.

Mathematical Models

32 1 Models: Language, Graphic, Analogue, Scale, Mathematical & Computer Models

Algebraic models represent relationships symbolically, where the symbols can be
read with meaning, but they can also have their symbolic structure rearranged
following formal rules. The resulting symbolic rearrangement can still be
meaningfully read to represent a consequentially true relationship derived from the
first symbolic arrangement. It is this ability to rearrange the structure of a symbolic
model and still maintain a true statement that allows computer models to be
constructed.

Computer Models

Computer models are constructed from algebraic symbolic data that can be
manipulated formally to give new results, where the manipulation is handled by
automated data processing machinery, which allows the process to be handled fast
enough to execute usefully complex operations.

Computer languages allow computer models to be built and used for many
information-processing tasks. They can be regarded as a way to extend and apply
algebraic symbolic representation, and also as simplified versions of natural
languages. They consist of sequences of characters grouped together to form words,
and they also have to conform to sets of grammatical rules. Like natural languages
there are many computer languages: all capable-of-expressing the same information
in different ways.

It is possible to classify programming language facilities into different types. The
commonest is probably the imperative language statement essentially a command
expressing operations on data objects. Then there is the functional programming
language approach, where statements have a more mathematical flavour, based on
nested function calls. Logic languages employ statements defining true and false
relationships, while concurrent languages allow parallel processing schemes to be
defined so unconnected operations can be carried out independently of each other,
even where they are being executed in a machine system that can only carry out one
operation at once.

To a greater or lesser extent, most common computer languages, support each of
these ways of expressing information processing tasks, more or less efficiently
depending on the application. In this book the computer modelling techniques are
illustrated using Java. This language provides facilities using each of these language
constructs. It is also an object-oriented language built round the unifying idea that
everything can be considered as an object or an operation on an object. This provides
a convenient starting point for computer-based model building, where the object
becomes any entity represented by a language, mathematical or computer model.

follow on sequence

repeat
sequence

lead in sequence

test

true

false

2
Computer Languages:
& Java Programming

Introduction

It is assumed that the reader has a working knowledge of some computer language.
However, key aspects of programming are summarizes in this chapter using the Java
language to support the illustrations developed later in the text that demonstrate how
graphic algorithms can be implemented in a practical way.

Libraries accessed through high level programming languages provide most
graphics facilities now in common use. The demonstrations and illustrations in this
section are all prepared using Java’s standard window display libraries. Some of the
topics, which will be explored in later chapters, will be presented using specially
constructed high-level graphic and geometric-modelling language facilities that are
extensions not supported by standard high-level languages. In order to outline how
these extensions might be implemented it is necessary to provide an introduction to
computer language processing, and it is convenient, to overlap this task with a
summary of the Java language facilities used through out this book.

Later chapters set out to present the way in which a high-level computer language
like Java is processed in stages to control the hardware of a computer system in the
desired way. This is done using a series of simplified system-simulations. These are
written in Java, using Java graphics user interface facilities to visualize the operation
of the computer system and to illustrate the way that the various language levels
translate from one to the other. The lowest level is micro coding and machine
language programming, the next level up is an assembly language translation system,
and finally at the top of the language system hierarchy is Mini-JC the kernel of a high
level Java or C like programming language. Access to graphic facilities can be made
at each of these language levels. Although display processors need to be examined
briefly at the hardware level to understand their fundamental capabilities,
programming them, can be done at all language levels above their machine code.

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_2, © Springer-Verlag London Limited 2008

34 2 Computer Languages: & Java Programming

Structured Programming Constructs

The core of an imperative-language system is based on four kinds of construction.

• Simple command statements and sequences.
• Conditional statements and sequences.
• Repeat statements and sequences.
• Sequences of statements in a hierarchical block structure.

In Java these occur in the following ways:

Names

In order to issue commands in any language it is necessary to identify the objects to
which the commands will be applied. In natural language these references are names
or nouns. In computer languages there are two kinds of references to simple objects.
The first are called literal references and in a sense they are the objects they
represent. Examples are numbers such as 2.304, which though they are character
strings, directly represent the particular numbers they encode. In order to treat this
sequence of characters merely as a sequence of characters it is necessary to enclose
them within quotation marks. This identifies them as a character string literal: a
String, “2.304”. Character strings must be represented using double quotes: “67”,
“234 items”, or “Fred”, single characters using single quotes: ‘k’ or ‘G’. Names are
character strings (but not in quotes) that start with an alphabetic character and
optionally continue with further alphabetic or numerical characters. They must be
treated like algebraic variables in that they are a name that can represent any value or
object. A numeric variable has to be given a value before an expression containing it
can be evaluated. Variables can be rearranged in algebraic expressions in “valid”
ways, independently of the values they represent. Strings and characters can be
reordered to implement such text manipulation within larger language statements.
Naming allows general commands to be expressed that can be applied to many
different particular values or objects that a name could represent.

Simple Command Statements

Many simple commands are in reality sub-program names, for example:

IO.writeString(“Hello World”);

The command IO.writeString() is a call to a sub-program elsewhere in the system,
which takes the data “Hello World” and writes it out to the display screen. Other
simple commands duplicate, rename or generate objects using assignment statements.

number1 = 3.78;
number2 = IO.readInteger();

 number3 = number2;
 number4 = number3*number1;

These assignment statements are commands, in the first case to associate a
variable name number1 with the real value, 3.78: In the second to call the sub-
program IO.readInteger() to get a number from the computer keyboard and store it

35

as a variable called number2, in the third as a command to transfer the value stored in
number2 to another variable called number3, and finally in the fourth the values of
two variables are combined in an arithmetic expression creating a new value which is
then assigned to the variable number4. The assignment statement can be interpreted
in two ways in Java. In the first, shown below, it is a copy command. In other cases it
can be thought of as a renaming or multiple naming-command.

 3.4

a = b
a

3.4 3.4
a copy b b

In this example if a and b are simple variable names referring to data representing

numbers or characters, or truth values, then the assignment operation is one of
duplication. The simplest way of thinking about the operation is that a and b
represent boxes, and the assignment takes a copy of what is in box b and places it in
box a.

If on the other hand, a and b are the names of a more complex object, then the
assignment a = b; means that the object named b can also be referred to or called by
the name a. The simplest way of visualising this case is as follows.

a = b
a b

object

a rename
b

object

@@@ @@@ @@@

Where the data object referred to by a name is small, the box associated with the

name is used to hold the data. Where the data object referred to by a name is too
large for this or has a variety of possible sizes, then the name-box holds an indirect
reference to the object shown in the diagram above by @@@. This means the
assignment can be executed by exactly the same operation as that used in the simple
case: copying the reference @@@ from one box to the other, but to get a duplicate or
new object the statement has to be written a = b.copy();

a = b.copy()
a b

object

a

copy
object

b

object object

@@@ %%% @@@

Clearly, further operations using the new names in each of these two cases must
be handled differently. In the first case there are two objects, which can be acted on
independently using their corresponding names, in the second there is one object and
either name will select it. If the first name is used to change the object, then, when
the second name is used to access the object that it refers to, following the change, it
will address the modified object; not the unchanged one it originally referred to.

3.4 3.4 3.4

@@@ @@@ @@@

object object

object object

@@@ @@@ %%%

Simple Command Statements

36 2 Computer Languages: & Java Programming

Declaring Variables and Initialising Objects

In carrying out an assignment unless the operation is policed by the system, any
“type” of object could be associated with a name. If the name was intended to
represent a number and by accident a truth-value is assigned to it, then clearly
unlooked for results would be produced! Most programming languages type-check
variables and restrict assignments to permitted associations. In order to do this a
necessary part of the program writing is to specify the type of data a variable can
hold. This is done in declaration statements.

 int variable1, variable2, variable3; // integer variables
 double variable4 = 3.2, variable5 = 6.1; // double length floating point variables

static TextWindow IO = null; // a null reference to a TextWindow object

It is generally a good idea to initialise variables with start up values like the
assignments shown in the second example, even if these are going to be changed
later. Where a variable refers to a more complex object, then this initialisation may
be deferred in the way shown for the TextWindow object. Where it is not then an
object has to be constructed by the system. This is achieved by issuing the new
command. A useful example of this is initialising a text window to support input and
output to the program, which can be done in the following way:

 static TextWindow IO = new TextWindow (20, 30, 500, 60);

The name of the object type: TextWindow precedes the variable name: IO, in the
same way used to declaring simple objects. However, the new command is required
to initialise a new TextWindow, by a call to the sub-program that sets up an object of
this type, before its reference can be assigned to the variable name IO. In Java the
procedure for building more complex objects is called a “constructor”, and it has the
same name as the type of object it generates. The qualification of this declaration, by
the keyword static makes the variable a class variable. This allows it to be used
directly in simple programs.

A Simple Java Program

The classic example of a simple program is one that outputs the greeting:

Hello World

public class Program1 {
static TextWindow IO = new TextWindow(20,170,500,200);
public static void main(String[] args){

IO.writeString(" Hello World ");
}

}

Notice that the output command writeString(“hello world”) is coupled to the
object name IO by a full stop character. This is because the TextWindow object: IO
carries out the operation of displaying the message, and the sub-program that does
the work, is part of this more complex object. This program when it is run generates
the following display on the screen

37

The command writeString() is a call to a sub-program, elsewhere in the system,
which is part of the definition of the text window object, and which takes the data
“Hello World” and writes it out to the display screen. It is an example of several
commands needed to enter and display data. Essential, if useful programs are to be
written.

The facilities in Java to handle the input and output of data are very flexible to
cover a variety of different modes of interaction between the user and the system, and
consequently are fairly complex. In order to simplify most of the examples of
programs presented in this book, a reduced set of commands solely for entering and
displaying text information in a text window is provided.

class TextWindow extends JFrame{

TextWindow(int col, int row,int width, int height){} // Constructor

public String readTextString(){}
public String readString(){}
public char readCharacter(){}
public void readSpaces(){}
public String readLine(){}
public byte readByteInteger(){}
public short readShortInteger(){}
public int readInteger(){}
public long readLongInteger(){}
public float readReal(){}
public double readLongReal(){}

public void writeString(String str){}
public void writeLine(){}
public void writeCharacter(char ch){}
public void writeByteInteger(byte number, int align){}
public void writeShortInteger(short number, int align){}
public void writeInteger(int number, int align){}
public void writeLongInteger(long number, int align){}
public void writeReal(float number, int align,int frac){}
public void writeLongReal(double number, int align,int frac){}
public void newLine(){}

public void quit()

}

A Simple Java Program

38 2 Computer Languages: & Java Programming

This TextWindow object IO, once it is set up, by calling its constructor in the way
illustrated in the “Hello World” program, supports the list of commands or methods
given above. Since a subprogram with a particular name can only return one type of
data object, this list of methods introduces most of the basic types of data that the
system user handles as text. The first eleven methods return numbers of different
types, which can be assigned to variables of matching types in the following way:

char character = IO. readCharacter(); // single characters
String string1 = IO.readTextString(); // character strings
String string2 = IO.readString(); // character strings
String string3 = IO.readLine(); // character strings
byte number1 = IO.readByteInteger(); // 8 bit integers
short number2 = IO.readShortInteger(); // 16 bit integers
int number3 = IO.readInteger(); // 32 bit integers
long number4 = IO.readLongInteger(); // 64 bit integers
float number5 = IO.readReal(); // 32 bit floating point values
double number6 = IO.readLongReal(); // 64 bit floating point values

These newly defined variables character, string1, string2, string3, and number1..

number6, will receive input from the keyboard. Their contents can in turn be output
to the display in the TextWindow by the matching commands:

IO.writeCharacter(character);
IO.writeString(string1);
IO.writeString(string2);
IO.writeString(string3);
IO.writeByteInteger(number1, 5);
IO.writeShortInteger(number2, 5);
IO.writeInteger(number3, 5);
IO.writeLongInteger(number4, 10){}
IO.writeReal(number5, 10, 5);
IO.writeLongReal(number6, 10, 5);

Input to the system is best thought of as a flow of characters, in a single-file

stream from the keyboard, in the order in which they are typed into the system. This
will include character codes for formatting the text display like the carriage return,
which finishes one line and starts the next in the display. The IO.readLine()
command returns all the remaining text in the current line of input up to and
including the carriage return. The IO.newLine() command does the same thing but
does not return the String of characters making up the rest of the line. Its useful
function is to clear input stream characters such as the carriage return that might
interfere with subsequent read commands. In a related way the IO.writeLine()
command places a carriage return character into the output steam of characters being
sent to the text window. The IO.readTextString command and IO.readString
command returns the next sequence of characters, upto the next “space” character
code. The IO.readTextString() command removes any leading space characters
before looking for input. The sequence IO.readSpaces(); IO.readString(); being
equivalent to IO.readTextString().

39

Formulae, Expressions and Equations

A natural extension to the assignment of simple variables is made, where the
assignment transfers the result of evaluating an expression into a new variable box. In
this case the assignment can be viewed as a way of generating a new variable value.

c = (f - 32.0) / 9.0 * 5.0;

This provides the simplest route into writing useful programs. Many scientific
relationships and results are recorded mathematically in the form of formulae and
equations. These usually translate into assignment statements and expressions in a
conveniently directly way.

A simple program to convert a Fahrenheit temperature value into its
corresponding Celsius value can be written in the following way.

public class Program2{
 static TextWindow IO = new TextWindow(20,170,500,200);
 public static void main(String[] args){
 IO.writeString("Please enter a Farenheit value: ");
 double f = IO.readLongReal(); IO.newLine();
 double c = (f-32.0)/9.0*5.0;
 IO.writeString("The Celsius value is: ");
 IO.writeLongReal(c,6,3);
 IO.writeLine();
 IO.writeString("calculation complete \n");
 }
}

Statement Sequences: Blocks and Subprograms

A small program like this is made up from a list of simple commands. However the
flow of control from one statement to the next, often needs to be rearranged to follow
more complicated routes through different statement-sequence blocks, and facilities
have to be provided to move from block to block in a program in a controlled
manner. One of these block-structuring approaches has already been mentioned, and
consists of giving a name to a commonly used block of code as a sub-program, and
accessing it by issuing its name as a single command. The readInteger() command
given above refers to such a block of code which carries out the reading operation
demanded by the program, obtaining the number from the keyboard as it is typed into
the computer system.

Statement Sequences: Blocks and Subprograms

40 2 Computer Languages: & Java Programming

Conditional Statements

The simplest command that requires a statement sequence to be divided into blocks is
the conditional command, which is illustrated by the two examples given below. In
each of these cases a special pair of symbols < and > is used as brackets to indicate a
section of code that has not been expressed using correctly structured commands.
These brackets are called meta-symbols because they are not part of the language, but
denote either an approximation name or an abstract name for an operation, which
will be replaced in the final completed program by an equivalent sequence of correct
commands. They are useful to denote “pseudo” code, in other words, statements,
which are a rough approximation of what the final program is intended to do, but
need to be distinguished from finished code. This helps to develop a program in
organised steps, as it is being set up and designed. The meta symbols < >, in a similar
way but more formally, are also used to define the grammatical components of larger
language structures. An example would be a sentence defined as:

<sentence> := <subject> <verb> <object>

In order to get a correct sentence the elements in < > brackets have to be replaced
by the real words that make up, or are deemed appropriate as, the subject, the verb or
the object of the final sentence.

<lead in sequence>
if(< test >){< action sequence A>}
<follow on sequence>

follow on sequence

action
sequence A

lead in sequence

test
true

false

<lead in sequence>
if(< test>){< action sequence A>}
else{<action sequence B>}
<follow on sequence>

follow on sequence

action
sequence A

action
sequence B

lead in sequence

test
true false

test

test

action
sequence B

41

The conditional consists of a block of code, which must be processed only if a
certain condition is met. A test statement specifies the condition, and the condition is
met when this test is found to be true. Its associated operation can then be executed.

An extension of the same idea is given in the second example. Here there are two
alternative sequences of code. The first is executed when the condition is met in other
words when the test is true, the second is executed when the test fails and gives a
false result. It is convenient to visualise the flow of control defined by these
statements in the way shown above in the diagrams on the right.

public class Program3{

static TextWindow IO = new TextWindow(20,170,500,200);

public static void main(String [] args){

IO.writeString("Please enter two numbers: ");
double a = IO.readLongReal();
double b = IO.readLongReal();

IO.writeString("ascending order \n");
if(a<b){

IO.writeLongReal(a,10,3);
IO.writeLongReal(b,10,3);
IO.writeLine();

}else{
IO.writeLongReal(b,10,3);
IO.writeLongReal(a,10,3);
IO.writeLine();

 }
IO.writeString("descending order \n");

 if(a>b){
IO.writeLongReal(a,10,3);
IO.writeLongReal(b,10,3);
IO.writeLine();

}else{
IO.writeLongReal(b,10,3);
IO.writeLongReal(a,10,3);
IO.writeLine();

}
}

A program to order two numbers for output can be written using a single

conditional test in the way shown above. However it is possible to place conditional
statements within the statement sequences already controlled by other conditional
statements.

This gives a nested structure, which can be used to reorder more than two numbers
and output them as an ordered list, in a single step. This is loosely comparable to the
analogue use of measured rods to order a collection of values in a single step,
described in chapter one as a “one-shot” operation.

Conditional Statements

42 2 Computer Languages: & Java Programming

public static void main(String[] args){
IO.writeString("Please enter three values: ");
int a = IO.readInteger(); int b = IO.readInteger(); int c = IO.readInteger();

if(a<b)

if(a<c)
if (b<c) { IO.writeInteger(a,9);IO.writeInteger (b,9); IO.writeInteger (c,9);}
else { IO.writeInteger(a,9); IO.writeInteger (c,9); IO.writeInteger (b,9);}

else if (b<c) { IO.writeString("Impossible case :except ring order ");}
else { IO.writeInteger(c,9); IO.writeInteger (a,9); IO.writeInteger (b,9);}

else if(a<c)
if (b<c) { IO.writeInteger(b,9); IO.writeInteger (a,9); IO.writeInteger (c,9);}
else { IO.writeString("Impossible case :except ring order ");}

else if (b<c) { IO.writeInteger(b,9); IO.writeInteger (c,9); IO.writeInteger (a,9);}
else { IO.writeInteger(c,9); IO.writeInteger (b,9); IO.writeInteger (a,9);}

}

if (<test1>){<Action1>}
else if (<test2>){<Action2>}
else if (<test3>){<Action3>}
else if (<test..>){<Action..>}
…
else if (<test n>){<Action n>}
else {<Action n+1>}

follow on sequence

lead in sequence

action 1

test 1
true

false

test 2

test 3

action 2

action 3

test n

action n action n+1

true

false

false

true

true false

A special case of this nested arrangement is provided by the example shown above
where the tests are applied sequentially in a list. In this example a list of conditional
tests is processed and whenever a test is successful the dependent code sequence is
executed after which, control leaves the conditional statement and passes to the next
statement. To order a sequence of numbers using this construction would require the
following arrangement.

43

public static void main(String [] args){
IO.writeString("Please enter three values: ");
int a = IO.readInteger(); int b = IO.readInteger(); int c = IO.readInteger();

if ((a<b)&&(b<c)) { IO.writeInteger(a,9); IO.writeInteger (b,9); IO.writeInteger (c,9);}
else if((a<c)&&(c<b)) { IO.writeInteger(a,9); IO.writeInteger (c,9); IO.writeInteger (b,9);}
else if((c<a)&&(a<b)) { IO.writeInteger(c,9); IO.writeInteger (a,9); IO.writeInteger (b,9);}
else if((b<a)&&(a<c)) { IO.writeInteger(b,9); IO.writeInteger (a,9); IO.writeInteger (c,9);}
else if((b<c)&&(c<a)) { IO.writeInteger(b,9); IO.writeInteger (c,9); IO.writeInteger (a,9);}
else if(((c<b)&&(b<a)) { IO.writeInteger(c,9); IO.writeInteger (b,9); IO.writeInteger (a,9);}
else IO.writeString("Impossible case :except ring order ");

}

In this example the tests are clear but more complex. Each test is an expression,
which combines the truth-values of two simple binary relationship tests such as (a<c)
to give a final single truth-value, the result of evaluating the overall test expression.

These truth-values are called Boolean values, which can be represented in the
program by literal representations in the same way that numerical values can. In this
case they are one of two values represented by the words true and false. Boolean
expressions are formed by combining Boolean variables using the operators “not”,
“and” and “or”. These are represented in Java by the characters: !, &&, ||,
respectively. The following operator, “truth-tables” define their actions.

input output input input output output
A X ! A A B X A&&B X A||B

true true X true X true true X false
true false X false X true
false true X false X true false X true

false false X false X false

Expressions can be constructed using operator precedence rules (not > and > or)
and brackets in much the same way that arithmetic algebraic expressions are built up
and the resulting values can be assigned to Boolean variables.

boolean itIsRaining = true;
boolean result = !((a < b) && (b < c)&& itIsRaining || (a == b))||(x != y)

The <switch statement> provides an alternative statement to the nested conditional

that allows a similar kind of multiple-choice. In this case there is not a sequence of
tests for true or false, but a function that generates an integer value. This number is
used to select the label case-number that it matches, and then the code associated
with the case is executed. Notice in this case that the break statement is necessary to
pass control on to the next command. Where it is missing control passes to the next
case in sequence, below. In the example shown above, if the selection function gives
an integer value 7 then actions 3 and actions 4 are executed. If the selection function
gives 8 or 9 then only action 4 is executed.

Conditional Statements

44 2 Computer Languages: & Java Programming

switch(<selection function>){

case 2: <action 2>; break;
case 7: <action 3>;
case 8:
case 9: <action 4>; break;
….
default:<default action>;

}

switch function

action 2

case 2

case 8

case 7

action 3

follow on sequence

case 9

default
action

action 4

lead in sequence

The application of this statement to sorting three numbers can be carried out in the

following way.

public static void main(String[] args){

IO.writeString("Please enter three values: ");
int a = IO.readInteger(); int b = IO.readInteger(); int c = IO.readInteger();

int j = 0;
if(a<b)j=j+1;
if(a<c)j=j+2;
if(b<c)j=j+4;

switch(j){

case 0: IO.writeInteger(c,9); IO.writeInteger (b,9); IO.writeInteger (a,9);break;
case 1: IO.writeInteger(c,9); IO.writeInteger (a,9); IO.writeInteger (b,9);break;
case 3: IO.writeInteger(a,9); IO.writeInteger (c,9); IO.writeInteger (b,9);break;
case 4: IO.writeInteger(b,9); IO.writeInteger (c,9); IO.writeInteger (a,9);break;
case 6: IO.writeInteger(b,9); IO.writeInteger (a,9); IO.writeInteger (c,9);break;
case 7: IO.writeInteger(a,9); IO.writeInteger (b,9); IO.writeInteger (c,9);break;
default:IO.writeString("Impossible case :except ring order ");break;

}
IO.writeLine();

}

45

Decision Tables

These three examples lead to a useful programming construct, which is helpful in
designing programs that handle complex relationships. This is the decision table.
When a relationship test is evaluated or when a boolean variable is defined,
combinations of their truth values can be used to select different actions. When these
conditions and actions are complex then it is useful to set out all the possible
combination of boolean variable values to ensure that each outcome, from all
possible inputs, is allocated to an appropriate action. In essence this is giving all input
combinations of values an output action rather than a value, which is done in the case
of the truth table definition of boolean operator functions. Laying out these
relationships in a table allows the relationships between the tests and the actions they
require to be systematically examined and reduced to their simplest form, it also
saves mistakes resulting from unaccounted cases being overlooked.

The ordering of three numbers depends on the primitive operation of comparing
pairs of numbers. There are six relationship pairs generated by three variables {a, b,
c} which are (a, b), (a, c), (b, c) and (b, a), (c, a), (c, b). If these are all tested using
the < test, then this gives six boolean values and six possible tests of the form if(a<b)
A1 else A2, if (b<a) A3 else A4 etc.. However the results of these tests are not all
independent. If (a<b) is true then (b<a) will be false. These tests are not opposites
and cannot therefore be treated by one test if(a<b) then A1(or A4) else A2 (or A3).
The problem is the case where (a==b). Where (a==b) both (a<b) and (b<a) will be
false. When the actions A1 and A2 are considered for ordering the two values a and
b, it is clear that where (a == b) either outputting (a, b) or (b, a) gives the same
result. Analysing the actions in relationship to the tested conditions in this case
allows a single test to be used to replace two. A decision table for this problem can be
set up as follows:

(a<b) true false
(a<c) true false true false
(b<c) true false true false true false true false

Action A7 A6 A5 A4 A3 A2 A1 A0

Output

a, b, c

a, c, b

error

c, a, b

b, a, c

error

b, c, a

c, b, a

In each of these examples the program is designed to select and then output the
sorted numbers in one step as a complete ordered list of numbers. There is a limit to
the number of elements that can be treated in this “one-shot” way, with three
numbers there are only 3! in other words 6 possible output lists. When the number of
elements in the unordered list is raised to 4, then the number of output orders goes up
to 24. With seven numbers, this number would expand to 7! in other words 5040

Decision Tables

46 2 Computer Languages: & Java Programming

output statements would be needed in the program to carry out the task in the same
way. Laying out the decision table would show that 7 numbers would require 7*6/2
binary relationship tests. As a decision table this would set up 221, in other words
over 2 million potential actions. Since only 5040 of these are not error messages, this
approach clearly has strict practical limits.

The sorting program can be greatly simplified if the sorted output is built up step
by step rather than being generated in a single step as a one-shot operation. If each
step removes the current largest element in the input list, only n steps will be required
to create the output list in the modified operation to order n values. This sequential
process can be greatly simplified as a program if it can be expressed as an operation,
which can be applied repeatedly, to the same set of data.

Repeat Statements

The next commands that modify the way sequences of code are processed are the
repeat commands. There are three main forms commonly used. The first is the for-
loop. This contains three fields in a control section followed by a sequence of
dependent statements within { } brackets. The first field sets up initial conditions,
usually a counting variable. The second field sets up a finishing condition usually a
relationship test applied to the counting variable and finally the third field defines the
changes that must be executed at the end of each repetition cycle. The latter is usually
the increment or decrement of the counting variable.

 for(int i = 0; i< integerArray.length; i++){

IO.writeInteger(integerArray[i],6);
 }

follow on sequence

repeat
sequence

intialise conditions

test

true

false

lead in sequence

increments

The for-loop is often associated with actions on arrays. An array is a collection of

objects where each object can be accessed by giving the array name followed by the
index of the object in the array, in square brackets. If the counter in a for-loop is used
to index elements in the array then each object in it can be visited in order. A
program to write out all the integers in an array of integer numbers can be written in

test

47

the way shown above. The other two repeat commands are more primitive in that
they merely control the repetition of a block of code by a terminating test. The two
forms of this command apply this test at the beginning and at the end of the repetition
cycle respectively. The following diagrams illustrate the flow of control set up by
these statements using the equivalent programs to the one above for writing out the
contents of an array.

 int i = 0;
 while(i< integerArray.length){

 IO.writeInteger(integerArray[i],6);
 i = i+1;

 }

follow on sequence

repeat
sequence

lead in sequence

test

true

false

 int i = 0;
 do{

 IO.writeInteger(integerArray[i],6);
 i = i +1;

 } while(i< integerArray.length);

follow on sequence

repeat
sequence

lead in sequence

test

true

false

The difference between these two examples is that the first can cope with an array

with no contents, while the second needs the array to have at least one entry if an
error is not to be generated by the system attempting to access a non-existent
element.

Using the repeat command allows a set of numbers held in an array to be ordered
by a simple repetitive swapping operation. If the largest element is selected each
cycle through an array and the value is stored at the beginning of the array, then after
n passes for an array of n elements the array will end up being sorted into descending
order.

test

test

Repeat Statements

48 2 Computer Languages: & Java Programming

public static void main(String[] args){
int[] integerArray = new int[7];
IO.writeString("Please enter seven values: ");

for(int i=0;i<7;i++) integerArray[i] = IO.readInteger();
for(int j=0;j<7;j++){

for(int i=j+1;i<7;i++){
if(integerArray[j]<integerArray[i]){

int temp=integerArray[j];
integerArray[j]=integerArray[i];
integerArray[i]=temp;

}
}

}
for(int i=0;i<7; i++)IO.writeInteger(integerArray[i],6);
IO.writeLine();
for(int i=6;i>=0;i--)IO.writeInteger(integerArray[i],6);

}

The application of the second form of repeat command allows the program to be
set up to handle variable amounts of input data. A program to convert Fahrenheit
temperature measures to Celsius values can be written in the following way, where
the system asks at the end of each calculation if another is required.

public class Program 4{

static TextWindow IO = new TextWindow(20,170,500,200);

public static void main(String[] args){

String str = "";
do{ IO.writeString("Please enter a Fahrenheit value: ");

double f = IO.readLongReal();IO.newLine();
double c = (f-32.0)/9.0*5.0;
IO.writeString("The Celsius value is: ");
IO.writeLongReal(c,6,3); IO.writeLine();
IO.writeString("Do you wish to continue? y/n: ");
str = IO.readString();IO.newLine();

}while(str.equals("y"));
IO.writeString("calculation complete \n");

}
}

49

The sequences of commands in a repeat loop have to be designed carefully, to be
applicable again and again as the program cycles. An example of a construction,
which can be applied repetitively to a sequence of data, can be seen in the case of the
formulae used to define the sum, the average, and the variance of a list of values.

Sum: ∑
=

=

=
ni

i
ixS

1

Average: ∑∑
=

=

=

=

==
ni

i
i

ni

i

i x
nn

xx
11

.1

Variance:
()∑σ

=

=

−
=

ni

i

i

n
xx

1

2
2

() ()

∑

∑

∑∑∑

∑ ∑

=

=

=

=

=

=

=

=

=

=

=

=

=

=

−=

+−=

+−=

+−
=

−

ni

i

i

ni

i

i

ni

i

i
ni

i

i
ni

i

ni

i

ni

i

iii

x
n
x

n
xxxx

n
x

n
xxx

n

n
xxxx

n
xx

1

2
2

1

2
2

1

2

11

2

1 1

222

..2

..21

..2

The sum is simple to calculate within a “for” loop or a “while” loop. The average

also can be calculated in a single repeat loop, in one of two ways depending on
whether the length of the list is known at the beginning of the repeat command or

Repeat Statements

50 2 Computer Languages: & Java Programming

only when the list has been completely processed. In the first case if the length of the
list is known then each element can be divided by the list length and then added to
the total. In the second case a count has to be kept of each new element added to the
sum of list elements, when the list is complete the answer is the sum divided by the
number of elements.

The variance in contrast, appears to require two loops the first to calculate the
average, the second to calculate the variance. Rearranging the formula, algebraically
in the way shown above allows the variance to be calculated in one loop. By
calculating the sum of the squared elements, (xi.xi) and the average x within the
loop, the final result can be obtained by squaring the average and subtracting it from
the average of the sum of the squares. This is one example from a variety of different
“recurrence relationships” designed to use repeat commands to provide compact and
efficient program code.

Another example of this process occurs with the choice of names for variables. A
program to generate the Fibonacci series can be set up by defining the nth element as
the sum of the n-1th and the n-2th elements in the series.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

nextElement = lastElement + lastButOneElement;

Once this statement has been executed the lastElement and the lastButOneElement
no longer hold the values appropriate to their names. In order to complete a sequence
of statements that can be repeated, it is necessary to redefine these variables in the
following way:

nextElement = lastElement + lastButOneElement;
output(nextElement);
lastButOneElement = lastElement;
lastElement = nextElement;

Exactly the same redefinition is needed to draw a curve based on plotting a string

of line segments.

plotLine(leadingPoint, laggingPoint, colour);
laggingPoint = leadingPoint;
leadingPoint = calculateNextPoint();

A more complex repeat pattern can be set up to implement a “finite state

machine”. This is a program where the current state determines the action, and the
next state is determined by the combination of new inputs and the current state. A
diagram of this kind of mechanism is a very useful tool for programming a variety of
problems. It is often easier to visualise the interactions needed to make a program
function correctly if bubbles labelled by the state names are drawn out to represent
the states, and state transitions are shown by arrows, from one bubble to another,
with each arrow associated with the inputs that cause the transition.

51

Start

First
Character

Finish

not
alphabetic

not alphabetic
or numeric

alphabetic

alphabetic
or numeric

alphabetic
or numeric

not alphabetic
or numeric

Subsequent
Characters

Next Input
Character

Figure 2.1 State transition diagram for a name recognition program

public static void main(String[] args){

String str = ""; char ch = '\0';
boolean notFinished = true;
int start = 0, nextCharacter = 1;
int firstCharacter= 2, subsequentCharacters = 3, finish=4;
int state = start;
while(notFinished){

switch(state){
case 0:state = nextCharacter; break;
case 1:ch = IO.readCharacter();
 if(((ch>='a')&&(ch<='z'))||((ch>='A')&&(ch<='Z'))) state = firstCharacter;
 break;
case 2:str = str+ch;
 ch = IO.readCharacter();
 if(((ch<'a')||(ch>'z'))&&((ch<'A')||(ch>'Z')) &&((ch<'0')||(ch>'9')))state = finish;
 else state = subsequentCharacters;
 break;
case 3:str = str + ch;
 ch = IO.readCharacter();
 if(((ch<'a')||(ch>'z'))&&((ch<'A')||(ch>'Z'))&&((ch<'0')||(ch>'9'))) state = finish;
 break;
case 4:notFinished= false; break;
}

}
IO.writeString(str + "\n");

}

Repeat Statements

52 2 Computer Languages: & Java Programming

A switch statement, acting on a state variable, contained within a repeat loop, can
be used to implement this kind of process in the way shown in Figure 2.1 to
recognise a name within a sequence of characters. Though this structure is very
powerful and will cope with many programming tasks, its limitation is its fixed
number of state variables. Many programming tasks require more memory than this
in order to build up a varying number of partial results, before the overall task can be
completed, the amount of memory depending on the nature of the input received: the
classical example of this kind of task is evaluating an expression.

Sub-programs, Procedures, Functions and Methods

One way of getting this extra memory as it is needed is to use recursive procedures –
sub-programs, which call themselves. The terms: sub-program, subroutine,
procedure, function, and method; are with small variations interchangeable and
depend on the computer language being used. In object oriented languages the
preferred term referring to a sub program is the term “method”. In Pascal and
Modula-2 the terms procedure and function-procedure are used to distinguish sub-
programs which returned no value, and sub-programs which returned a value, like
value = sin(alpha);. In Java and C, because statements are considered to have values,
(allowing strings of assignments such as a = b = c = d; to be written) any subprogram
can be written as a function. However, methods are allowed to return a void value,
and therefore can behave as procedures that cannot be used in assignment statements!

Public class Program5{

static TextWindow IO = new TextWindow(20,170,500,200);
static double mul (double x,double y) {return x*y;}
static double div (double x,double y) {return x/y;}
static double sub (double x,double y) {return x-y;}
static double add (double x,double y) {return x+y;}
public static void main(String[] args){

double a=2,b=3,c=4,d=10,e=1,f=4,g=2;
double expression1 = a*b+c*(d-f)/(e+g);
double expression2 = add(mul(a,b),mul(c,div(sub(d,f),add(e,g))));
IO.writeString(“exrpession 1: “+ expression1+”\n”);
IO.writeString(“exrpession 2: “+ expression2+”\n”);

}
}

The declaration of functions in a simple program to evaluate an arithmetic
expression using function calls is shown in Program 5. As before it is necessary to
qualify the definition of each method by the keyword static. In this example the same
expression is presented in two different ways. In the first it is written in the
conventional form using arithmetic operators and brackets. In the second each
operator is replaced by a function call. Each function method executes its
corresponding arithmetic operation in a standard way on the two values passed to it
and returns the result. This example illustrates the way methods are defined and the
way they are called. In the function definition the type of the return value has to
precede the function name, and the values passed to the function have to be given

53

working names in order for the function code to be written, and each has to have its
type defined. When the function is “called” the real parameter names matching the
dummy, working names in the function definition have to be placed in the method’s
argument list, in the correct order to match the dummy arguments in the method
definition. This matching process allows the function to be applied to any variables
that the calling statement specifies.

When a method is called, control is passed to the sub-program code. The
parameter values in the calling statement are copied to the dummy variables in the
sub-program code. When the method’s computation is complete its resulting value is
passed back, and treated, as a value associated with the function name in the calling
statement, as if the calling name were a simple variable.

add(x, y)
{return x+y}

10, 4

add(,)

div(x, y)
{return x/y}

mul(x, y)
{return x*y}

mul(a , b) mul(c ,)

div(,)

sub(d , f) add(e , g)

sub(x, y)
{return x-y}

6

6

1, 2
3

3

2

2 4
8

8

mul(x, y)
{return x*y}

2, 3 6

6

add(x, y)
{return x+y}

14 14 add(mul(a,b),mul(c,div(sub(d,f),add(e,g))))

 a*b + c*(d-f)/(e+g)

Figure 2.2 Parameter matching for sub routine calls

When a more complex object is passed as an argument to a sub-program, its

indirect reference will be copied to a local variable in the method. This means, in this
case, the object is not duplicated. For simple objects such as integers the value is
passed and therefore it is duplicated. Arrays are more complex objects and they have
their references passed to methods rather than the whole array being duplicated.
Consequently an array with one element will act as a convenient example of a pass
by reference. An example, where this treatment makes a difference is the subprogram
to swap the contents of two variables.

Sub-programs, Procedures, Functions and Methods

54 2 Computer Languages: & Java Programming

Public class Program6{
static TextWindow IO = new TextWindow(20,170,500,200);
static void swap1(double x, double y){ double temp = x; x = y; y = temp; }
static void swap2(double [] x, double[] y){ double temp = x[0]; x[0] = y[0]; y[0] = temp;}

public static void main(String[] args){

IO.writeString(“please enter two different numbers: ”);
double a = IO.readLongReal(); double b = IO.readLongReal();
double[] c = new double[]{a}; double[] d = new double[]{b};
swap1(a,b);
IO.writeString(“swap1: ” + a + “ ”+ b +”\n”);
swap2(c,d);
IO.writeString(“swap2: ” + c[0]+ “ ” + d[0] +”\n”);

}
}

In program 6, swap1 shows a swapping function which exchanges the contents of
the local parameter variables, but which has no effect in the space of the calling
program. In contrast swap2, by passing the references to two arrays, by exchanging
their contents, provides the result back to the calling program, because it uses the
same references to the arrays in the function that are used in the calling program.

When a subroutine is called, storage space for its internal and parameter variables,
(local variables) are allocated to the program automatically by the language system.
This extra memory space is arranged in a stack data-structure, where the last element
added to the stack, is the first element returned from the stack. If a procedure calls
itself then it will build up a sequence of memory spaces on the stack, which will be
taken off the stack as the procedure returns to its calling statement. This recursive
procedure calling supports a different way of implementing a repetitive operation.
For example writing out the contents of an array can be done either forwards or
backwards, by the following procedures:

static void forwardOrder(int i, double[] array){
if(i<array.length)IO.writeLongReal(array[i],6,2);else return;
forwardOrder(i+1, array);

}
static void backwardOrder(int i, double[] array){

if(i<array.length)backwardOrder(i+1, array);else return;
IO.writeLongReal(array[i],6,2);

}

55

In these examples each call to the routine will set up a local variable i, which
will be placed in the stack starting with 0. A new value for i will be generated, and
incrementally increased, by each routine call, until it is equal to the length of the
array, when the procedure will return through all its intermediate calls back to its
start, releasing memory space for i as it goes. By placing a write statement before
the recursive call the local values of i will be used as they increase, by placing the
write statement after the recursive call the local value of i will be used as they
decrease during the return path of the calling sequence. It is essential that some
way of stopping such a chain of recursive calls be built into recursive procedures,
in this case testing to see if the end of the array has been reached stops the
sequence of calls.

Two standard data structures can be handled in an elegant way using this
approach. The first is the simple list, either as an array in the way shown in the
example, or as a dynamic linked list data structure. The second is the tree data
structure where elements are hierarchically linked to two or more lower level
elements. The expression used in Program 5 can be represented as the operator tree
shown diagrammatically in Figure 2.3. This will be explored more fully in a later
chapter.

+

c

*

/

−

f d

+

g e

*

b a

a*b+c*(d-f)/(e+g)

Figure 2.3 An arithmetic expression operator tree

Recursive programs can handle more complex data structures than simple finite
state machines, mainly because of the way they can manage the growth and release
of data stored on a stack.

Associated with the tree structure is a programming strategy called “divide and
conquer”. Where this approach is applicable it usually provides a more efficient
algorithm, than alternatives. Consider the sorting problem. To order a list of values
that can appear in any order, it is necessary to remove the largest value n times from
a list of n elements, and each selection will take n comparisons. Overall this requires
n2 comparison operations. If the original list is divided into two halves, and this is
done recursively until there is only one element in each list, then the return operation
can be one of merging lists in order. At any level this will consist of systematically
merging lists already ordered lower down the recursive chain. Program 7 shows an
example of a merge-sorting algorithm of this type. Figure 2.4 shows that the number
of comparisons in this approach is reduced to the order of n.log(n) for a list of n
elements.

+

+

∗

/

−

∗

b a

g e f

c

d

a*b + c*(d - f) / (e + g)

Sub-programs, Procedures, Functions and Methods

56 2 Computer Languages: & Java Programming

Subdividing
Recursive
Calls

9 6 4 7 2 3 8 5

9 6 4 7 2 3 8 5

9 6 4 7

9 6 4 7

2 3

2 3

8 5

8 5

2 3 4 5 6 7 8 9

4 6 7 9 2 3 5 8

6 9 4 7 2 3 5 8

Merging
Recursive
Returns

Figure 2.4 Divide and conquer mergeSort procedure

public class Program7{

static TextWindow IO = new TextWindow(20,170,500,200); static int num= 9;
public static void main(String[] args){

double[][] a = new double[2][num]; int level=0, left=0, right =num;
IO.writeString("please enter "+num+" different numbers: ");
for(int i=0;i<num;i++) a[0][i]= IO.readLongReal();
mergeSort(level,left,right,a);
for(int i=0;i<num;i++) IO.writeLongReal(a[0][i],6,2);

}
static void mergeSort(int level, int left, int right, double[][] a){

int nextLevel = (level+1)%2;
if((right - left)==1){ a[1][left] = a[0][left]; return;}
int middle = (left+right)/2;
mergeSort(nextLevel, left, middle, a); mergeSort(nextLevel, middle, right, a);
merge(nextLevel, left, middle, right, a);

}
static void merge(int level, int left, int middle, int right, double[][]a){

int r = (level+1)%2, s = level, t, i =left ,j = middle, k = left;
while(((i<middle)||(j<right))){ t = 0;

if((i>=middle)|| ((j<right) &&(a[s][j]<=a[s][i]))) {a[r][k++]= a[s][j];t=t+1;}
if((j>=right) || ((i<middle)&&(a[s][j]>=a[s][i]))) {a[r][k++]= a[s][i];t=t+2;}
switch(t) {case 1: j++; break; case 3: j++; case 2: i++; }

}
}

}

57

The merging operation is a linear sequential operation analogous to the action of
closing a zip fastener, in the way shown schematically in Figure 2.5!

1 3 5

2 4 7

9

9

10 23

19 25

27

28

30

32

35

40

43

44

47

55

49
56

linear merge

Figure 2.5 Linear merging

Types, Classes and Objects

Java is an object-oriented language. This means that it provides more than the basic
structured programming constructs discussed above. The object-oriented approach
extends the way data types are handled, including more complex data structures and
algorithms within a common, unified conceptual framework.

A data-type appears to be a relatively simple idea when viewed at the text level.
The symbols used to represent numbers and words immediately indicate that their
interpretation must be handled in a different way. They are different data types. At
the machine level in the computer system all the information is in the same form:
strings of binary digits. In this setting the data gives no indication of its type. Its type
is only determined by the context in which it can be used correctly. A bit string is a
number when it is processed as a number, but it could equally well be processed as a
character string if it were passed to the input-stream of a printer. A data type is
defined by the permitted operations that can be carried out on data of that type. The
structure of the data and the valid operations on it are inextricably entwined.

Data Structures and Algorithms

The way data structures and algorithms have to be considered together can be
illustrated by the following example. If an eight-bit data value is used to represent
whole numbers then it can be used to represent positive integers in the range 0 -- 255,
but the information defining the use that can be made of these bit patterns has to be
held outside the pattern itself. If the number is negative this will change its type and
hence for example, the way it can be added to a positive number. It is quite possible
to use one bit from the eight bits to determine which of these two types is present,

Data Structures and Algorithms

58 2 Computer Languages: & Java Programming

though the number range held in the remaining 7 bits of data would be limited to half
the original, only giving: 0 to 127: and the program to process the two data formats
would still have to be different.

If the bit patterns, in positive binary numeric order are placed round a circle from
0 to 255, then the value range from –128 to +127 can represented by a shift round the
circle: shown by the red and blue labels in Figure 2.6. If 0 to 255 is represented by
00000000 to 11111111 (blue) then –128 to 0 to +127 can be represented by the
sequence 10000000 to 00000000 to 01111111 (red). This allows the addition of
positive and negative numbers to be the same operation merely giving a result offset
along the original positive number line. To turn a positive number to a negative
number in this representation, or vice versa, merely requires the number’s bit pattern
to be mapped horizontally across the circle, shown by the green arrows in Figure 2.6

Figure 2.6 Two integer types: mapped onto the same bit patterns

This mapping gives the two’s complement representation for negative numbers.

00000001 as a positive 1 becomes 11111111 as negative 1, and 127 with bit pattern
01111111 becomes 10000001 as –127. If the binary values in each bit position are
inverted (0B1 and 1B0), and a binary 1 added to the new overall 8-bit binary
number, the result is a conversion from a positive to a negative number, and the
reverse process converts values the other way. In this case the number range for
positive or negative numbers is still halved but the permitted operations become the
same for both.

Element Names, Object Names and Collection Names

Simple variable names are ways of accessing memory locations, which contain
changeable bit patterns. The type associated with the name determines the correct
operations that can be carried out on these bit patterns. Object names in contrast are
also ways of accessing memory locations that hold bit patterns, but these bit patterns
are the address of objects, which can consist of many words of data. The first is a
direct reference to the value the second is the reference to a reference in other words

00000000

01000000

10000000

11000000

-128

64 -64

0

192

128

64

255 011111111

01111111

127

-1

127

59

an indirect reference. The two names directly reference different types of data, the
first a variable value the second an address or a pointer. Simple variable names are
not sufficient to allow useful programs to be written. Names for more complex
objects are necessary and this can be demonstrated by attempting to sort a collection
of numerical values stored as individually named, simple variables for example {a, b,
c, d, e, f }. If the “repeated selection of the largest” algorithm is used then the only
way it can be coded is as a sequence of commands of the form:

 int a= 5, b=8, c= -9, d=23, e=14, f=3, t=0;
 int m= Integer.MIN_VALUE;
 if(m<a){ t= a; a=m; m=t;}
 if(m<b){ t= b; b=m; m=t;}
 if(m<c){ t= c; c=m; m=t;}
 if(m<d){ t= d; d=m; m=t;}
 if(m<e){ t= e; e=m; m=t;}
 if(m<f){ t= f; f=m; m=t;}
 Output.writeString("largest value is "+ m +"\n");

This requires as many statements as there are variables. To order the set of

numbers this sequence could be placed in a repeat loop as long as ordered output is
all that is wanted: writing out the value of m at the end of each iteration.

int a= 5,b=8,c=-9,d=23,e=14,f=3,t=0;
for(int i=0;i<6;i++){

int m= Integer.MIN_VALUE;
if(m<a){ t= a; a=m; m=t;}
if(m<b){ t= b; b=m; m=t;}
if(m<c){ t= c; c=m; m=t;}
if(m<d){ t= d; d=m; m=t;}
if(m<e){ t= e; e=m; m=t;}
if(m<f){ t= f; f=m; m=t;}
Output.writeString("largest value is"+ m +"\n");

 }

If a new list of ordered variables, is wanted then this selection sequence will have

to be duplicated for each value, or included in a list of procedure calls to this
selection code structured as the sub program selectTheLargest.

 int X1= selectTheLargest(); Output.writeString(" X1 is "+ X1 +"\n");
 int X2= selectTheLargest(); Output.writeString(" X2 is "+ X2 +"\n");
 int X3= selectTheLargest(); Output.writeString(" X3 is "+ X3 +"\n");
 int X4= selectTheLargest(); Output.writeString(" X4 is "+ X4 +"\n");
 int X5= selectTheLargest(); Output.writeString(" X5 is "+ X5 +"\n");
 int X6= selectTheLargest(); Output.writeString(" X6 is "+ X6 +"\n");

To make this work it is necessary to make the variables a to f static global variables.

Element Names, Object Names and Collection Names

60 2 Computer Languages: & Java Programming

static int selectTheLargest(){
int m= Integer.MIN_VALUE;
for(int i=0;i < 6;i++){

if(m<a){ t= a; a=m; m=t;} if(m<b){ t= b; b=m; m=t;} if(m<c){ t= c; c=m; m=t;}
if(m<d){ t= d; d=m; m=t;} if(m<e){ t= e; e=m; m=t;} if(m<f){ t= f; f=m; m=t; }

} return m;
}

The solution to this potentially massive duplication of the same code pattern is the

use of array naming. The collection of numbers is treated as a single object and is
given a group name. Within the group the individual elements are identified by a
second, variable name holding an index value. This is implemented by storing the
collection of numbers in neighbouring locations in memory. The array name is then
associated with the base-address of the first location in memory used for the block of
data, and the index is used to give the offset from this position for each element in the
collection by adding the index value to the base-address of the array. This allows a
short single program to handle different sized arrays of numbers with the same code.

int[] a = new int[]{5,8,-9,23,14,3};
int t;
for(int i=0;i<a.length;i++)

for(int j=1;j<a.length;j++)
if(a[j]>a[j-1]){ t=a[j]; a[j]=a[j-1]; a[j-1]=t;}

for(int i=0;i<a.length;i++)
jOutput.writeString(" a["+i+"] is "+ a[i] + "\n");

If many arrays are defined in a program, and they are placed next door to each

other in memory: they cannot be increased in size. This becomes a limitation for
example if more data are entered into the program than space has been allocated for
them. Another limitation of this particular form of group naming is that an array has
to be a collection of elements of the same type. It is often useful to have a name for a
bundle of elements that are of different types. In C, Pascal and various, other
programming languages this possibility has been catered for by providing “structure”
names for collections of differently typed variables. In order to access these
individually a different naming convention has evolved. The name of the group is
followed by a period, followed by the name of the individual variable. The structure
is not of great use by itself but duplicated it provides a building block for more
flexible linked data structures to handle collections of data that vary in size: dynamic
data structures.

In an array, neighbouring elements can be obtained by adding offsets from a
current index value. Stepping one by one through an array’s index values allows all
its elements to be processed. This depends on the data being stored in adjacent
memory locations. An alternative approach to this task of storing data collections,
allows individual elements to be stored anywhere in memory, so that collections can
be incrementally built up or reduced in size as required. To do this reference
information must be included with each data-element to allow its neighbours to be
located. “structure” data types proved particularly suited to this construction. Such a
structure can be made up from variables for holding the primary data, along with

61

variables of the type of the structure itself. These structure variables hold the location
addresses of neighbouring structures in a collection. In Java these structures will be
objects containing link variables of their own type, as references to neighbours.

Arrays allow lists of elements to be stored. An equivalent dynamic data structure
can be built up from structures of the type ListElement defined in the following way:

class ListElement{

public ListElement left=null, right=null;
public Object object = null;
public boolean comparable = true;
ListElement(){}
ListElement(boolean comparable){ this.comparable=comparable; }

}

This class definition is a template, which defines the data framework that each
ListElement must have. It also provides two procedures, which create new structures
of this type called constructors. A list is a sequence of these objects linked by the
references left and right.

 List Element1 ListElement2 ListElement3

Figure 2.7 Double linked list

Although this list does not have a name for the data collection as a whole, the linked

list structure allows all objects in its length to be processed using code of the form:

reference = firstElement;
while(reference != null){

output(reference.object);
reference = reference.right;

}

The list is accessed through a variable of type ListElement. Multiple lists can be
set up and accessed by holding their leftmost element in a ListElement variable. This
is the approach found in C, Pascal, Modula2 and similar languages. The only
problem is that it is possible to build a variety of linked list structures using the
ListElement as the building block. Since different accessing functions need to be used
with these data structures, more information needs to be stored with each
construction than a simple ListElement reference. In other words these list structures
are of different types, and to handle them in a consistent way they should be given
individual variable names with a type that reflects the kind of list-object that they
reference.

object1

left null

right ListElement2

object2

left ListElement1

right ListElement3

object3

left ListElement2

right null

Element Names, Object Names and Collection Names

62 2 Computer Languages: & Java Programming

Object Oriented languages such as Java not only allow these more complex data
collections to be constructed but also to be given names as single objects. As objects
of the same type, it will be possible to operated on them in common ways, and these
operations implicitly define the type of object they are. The class definition of a List
provides a reference to the first ListElement in the list and the last ListElement. More
than this it includes the methods for operating on these structures in the following
way:

class List{

public int length = 0;
public boolean comparable = true;
public ListElement start = null, finish = null;

List(){ };
List(boolean c){this.comparable = c;};

public List makeNewList(List lst){

List lst0 = new List(true); ListElement ref = lst.start;
while(ref!=null){ lst0.append(ref.object); ref=ref.right; }
return lst0;

}

public void setComparable(boolean c){comparable = c;}

public ListElement push(Object n){

if (n==null) return null;
ListElement m = new ListElement(comparable);
m.object = n; m.right = this.start; m.left = null;
if (this.start == null){this.finish = m;} else{ this.start.left = m;}
this.start = m; this.length = this.length + 1;
return m;

}
public Object pop(){

if (this.start == null)return null;
Object m = this.start.object; this.start = this.start.right;
if(this.start != null) this.start.left = null; else this.finish = null;
this.length = this.length - 1;
return m;

}
public ListElement append(Object n){

if (n==null) return null;
ListElement m = new ListElement(comparable); m.object = n;
if(this.finish == null){ this.finish = this.start = m;}
else{ this.finish.right = m; m.left = this.finish; finish = m; }
this.length = this.length + 1;
return m;

}

63

public Object remove(){
if(this.finish == null)return null;
Object m = this.finish.object;
if(finish.left == null){ this.start= this.finish = null;}
else{ this.finish.left.right = null; this.finish = this.finish.left; }
this.length = this.length - 1;
return m;

}
public Object delete(ListElement m){

if(m == null) return null;
else if (m.left == null) return this.pop();
else if (m.right == null) return this.remove();
else{ m.left.right = m.right; m.right.left = m.left;
 this.length = this.length - 1;
} return m.object;

}
public ListElement insertBefore(ListElement after,Object n){

ListElement m=null;
if (n==null) return null;
if(after == null) m=this.append(n);
else if(after.left == null) return this.push(n);
else{

m = new ListElement(comparable); m.object = n;
ListElement before = after.left; before.right = m; m.left = before;
m.right = after; after.left = m; this.length = this.length + 1;

} return m;
}
public ListElement insertAfter(ListElement before,Object n){

ListElement m=null;
if (n==null) return null;
if(before == null) m=this.push(n);
else if (before.right == null)return this.append(n);
else{

m = new ListElement(comparable); m.object = n;
ListElement after = before.right; after.left = m; before.right = m;
m.left = before; m.right = after; this.length = this.length + 1;

} return m;
}
public List joinTo(List b){

if(this.start==null)return b;
if(b.start==null)return this;
List a = new List();
a.start = this.start; a.finish = b.finish; this.finish.right= b.start;
b.start.left = this.finish;
return a;

}
}

Element Names, Object Names and Collection Names

64 2 Computer Languages: & Java Programming

Lists and Trees

Compared with an array a list has a major draw back. Finding an element in a list
involves following the links from one end of the list to the other searching for the
required element. The same is true for an array where elements are stored in any
order. However, if values are stored in order in an array, elements can be found by
dividing the array into two halves selecting the half containing the target and then
recursively subdividing the new reduced sub-array in the same way until the target is
“found” or determined to be “not present”. Instead of taking ‘n’ steps for a list of ‘n’
elements long this process requires ‘log(n)’ steps. However adding values to an
ordered array of values will involve moving entries along to make room for a new
member, which on average still adds a serious overhead to the work.

In contrast the tree data structure allows a fast “find” operation to be applied while
at the same time providing a fast insertion method. Tree data structures can be
constructed from ListElement objects in the way shown in Figure 2.8 merely by
employing a different linking strategy. Like bit patterns, the data element, building
blocks, are the same but the overall type is determined by the permitted operations on
the data. These will be provided by the Tree class methods. The only draw back is
that tree building operations based on inserting new elements can distort the balanced
shape of the tree, which is the property that makes fast ‘find’ operations work.

Figure 2.8 ListElements linked as a tree data structure

TreeNode F

left E

right G

TreeNode B

left A

right C

TreeNode E

left null

right null

TreeNode C

left null

right null

TreeNode G

left null

right null

Tree TreeNode D

left B

right F

TreeNode A

left null

right null

65

The tree like the list can be accessed and used through recursive procedures.
Accessing elements in trees can be done in various ways depending on the
application, however there are three simple tree traversal algorithms, which are used
again and again. These can be expressed using the same three code statements but
arranged in three different orders. Where the tree is used to store an ordered list of
values shown in Figure 2.9, the output order for the prefix traversal will be D, B, A,
C, F, E, G. The output order will be A, B, C, D, E, F, G for the infix traversal, and A,
C, B, E, G, F, D for the postfix traversal.

abstract class Tree{

static TextWindow IO = null;
public boolean comparable = true; public ListElement root = null;
public Tree(){ };
public Tree(TextWindow IO){Tree.IO = IO;};
public abstract ListElement insert(ListElement ls, ListElement nw);
public abstract void output(Object o);
public void prefixTraversal(ListElement tree){

if(tree==null)return;
output(tree.object);
prefixTraversal(tree.left);
prefixTraversal(tree.right);

}
public void infixTraversal(ListElement tree){

if(tree==null)return;
infixTraversal(tree.left);
output(tree.object);
infixTraversal(tree.right);

}
public void postfixTraversal(ListElement tree){

if(tree==null)return;
postfixTraversal(tree.left);
postfixTraversal(tree.right);
output(tree.object);

}
}
class StringTree extends Tree{

public StringTree(TextWindow IO){Tree.IO = IO;};
public ListElement insert(ListElement ls,ListElement ln){

if(ls==null)ls= ln;
else{String o1 = (String) ls.object, o2 = (String)ln.object;

int test = o1.compareTo(o2);
if (test > 0) {ls.left = insert(ls.left, ln);}
else if(test < 0){ls.right = insert(ls.right,ln);} // new string matches existing string

}return ls;
}
public void output(Object o){IO.writeString((String)o+" ");}

}

Lists and Trees

66 2 Computer Languages: & Java Programming

public static void main(String[] args){
ListElement root = null;String str=" ";
StringTree stree = new StringTree(IO);
IO.writeString("please enter 7 strings: ");
for(int i=0; i<7;i++){

str= IO.readTextString();
ListElement treeNode = new ListElement();
treeNode.object=str;
root= stree.insert(root, treeNode);

}
stree.infixTraversal(root); IO.writeLine();
stree.prefixTraversal(root); IO.writeLine();
stree.postfixTraversal(root);IO.writeLine();
}

}

Figure 2.9 Rebalancing tree structures

If an already ordered sequence of input values is used to build a tree, using these
procedures will create a single list, not a tree. There are several more sophisticated
tree-building algorithms designed to keep the resulting tree reasonably well balanced
as it is constructed. These can be found presented in detail in books on data structures
and algorithms. However, an alternative, simpler approach to this problem is to
record the number of levels in each tree-object, and when it becomes too unbalanced
restructure the tree.

D

F B

E C G A

A B C D E F G

67

In practice it is often useful to switch the data structures used to implement data
collections when processing different steps in a task. An example of the way this can
be done is provided by tree data structures. An array can be used to rebalance a
linked list tree structure built from an ordered list of values. If the linked list is
traversed in infix order and the output is placed in an array of the appropriate size.
The entries in the array will, by design, be in value order. If these are then accessed
using a recursive binary subdivision of the array, selecting the middle value, and
entering it back into a new linked list tree, the resulting tree will be balanced in the
way shown in Figure 2.9.

Figure 2.10 A tree in an array

public void infixTraversal(char[] tree, int index){
if(index >= tree.length)return;
infixTraversal(tree, index*2+1);
output(tree[index]);
infixTraversal(tree, index*2+2);

}

This arrangement is used to implement an alternative set of tree data types called
heap structures: access is still based on the order of values but not in the same way.

Stacks, Queues and Deques

The same data structures are used again and again in different contexts, so it is
natural that they should be considered as objects from the same class. However there
are a series of common, dynamic, list based data structures that are essentially
different types, that can be built up from the same ListElement units. The most
general structure is the List, with the accessing methods given in the class listed
above. However, a list that can only be accessed at one end is called a “stack” or a
LIFO (last in first out list), similarly a list which has inputs at one end and outputs at
the other is called a “queue” or a FIFO (first in first out list), and a queue that can go
forwards or backwards is called a “deque” or double ended queue.

To identify these specialised lists as distinct types in Java can be achieved by
grouping the methods that define these types in a similar construct to a “class” called
an “interface”. The methods can all be implemented in the same class, however
access to them can be limited by declaring variables of the types defined by the

D B F A C E G

Stacks, Queues and Deques

A tree structure can be implemented either using an array or a double linked list. The
tree given in Figure 2.8 could be stored in an array in the way shown in Figure 2.10,
and output in infix-order A, B, C, D, E, F, G produced using the following code:

68 2 Computer Languages: & Java Programming

interface names. The implementation class is then set up to “implement” these
interfaces.

interface Stack{
public ListElement push(Object n);
public Object pop();

}
interface Queue{

public ListElement append(Object n);
public Object pop();

}
class List implements Stack, Queue{

// as above
}

This allows Stack and Queue objects to be generated by statements of the form:

Stack stack1 = new List();
Queue queue = new List();

In these two cases stack1 and queue can only use the methods in their interface

definitions, not all the methods available in the List class.
Although Java provides a library of such structures in the Collections package, it

is often necessary to build purpose-built linked list structures for graphics
applications. An important example is producing an ordered threaded list of a
polygon boundary. A list of coordinates representing a polygon boundary cannot be
changed without losing the structure of the boundary however it is often necessary to
arrange the coordinates in sequential order.

Although it is possible to create two coordinate lists each with its own order, they
are of little use unless they can be cross-linked. This requires the ListElement
structure to be extended to allow list elements to be linked together where they refer
to the same coordinate object. The extended ListElement structure used in later
examples is defined in the following way. The reference names link1 and link2 are
provided to support this cross-reference between different list structures.

class ListElement{

public ListElement left=null, right=null, link1=null, link2=null;
public Object object = null;
public int tag = 0;
public String name = "";
public boolean comparable = true;

ListElement(){ }
ListElement(boolean comparable){ this.comparable=comparable; }

}

69

Sets, Abstract Data Types and Encapsulation

What emerges is a collection of types, which can be implemented as linked lists,
indexed arrays, or as tree structures without changing their external overall
behaviour. If a “black box” approach is taken to defining a data type, then only the
operations needed to define the correct behaviour of objects of the type need to be
made visible to the user. All that needs to be known is the correct output that can be
expected from an operation, generate from a given set of inputs, without the need to
specify any mechanism for turning one into the other. This introduces abstraction
and hierarchy.

Set objects provide a good example of this kind of data type where there are a
variety of ways that they can be implemented. One way in which the set operations of
union, intersection difference and symmetric difference can be implemented is based
on ordered lists and a merge operation outlined in the merge-sort algorithm illustrated
in Figure 2.5. The set must be represented by an ordered list of objects where no
element is duplicated. The union of two sets can then be implemented by processing
the two lists sequentially the smallest values first. The two lists are merged by
comparing the two “next” elements from each list, and outputting the smaller if they
are different, but outputting only one, and discarding the other, if they are the same.
This gives a new list that conforms to the structure of the set, having no duplicate
elements and holding an ordered series of values. The intersection of the sets can be
implemented by only outputting one copy of any elements that match, discarding the
rest. Clearly the implementation can use linked lists or arrays, and the user does not
need to know which.

If the programmer wishes to work with the abstract properties of a polygon
without having to consider its implementation at a “lower” level, the true
representation of a polygon can be hidden in a polygon class. When the class is
implemented in a program, a particular data structure to represent the polygon can be
chosen, for example a list of vertex co-ordinates. A method called area can then be
written to calculate the area of a polygon modelled in this way. However, the user
may provide information in various ways through different class constructors to
define the polygon. The system will then have to generate the internal representation
of the polygon as a list of co-ordinates from the information given to the
constructors. If a particular polygon has been given the variable name polygon1 then
the area of the polygon can be returned by the “area” method using a statement of the
form polygon1.area(), and the real data structure need never be referred to.

Java allows objects like polygons to be treated in the same way that numbers are
treated in simpler languages. Their type is defined by a class definition, which
includes the operations that are permitted on the objects from the class of that type.
The class definition also contains the data structures used by the sub-programs
(called methods), to implement the operations on objects of the class.

If the polygon class is implemented well, then a polygon object can be worked
with in much the same way that an integer object can be worked with, in expressions,
relationship-tests and the like. The rules governing these operations will be different
and often more complex for “higher level” objects, but a more unified programming
environment results.

Sets, Abstract Data Types and Encapsulation

70 2 Computer Languages: & Java Programming

The object-oriented approach also allows a more natural use of names to be
adopted so that program code reflects the objects, which are being worked on, like
polygons, in a more direct way, than was possible in previous programming
languages. In Java the main program building blocks become the class and interface
definitions. These define the data structures necessary to implement objects of the
class, and to manage the set of objects generated by the class. Each class has the
potential mechanism to generate data structures to represent or “instantiate” multiple
objects of the type that the class defines. These objects can be worked with using
variables of the type the class defines, which can be used in programs, very much
like variables holding numbers, by assigning object to them.

Hierarchy Inheritance and Abstraction.

This process of hiding implementation details is called encapsulation and makes
many programming tasks much clearer. An important aspect of the hierarchy
supported by the class structure is that one class can be defined as a refinement or
modification of another class. The new class “inherits” much of its structure from its
parent class, but has properties and methods of its own. This makes it possible to
implement programs in a way that minimises duplication, which is very important in
maintaining programs, so that changes can be carried out in as few locations as
possible. It also allows template classes to be defined where the full implementation
is left unfinished to be implemented by inherited classes. These are called Abstract
classes illustrated by the Tree class given above. For example a StringTree class can
inherit from the Tree class its general tree traversal methods but must provide the
output and the insert procedures in the specialised form required by String objects for
their write and compareTo methods.

In Java direct inheritance is permitted from only one “super” class. In real life,
objects can be thought of belonging to many classificational sets. A car is a “vehicle”
and also a “manufactured object”. The flexibility this demands in a programming
language, however, can lead to ambiguities and complex errors. Consequently, Java
provides the different construction called an Interface illustrated in the case of List
objects. This extends the methods and names, which can be applied to objects in one
class as though they were objects from a different class of a different type

The next step is to provide equivalent input output facilities for graphic objects to
that provided for text. One of the operations necessary for spatial objects such as
polygons is presenting them in graphic displays. In the next chapter a simple display
window class is introduced which will allow basic display operation to be executed.

3
Programming
Development
Environment
for Graphics

Introduction

In this chapter an outline is given of the way in which the JAVA language system
will be used to illustrate modelling and display algorithms. Again a basic knowledge
of the language has to be assumed. Although many aspects of the language will be
discussed where they affect the way algorithms have been implemented, full details
will need to be found elsewhere in the many Java Language programming and
reference texts already published.

One of the many benefits that a language system such as Java provides is access to
an extensive and growing library of supporting software. These libraries of classes,
Java being an object oriented language system, range in application from input-
output facilities, through graphic display support, to providing standard data-structure
objects such as arrays, lists, trees and tables. These libraries also provide support for
distributed and concurrent processing; support for databases; and eventually promise
to provide much more besides, as further developments continue to evolve and be
included in the original system.

The core of the language: by which is meant the grammar of its “structured
programming” constructs: assignments, conditionals, repeats and function-calling
statements, is virtually identical to those of the ‘C’ programming language. To this
base has been added exception or error handling statements, a different treatment of
pointers and indirect references, and the whole package is contained within an
“Object Oriented” framework or harness that extends and type-checks the data-types,
and data-operators that the programmer can employ. This improvement to type
checking, in particular, is a major advance over earlier ‘C’ programming

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_3, © Springer-Verlag London Limited 2008

72 3 Programming Development Environment for Graphics

environments. It seems to be relatively easy to get underway with the Java
programming language following the route laid out by books such as “On To Java”
by P. Winston and S. Narasimhan; and established programmers can make the
transition to standard text level programming relatively painlessly. However, getting
underway with graphics and the graphics user interface facilities, can be much more
difficult. This is because a more detailed knowledge of the class libraries and in
particular, their inter-relationships, is necessary to obtain full control over displayed
results. This is not to say that there are not many arrangements of the graphics
interface, set up in a cookbook manner that are not altogether satisfactory for many
purposes. However, understanding why they work and how to change them is a more
serious undertaking.

Getting Started

Several generations of programmers have cut their programming teeth on the “Hello
World” program. It is simple, and it gives that tremendous feedback-satisfaction of
having a working program almost immediately. However, although there seems to be
a backlash noted in some recent publications where this programming icon from the
70’s is mocked! There is more to this starting code than merely giving a novice a
psychological boost. It has been the common starting point for many seriously
complicated new programs: the seed from which many larger working systems have
been systematically developed.

Once a system has been analysed and designed there is still the task of coding,
implementing, and testing it. A powerful, if not essential, strategy for this stage of
work is to maintain a working program at all costs through all stages of system
building. This must be achieved by planning the implementation route so that a
working code is established, and is maintained in working order, through out
development. If only small incremental changes are permitted between tests, so that
the program is operational at all times, then it is possible both to maintain support
and localise error checking, in a systematic way.

In other words “life” is maintained at all stages in the process! The analogy of the
successful manner, in which planting a seed and nurturing it as it grows, succeeds:
compared with the way that a “Frankenstein” approach of putting together a total
body from dead parts then expecting to shock or electrocute it into life in one “foul”,
science fiction act does not, is worth noting. This is particularly relevant in
discussions of reusable software! A distinction or difference between transplants and
resurrection from the dead must be made! In the former case there has to be a
manageable amount of damage or miss match in tissue for the operation to take, in
the latter case where there are too many unknown defects and incompatibilities,
resuscitation becomes improbable.

With these ideas in mind, in an attempt to provide the equivalent to the “Hello
World” start up for the graphics programmer, a simple interactive interface has been
pre-programmed to provide an accessible starting point for the illustrations and
examples presented in the following pages. Figure 3.1 illustrates this environment,
which provides interactive access to a text window and a display window, and also
provides access to mouse-to-screen-pointer control inputs. The minimum needed to
make progress. Setting up a “TextWindow” and a “GraphicWindow” at the

Getting Started 73

beginning of a program, and then using the following methods for text input and
output, for basic display operations and for interactions using the mouse, provides
this program development environment.

class TextWindow {

TextWindow(int col, int row,int width, int height){} // Constructor

public String readTextString(){}
public String readString(){}
public char readCharacter(){}
public void readSpaces(){}
public String readLine(){}
public byte readByteInteger(){}
public short readShortInteger(){}
public int readInteger(){}
public long readLongInteger(){}
public float readReal(){}
public double readLongReal(){}

public void writeString(String str){}
public void writeLine(){}
public void writeCharacter(char ch){}
public void writeByteInteger(byte number, int align){}
public void writeShortInteger(short number, int align){}
public void writeInteger(int number, int align){}
public void writeLongInteger(long number, int align){}
public void writeReal(float number, int align,int frac){}
public void writeLongReal(double number, int align,int frac){}
public void newLine(){}

public void quit()

}

class GraphicWindow{

public Point getCoord()
public Rpoint getRealCoord(CoordinateFramework b)

public void plotPoint(Point p)
public void plotPoint(Point p,Color cc)
public void plotPoint(RPoint pp,CoordinateFramework b)
public void plotPoint(RPoint pp,CoordinateFramework b,Color cc)
public void plotLine(Point p1,Point p2)
public void plotLine(Point p1,Point p2,Color cc)
public void plotTriangle(Point p1,Point p2,Point p3,Color cc, Color c)
public void plotRectangle(Point p1,Point p2,Color cc)
public void quit()

}

74 3 Programming Development Environment for Graphics

These methods can be accessed using an object of type GraphicWindow in the
way shown below. Notice that a reference for the “TextWindow” object is passed to
the “GraphicWindow” object to allow error messages to be output.

Figure 3.1 Text and graphic windows

public class Program3_1{
static TextWindow IO = new TextWindow(0,500,800,100);
static GraphicWindow dW =
 new GraphicWindow(IO,0,0,800,500,Color.white);

public static void main(String[] args){

IO.writeString("Please enter two points using the mouse");
IO.writeLine();
Point p1 = dW.getCoord();
IO.writeInteger(p1.xi, 10);
IO.writeInteger(p1.y, 10);
IO.writeLine();
Point p2 = dW.getCoord();
IO.writeInteger(p2.x, 10);
IO.writeInteger(p2.y, 10);
IO.writeLine();
dW.plotLine(p1,p2,Color.black);

}
}

Enter p1
using the
mouse

Enter p2
using the
mouse

Getting Started 75

Three other classes are named and highlighted in these initial lists of methods.
These are CoordinateFramework{}, Point{} and RPoint{}. These classes are
provided to allow different floating-point co-ordinate systems to be mapped onto the
integer screen co-ordinate system, which is provided as default, by the computer
system. To do this it is necessary to set up a “co-ordinate framework” object, and to
set up the scaling between it and the screen. Providing a corresponding pair of
diagonal points, the first in screen co-ordinates, followed by a matching pair in the
CoordinateFramework co-ordinates does this. If these co-ordinates are passed to the
method setScales(p1, p2, pa, pb), so that p1 matches pa and p2 matches pb, then
screen co-ordinates can be converted to work-space co-ordinates using scaleStoW(p),
and work-space co-ordinates can be converted back to screen co-ordinates using
scaleWtoS(p).

class RPoint{

public double w = 1.0, x = 0.0, y = 0.0;
public Point toPoint();
public RPoint copy();
public RPoint copy(RPoint p0);

}

class Point{

public int w =1, x = 0, y = 0;
public RPoint toRPoint();
public Point copy();
public Point copy(Point p0);

}

class CoordinateFramework{

public void setScales(RPoint pa,RPoint pb,RPoint p1,RPoint p2)
public Point scaleWtoS(RPoint p1);
public RPoint scaleStoW(Point p1);

}

In this arrangement Point co-ordinates have x and y values as integers, while
RPoint x and y values are stored as floating point values. Care has to be taken to use
the appropriate value types. Methods such as toPoint from RPoint and toRPoint from
Point are provided to simplify this problem of conversion. Notice in Figure 3.2 that
the screen co-ordinate y-axis is positive going down the screen while the work-space
y-axis is assumed to be positive, going up the screen. This is taken into account by
entering the diagonal points shown in Figure 3.2. For the working space to have a y-
axis matching the display screen the top left and the bottom right corners would have
to be captured instead of the pair of points shown.

The copy methods are provided in these two classes because it is often necessary
to generate independent copies of co-ordinates during the course of a calculation.
Merely assigning the Point or RPoint references to new point variable names can
lead to errors when data for the original point is modified but the second reference is
still expected to refer to the original point data. If the same approach is adopted for

76 3 Programming Development Environment for Graphics

three-dimensional co-ordinates, then two more classes have to be defined Point3D
and Rpoint3D, with similar methods for copying and changing type.

This arrangement, however, though it is clear and easy to understand in simple
applications, produces fairly cumbersome code. This is because new Point objects
have to be created to obtain graphic output from working co-ordinates, which are
usually handled as real numbers. Also many operations on co-ordinates presented
later are programmed using a vector or n-tuple representation treating the co-ordinate
as an indexed list of real values, in other words an array of real numbers. Java makes
this use of different accessing structures for the same data less easy than some other
languages. The compromise solution, which has evolved from the initial approach
outlined above, starts by defining a point as an n-tuple of real values, and then
providing different ways of accessing these values.

class NTuple {

IOWindow tW = null;
public double[] n = null;
public int dimension = 0;

NTuple(){}
NTuple(int dim){ dimension=dim; n = new double[dimension];}

public void setTextWindow(IOWindow tW) {this.tW=tW;}
public NTuple c(String st, NTuple v) { // copy operations

for(int i=0;i<dimension;i++){
if(st.equals("<-")) {this.n[i]= v.n[i];}
else if(st.equals("->")) {v.n[i]= this.n[i];}

}
if(st.equals("<-")) return this;
else if(st.equals("->")) return v;
else return null;

}
public boolean b(String st, NTuple v) { // boolean operations

boolean returnValue = true;
for(int i=0; i<dimension; i++){

returnValue = true;
if (st.equals("==")) {if (this.n[i]!= v.n[i]) return false;}
else if(st.equals("<=")) {if (this.n[i]> v.n[i]) return false;}
else if(st.equals(">=")) {if (this.n[i]< v.n[i]) return false;}
else returnValue = false;
if(st.equals("!=")) {if (this.n[i]!= v.n[i]) return true;}
else if(st.equals("<")) {if (this.n[i]< v.n[i]) return true;}
else if(st.equals(">")) {if (this.n[i]> v.n[i]) return true;}

}
return returnValue;

 }
}

Getting Started 77

class Point extends NTuple{

public int dimension

Point()
Point(int dim)
Point(String st,Point p)
Point(int w,int x,int y)

public int wi() public double wd()
public int xi() public double xd()
public int yi() public double yd()
public int zi() public double zd()

public int w(String st,int v) public double w(String st,double v)
public int x(String st,int v) public double x(String st,double v)
public int y(String st,int v) public double y(String st,double v)
public int z(String st,int v) public double z(String st,double v)

public Point c(String st,Point v)
public boolean r(String st,Point v)
public Point homogenise()

}

One of the advantages of the simple x, y notation is its use in formulae and

expressions. The longer form of p.getX() over p.x makes this more cumbersome and
in many cases, can obscure the form of an expression, and therefore makes the code
more difficult to read. Even direct access to the NTuple object element p.n[1] instead
of p.x only works for the real values, and makes distinguishing the coordinate axes
more difficult. The integer value would need the (int)p.n[1] construction which again
is longer and less clear. A working compromise giving reasonable flexibility and
clarity is that shown above where the function p.xi() gives the integer value for the x
co-ordinate, and p.xd() gives the real value. In order to convert assignment statements
into this functional form and allow them to be nested in other expressions in the same
way that Java permits for normal assignments -- functions of the form
p.x(“=”,value), have been defined. This, in a slightly artificial way, matches the
structure of the conventional assignment statement, but unifies the treatment of the
point co-ordinates under a single class definition. This redefinition of the Point class
either requires GraphicWindow, its methods and related classes to be redefined or for
clarity a new class DisplayWindow used to replace it.

In this new definition of the class Point, the co-ordinate is set up as an array of

four double values as an n-tuple. This is then available for matrix operations and
other vector operations. Conventional access to elements of the co-ordinate can no
longer be made by using x and y variables, but has to be made using accessing
functions. This in turn no longer permits the use of x and y variables on the left of
assignment statements to change their content, and this operation will also have to be
implemented in a functional form. Conventionally, this would be done in Java by
using so called “getter” and “setter” functions: p.getX() or p.setX(newx).

78 3 Programming Development Environment for Graphics

class DisplayWindow{

public Point getCoord()
public Point getCoord(CoordinateFrame b)

public void plotPoint(Point p)
public void plotPoint(Point p,Color cc)
public void plotPoint(Point pp,CoordinateFrame b)
public void plotPoint(Point pp,CoordinateFrame b,Color cc)

public void plotLine(Point p1,Point p2)
public void plotLine(Point p1,Point p2,Color cc)
public void plotLine(Point p1,Point p2, CoordinateFrame b)
public void plotLine(Point p1,Point p2,Color cc, CoordinateFrame b)

public void plotTriangle(Point p1,Point p2,Point p3,Color cc, Color c)
public void plotTriangle
 (Point p1,Point p2,Point p3,Color cc, Color c, CoordinateFrame b)
public void plotRectangle(Point p1,Point p2,Color cc)
public void plotRectangle
 (Point p1,Point p2,Color cc, CoordinateFrame b)
public void quit()

}

Figure 3.2 Sine wave

The example, in Figure 3.2 shows program code in which a working area is
defined on the screen, which is then given the co-ordinate framework necessary to

Use the
mouse to
capture
point p1

Use the
mouse to
capture
point p2

Getting Started 79

plot a sine wave from -2π to 2π. The screen co-ordinates of the required rectangle are
obtained using the mouse, and the getCoord() method. These are integer x and y
values, which must be treated as floating point numbers. These two points are then
matched with the working values at the corners of the rectangular area and the
scaling factors for this sub-area of the screen are then set up using a
‘CoordinateFrame’ object.

class CoordinateFrame{
public void setScales(Point pa,Point pb,Point p1,Point p2)
public Point scaleWtoS(Point p)
public Point scaleStoW(Point p)

}

The co-ordinates for the Sine wave graph are then calculated and plotted within
this framework in the way shown by the following code segment, the output of which
is shown in Figure 3.2.

public class Program3_2{

static TextWindow IO = new TextWindow(0,600,1024,134);
static DisplayWindow dW = new DisplayWindow(IO,0,0,1024,600);

public static void main(String[] args){

double PI = 3.1415962;
IO.writeString("Please enter display framework corners");
Point pa = dW.getCoord(); Point pb = dW.getCoord();
dW.plotRectangle(pa,pb,Color.white);
Point pc = new Point(2); Point pd = new Point(2);
pc.x("=", -2.0* PI); pc.y("=", -1.0);
pd.x("=", 2.0* PI); pd.y("=", 1.0);
CoordinateFrame frameWork = new CoordinateFrame();
frameWork.setScales(pa,pb,pc,pd);
int count = 200;
double dx = PI/50.0;
Point pLagging = new Point(2); Point pLeading = new Point(2);
Point pl = new Point(2); Point pn = new Point(2);
pLagging.x("=",pc.xd());
pLagging.y("=",Math.sin(pLagging.xd()));
for (int i = 0; i< count; i++){

pLeading.x("=", pLagging.xd() + dx);
pLeading.y("=",Math.sin(pLeading.xd()));
pl = frameWork.scaleWtoS(pLeading);
pn = frameWork.scaleWtoS(pLagging);
dW.plotLine(pl,pn,Color.red);
pLagging.x("=", pLeading.xd());
pLagging.y("=", pLeading.yd());

}
}

}

80 3 Programming Development Environment for Graphics

The two functions c and r in the new Point class are to provide copy and relationship
tests for whole point co-ordinates. Three pairs of copy functions are provided: simple
copy ->, <-; truncated copy t>, t<; and rounded value copy r>, r< : in the form

 p.c(“<-”,pOld); p.c(“<t”,pOld); p.c(“<r”,pOld);
 p.c(“->”,pNew); p.c(“t>”,pNew); p.c(“r>”,pNew);

The relationship functions are defined to make comparisons between point co-

ordinates employing the conventional form used to relate simple variables.

 if (p.r(“==”, pOther) {..}
 if (p.r(“<=”, pOther) {..}

These relationship-testing facilities will be used in later chapters concerned with

efficient spatial algorithms where they are needed.

Computer Models of Space and Graphic Displays

It is not surprising, perhaps, that the simplest computer models using spatial
relationships are set up based on the physical layout of data stored in a computer’s
memory: the primitive for spatial modelling being the existing physical spatial
arrangement of words in a computer’s memory! Unlike analogue and scale models
this does not use space in a continuous way but as a set of discrete locations. It is more
akin to the layout of symbols on a geographic map: a mixture of correctly interrelated
point-based, physical locations holding the property of the point in a symbolic form.
In practical terms what is provided is a “linear adjacency” model. In other words the
memory “address space” permits ‘next door’ elements in space to be represented by
property values located as codes in neighbouring locations in memory.

000000
000001
000002
000003
000004
000005
000006
000007
000008
000009

content

Sequential
Addresses

Linear
Computer
Memory
Space

Figure 3.3 Linear Memory Space

If high level computer languages are used for accessing collections of stored

values, then the “array construct” extends this linear model to give two, three and
higher dimensional grids of property values to represent areas, volumes and even

81

higher dimensional spatial entities. This use of array models provides an ideal
starting point for exploring computer graphics algorithms, because most current
display devices are based on an array of pixel display elements. These elements are
controlled by a matching array of values – numbers that define the colour and
intensity settings, which each pixel unit in the display delivery-system, must provide
either as a reflecting or projecting light source. Similarly medical scanning devices
are producing three dimensional cellular grid models of the human body, and this
mode of data storage, in this case as “voxel” properties, is a basic, primitive
representation from which displays can be produced.

0

1

2

4

5

6

7

3
0
1
2

4
5
6
7

3

0 1
2

4 5
6 7

3

0 1 2

4 5 6 7

3

0
1 2

4 5
6 7

3

0 1 2

4 5 6 7

3

0
1
2

4
5
6
7

3

0 1 2 4 5 6 7 3

0 1 2 4 5 6 7 3

i i

j
j

i k

Size = A[n] Size = A[m,n] Size = A[l,m,n]

ibaseaddress
iarrayaddressmemory

+=
=][][

injbaseaddress
jiarrayaddressmemory

++=
=
*

],[][
injnmkbaseaddress

kjiarrayaddressmemory
+++=

=

],,[][

Figure 3.4 One, two and three-dimensional arrays as models of space

Consider a two dimensional array containing colour codes for a display device,

where the display system generates a rectangle of the appropriate colour or pattern, in
the correct location when each array element image[i][j] is passed to it. This gives a
character or cell based display system. Filling in values in this array will set up the
computer model for this display, and the simplest way to do this, where a computer
language declaration statement allows it, is the direct enumeration of the contents of
the array. However, this becomes an enormous task for even relatively low-
resolution images.

One approach to this data generation problem has been to build image scanners
and automatic image capture systems to digitise the outputs of TV cameras. A second
approach is to take advantage of any structure and pattern in the display data, which
will allow software procedures to automate its preparation. This can be achieved in
various ways. The first class of objects presented in this section to explore the
possibilities of using arrays, is called Tiles and the constructors for this class can be
called in several ways:

i i

j k

j i

Computer Models of Space and Graphic Displays

82 3 Programming Development Environment for Graphics

public class Tiles{

public Color[][] tileColour = null; // array of colours
 public int rows=0, cols=0; // number of rows and columns
 public Tiles(){ }
 public Tiles(Color cc){

cols = 1; rows = 1;
tileColour = new Color[cols][rows]; tileColour[0][0] = cc;

}
public Tiles(int numberOfColumns,int numberOfRows){

cols = numberOfColumns; rows = numberOfRows;
if ((cols < 1)||(rows < 1)) {
cols = 1; rows = 1; tileColour = new Color[cols][rows];
tileColour[0][0] = Color.white;
}else tileColour = new Color[cols][rows];

}
public Tiles(int numberOfColumns,int numberOfRows,Color cc){

cols = numberOfColumns; rows = numberOfRows;
if ((cols < 1)||(rows < 1)) {

cols = 1; rows = 1;
tileColour = new Color[cols][rows]; tileColour[0][0] = cc;

}else{
tileColour = new Color[cols][rows];
for (int i=0; i<cols;i++)

for(int j=0;j<rows; j++)tileColour[i][j] = cc;
}

}
}

Figure 3.5 Working directly with the Tiles array

If the computer model of the display is an array of cell values then simple patterns

can be defined using the standard structured programming constructs: expressions,
conditionals, repetitions, and function calls, in the way shown in Figure 3.5, working
directly on the contents of the array.

83

Tiles T = new Tiles(20,20,Color.white);
for(int j = 0; j < T.rows; j++){
 for(int i = 0; i < T.cols; i++){
 if(i == j) T.tileColour[i][j]= Color.red;
 }
}
T.display(pI);

An object oriented language makes it convenient for “tiles” to be set up as objects

and standard tile patterns to be created by object methods such as setBorders()
illustrated in Figure 3.6.

Figure 3.6 Displays defined by arrays of values set up by “pattern” methods

Tiles T = new Tiles(20,20,Color.white);
T.setBorders(Color.red);
T.display(pI);

Once a tile pattern has been created as an object it can be operated on by methods

of its class of objects. One example of this results from using a tile join command.
This is an analogous operation to the concatenation command, common in computer
language and text processing systems. Two strings labelled A and B can be joined
together to give a new string labelled C by a command of the form C = A+B. The
same approach can be used to define a tile pattern C by joining together two smaller
tile patterns A+B, or using a class function A.join(B) .

Object oriented computer languages are consequently particularly suited to the
task of working with pre-made patterns. Though it is reasonably simple to
concatenate characters and strings using standard language data structures, the
extension into two dimensions makes the equivalent task more difficult for tiles. The
entities being joined require more complex data structures, and the facilities to police
operations on these structures, becomes more important if the system is to remain
robust and well behaved. A complex repetitive tile pattern can be defined using this
approach, by code of the form:

Computer Models of Space and Graphic Displays

84 3 Programming Development Environment for Graphics

 Tiles A = new Tiles(Color.green);
 Tiles B = new Tiles(Color.white);
 Tiles C = new Tiles(Color.red);
 Tiles D = (D=(B.join(B)).clockwise()).join(D);
 Tiles H = (H=(A.join(A)).clockwise()).join(H);
 Tiles J = (J=(C.join(C)).clockwise()).join(J);
 Tiles E = A.join(C).anticlock();
 Tiles F = C.join(C).anticlock();
 Tiles G = E.join(F).clockwise();
 Tiles K = H.join(G).anticlock();
 Tiles L = G.join(J).anticlock();
 Tiles N = K.join(L).clockwise();
 Tiles Q = (Q=(D.join(D)).clockwise()).join(Q);
 Tiles O = Q.join(N).anticlock();
 Tiles P = Q.join(Q).anticlock();
 Tiles R = (R = P.join(O).clockwise()).join(R.reflected());
 Tiles S = R.anticlock().join(R.clockwise());
 Tiles T = (T = S.join(S).anticlock()).join(T);
 T.setBorders(Color.gray);

Figure 3.7 Repetitive tile pattern T generated by hierarchical join operations

Although the code in this example looks relatively complicated, and the object-
based syntax for the join statement loses some of its potential ‘expression-like’
simplicity, When applied in the appropriate way, this approach saves a lot of time, space
and effort, 19 lines of code in this case defining 1000 tile colours and locations. In
this program segment an alternative Tiles constructor is illustrated which defines single
cells to give unitary red, green and white tiles. The method setBorders(Color.gray) is

85

Notice that since this ‘join’ operation is only defined in the horizontal direction,
its ‘operand’ tile patterns have to be oriented correctly before they can be connected
together. Also the join command can only succeed if the tile patterns being joined,
have the same number of elements along the two sides being brought together. These
spatial rearrangements are carried out by the three “Tiles” methods, clockwise(),
which rotates a pattern a quarter circle in a clockwise direction, anticlock() which
rotates a pattern a quarter circle in an anti- clockwise direction and reflected() which
as its name suggests reflects a pattern horizontally about a vertical line.

These re-orientation operations can be implemented by rewriting the arrays used
to represent the tile patterns in a relatively simple way, but care has to be taken
working with the array indexes to maintain their correct relationship to the position
of the tile pattern in a display space.

A Clockwise Quarter Turn Operation

public Tiles clockwise(){
 Tiles t = new Tiles(this.rows,this.cols);
 for (int i=0; i<this.rows; i++){
 for(int j= 0; j<this.cols; j++){
 t.tileColour[i][this.cols-j-1]=this.tileColour[j][i];
 }
 }return t;
}

An Anti Clockwise Quarter Turn Operation

i

j

this

[j][i]

[0][0]

[this.rows-i-1][j]

i

j t

[0][0]

i

j

this

[i][this.cols-j-1]

i

j t

[j][i]

[0][0]
[0][0]

An Anti Clockwise Quarter Turn Operation

used to set the edge cells of the final tile pattern grey. Also the “Tiles” join() method
can be seen in use: linking simpler tile patterns together.

86 3 Programming Development Environment for Graphics

public Tiles anticlock(){
 Tiles t = new Tiles(this.rows,this.cols);
 for (int i=0; i<this.rows; i++){
 for(int j= 0; j<this.cols;j++)
 { t.tileColour[this.rows-i-1][j] = this.tileColour[j][i];}
 }return t;
}

A Reflection Operation

public Tiles reflected(){
 Tiles t = new Tiles(this.cols,this.rows);
 for (int j = 0; j < this.rows; j++){
 for(int i = 0; i < this.cols; i++)
 { t.tileColour[this.cols-i-1][j] = this.tileColour[i][j];}
 }return t;
}

A Join Operation

public Tiles join(Tiles a){
Tiles t = new Tiles(this.cols+a.cols,this.rows);
 for (int j=0; j<t.rows; j++){
 for(int i= 0; i < this.cols + a.cols; i++){
 if(i<this.cols) t.tileColour[i][j]= this.tileColour[i][j];
 else t.tileColour[i][j]= a.tileColour[i-this.cols][j];
 }
 }return t;
}

i

j

i

j

this

i

j

[this.cols-i-1][j]

i

j

[i][j]

t

[i][j]

[i-this.cols][j]

[0][0][0][0][0][0]

t

this

[i][j]

a

i < this.cols i >= this.cols

i

j

i < this.cols +a.cols

[0][0] [0][0]

i-this.cols

87

Combining these two approaches using an asymmetric tile pattern illustrates the
need for: both rotation and reflection, reorientation-commands to obtain all possible
configurations in the resulting tile layouts:

Tiles T = new Tiles(20,20,Color.white);
for(int j=0;j< 20; j++){
 for(int i=0; i<20; i++){
 if (((T.cols-i)*(T.cols-i)+(T.rows-j)*(T.rows-j))>144)
 T.tileColour[i][j]= Color.blue;
 if((i*i)+(j*j)< 144)T.tileColour[i][j]= Color.cyan;
 if((i<10)&&(j<10)&&(i>1)&&(j>1)&&(i==j))
 T.tileColour[i][j]= Color.red;
 if((j>9)&&(i==10))T.tileColour[i][j]= Color.red;
 if(((i<4)&&(j<4))&&((i==0)||(j==0)))
 T.tileColour[i][j]= Color.black;
 }
}

A bent arrow pattern Tile T is set up by the code given above for a 20 by 20 array.

This is then joined with different re-orientations of itself to give the sequence of tile
patterns X, Y, Z and finally a much larger pattern A in Figures 3.8 to 3.11.

Figure 3.8 Clockwise rotation and join of a tile pattern: X = T.join(T.clockwise());

Figure 3.9 Anti-clockwise rotation and join of a tile pattern Y = T.join(T.anticlock());

A Join Operation

88 3 Programming Development Environment for Graphics

Figure 3.10 Reflection and join of a tile pattern: Z = T.join(T.reflected());

When working with complex tile patterns it is not always that easy to produce the
desired result, just by rotating reflecting and joining tiles, at least without careful
prior planning. If the target is to produce a predefined pattern such as that shown in
Figure 3.11, then the simplest approach, realising that the target pattern has to be
constructed by joining simpler patterns together, is to systematically subdivide it.
Generating identical sub-tiles, where possible, will reduce the reconstruction work.

Figure 3.11 Composite Tile pattern A

89

Figure 3.12 Tile pattern A constructed from Tile pattern T

A = B.join(C) B = D.anticlock() C = B.reflected()

D = E.join(F) E F = E.reflected()

E = G.join(H) G = J.clockwise() H = J.anticlock()

J = K.join(L) K = L.clockwise() L = T.clockwise()

A Join Operation

90 3 Programming Development Environment for Graphics

The sequence building tile A from tile T is obtained by subdividing A in the
systematic way illustrated in Figure 3.12. The final tile pattern shown in Figure 3.11
shows the addition of a border and introduces the next step in this examination of the
ways in which arrays of colour values can be combined under computer language
control to create graphic models. In this case two patterns are overlaid on each other.
The blue of the border having priority over what was already on tile A. Using
different combination commands can vary the way in which two overlaid patterns are
combined.

Rectangle Set on Rectangle Set

An overlay task that needs to be carried out very often in an interactive window
system is establishing the interrelationship of window rectangles as they are moved
around the screen relative to each other. In early systems with limited memory the
way this was done was critical for keeping memory usage within bounds and to allow
the operation to be carried out fast enough to support real time interactive work.

G

F

C A

M

B

L

H K

D

J E

Figure 3.13 Rectangular partitioning of overlapping windows

The key operation is that shown in Figure 3.13. The process is one of partitioning
the display space into rectangles. This allows fast memory transfer “bitblt”
operations to be used to update the display, merely by repainting modified rectangles.
Block memory transfer operations are primitive operations very similar to the tile
operations, which can be implemented at the hardware or firmware level in the
display system. If display memory is part of the computers main memory then the
array of pixel values has to be accessed fast enough to keep up with the refresh cycle
of the TV monitor. In early systems this could not be achieved without the special
hardware outlined in chapter 5. The key task is to access the pixel values from the
image array a row at a time and pass the pixels in sequence to the display system at
the required speed. If the image array consists of w columns and h rows, and the data

91

is stored in a contiguous block of memory cells starting at address base, then a
procedure of the following form needs to be executed.

int address = base, width = w, height = h, row = 0, col = 0, step = 1;
while(row<height){

while(col<width){
displayPixel(displayMemory[address]);
address=address+1; col=col+1;

}
address=address+step; row=row+1; col=0;

}

If a rectangle within this pixel array needs to be modified then this block
accessing code can be extended in the following way. Given a rectangular block of
width w1, and height h1 with its first pixel located at image-array index-position [x,
y]: the pixel locations for this block can be accessed in the following way to paint the
rectangle red.

Int width = w, height = h, row = 0, col = 0, step =w-w1, blockHeight = h1, blockWidth =w1;
int address = base + width*y+ x;
while(row< blockHeight){

while(col< blockWidth){
displayMemory[address] = Color.red;;
address=address+1; col=col+1;

}
address=address+step; row=row+1; col=0;

}

Variations of these block memory operations allow rectangular images to be
overlaid on existing images, or combined with them in various ways. One useful
operation is combining existing pixel data with new pixel data using an exclusive or
operation. If this is repeated then the initial image is returned to its original state.
Drawing cursors and construction lines using this technique can be very helpful when
executing many interactive tasks where an element of trial and error is needed.

Another operation at the pixel level in a block memory transfer operation is
combining pixel values as though an image is translucent or transparent. Including
the transparency of a pixel as a component of an image pixel value allows these fast
block memory transfer commands to support a range of real time image manipulation
tasks that greatly extends the scope of much interactive work.

Transparent and Translucent Overlays

A traditional way for graphic designers to work employs overlapping transparent or
partially transparent media so that images from different sources or generated in
different ways, can be combined together. Even in oil painting, glazes, which are
transparent or translucent overlays, are used to modify a lower layer pattern or image.
The most direct application of this approach can be found in the cell animation
employed in cartoon films.

Transparent and Translucent Overlays

92 3 Programming Development Environment for Graphics

Each layer of a scene can be manipulated independently from frame to frame
allowing a whole range of movement effects to be created with very few “basic
operation” types. Technical drawings are also usefully handled in this layered way,
for example, allowing different engineering service plans to be seen related to each
other showing how plumbing and air conditioning ducts relate to electrical circuits.
This allows information in pictures to be selectively added in or left out, as their use
requires it. Geographic information systems, from early on in their development,
have used the map model concept in which different geographical distributions are
constructed and stored as separate overlays for the same base map, so they can be
displayed separately, together or in any functional combination required.

The traditional technical roles for the graphics model: data analysis and design,
communication, and storage are now being split up and reallocated. The roles of
analysis and storage are passing to the computer model, leaving the graphic model
primarily for communication and interactive design. How far is the array of colours,
used to create the display, also able to act as a spatial model for analysis? The next
step is to investigate its use for other purposes than just display. The alternative is to
find spatial models suitable for design, analysis and storage purposes, which can
when necessary be converted into arrays for display purposes.

Interactive Tile Pattern Definitions

An interesting sequence of modelling issues is posed by the classical task of route
finding through a maze. The array model will allow a maze to be represented by
using one colour for walls and another colour for open space. The question which
will be examined in the next section, is what more is needed to allow this spatial
layout model to be used to support route finding from a start cells to a finish cell
beyond the support the colour-array, display-model can already provide.

Figure 3.14 Hand edited maze layout

The maze pattern in Figure 3.14 was obtained by interactively modifying a basic
tile pattern, using the mouse. In order to display this pattern it was necessary to
convert the tile colour-array into a display pixel array. This was done using a Grid

93

object to act as a bridge between the colour array model of the tile pattern and the
pixel grid of the display screen. A simple way to do this is to multiply up each colour
array element by an integer number, so that, for example, each cell becomes a block
of 16 by 16 pixels. This has the drawback however, that it sets a fixed size to the
resulting display.

Since display systems can have a variety of different resolutions, a more flexible
solution is to take the index ranges of the tile grid and treat these as floating point
values. For example an array of 10 by 20 cells can be treated as a continuous space
from 0.0 to 10.0 for x and 0.0 to 20.0 for the y values. These can then be used to set
up a CoordinateFrame object cF by relating them to a convenient working
rectangular area on the screen, using the mouse, in the way already described for the
drawing of the sine function shown in Figure 3.2. The dW.getCoord(cF) function can
then be used to get the real value co-ordinates of a point: the x and y values of which,
will, when truncated to integers, give the indexes to access the colour-array cell
corresponding to the tile or grid-square being pointed to by the mouse.

In order to display tile patterns in a standard way a display method has been
included in the Tiles class. This sets up a display grid object which requests a
rectangular window to be defined on the screen into which it paints the tile pattern,
scaled to fit. The display command has to be passed a reference to the “TextWindow”
in order to have access to a text window to print out interactive messages. The code
for the Tiles class is:

class Tiles{
 public Color[][] tileColour = null;

public int cols=0, rows=0;

public Tiles(){ }

public Tiles(int numberOfColumns,int numberOfRows,Color cc){

cols = numberOfColumns; rows = numberOfRows;
if ((cols <1)||(rows<1)) {

cols =1; rows =1;
tileColour =new Color[cols][rows]; tileColour[0][0] = cc;

}else{
tileColour = new Color[cols][rows];
for (int i=0; i<cols;i++)

{ for(int j=0;j<rows; j++) tileColour[i][j] = cc; }
}

}
public Tiles(int numberOfColumns,int numberOfRows){

cols = numberOfColumns; rows = numberOfRows;
if ((cols <1)||(rows<1)) {
cols = 1; rows = 1;
tileColour = new Color[cols][rows]; tileColour[0][0] = Color.white;
}else { tileColour = new Color[cols][rows]; }

}

Interactive Tile Pattern Definitions

94 3 Programming Development Environment for Graphics

public Tiles(Color cc){
cols = 1; rows = 1;
tileColour = new Color[cols][rows];

 tileColour[0][0] = cc;
}

public void setBorders(Color cc){

for(int i=0;i<this.cols;i++)
{ this.tileColour[i][0]= cc; this.tileColour[i][rows-1]= cc; }

 for(int i=0;i<this.rows;i++)
{ this.tileColour[0][i]= cc; this.tileColour[cols-1][i] = cc; }

}
public Tiles clockwise(){

if (this.tileColour == null)return null;
Tiles t = new Tiles(this.rows,this.cols);
for (int i=0; i<this.rows; i++){

for(int j= 0;j<this.cols; j++)
{ t.tileColour[i][this.cols-j-1] = this.tileColour[j][i]; }

}return t;
}
public Tiles anticlock(){

if (this.tileColour == null)return null;
Tiles t = new Tiles(this.rows,this.cols);
for (int i=0; i<this.rows; i++){

for(int j= 0; j<this.cols;j++)
{ t.tileColour[this.rows-i-1][j] = this.tileColour[j][i];}

}return t;
 }

public Tiles reflected(){
if (this.tileColour == null)return null;
Tiles t = new Tiles(this.cols,this.rows);
for (int j = 0; j < this.rows; j++){

for(int i = 0;i<this.cols; i++)
{ t.tileColour[this.cols-i-1][j] = this.tileColour[i][j];}

} return t;
}
public Tiles join(Tiles a){

if ((this.tileColour == null)||(a == null)
 ||(a.tileColour == null)||(this.rows != a.rows))return null;
Tiles t = new Tiles(this.cols+a.cols,this.rows);
for (int j=0; j<t.rows; j++){

for(int i= 0; i<this.cols+a.cols;i++){
if(i<this.cols)t.tileColour[i][j]=this.tileColour[i][j];
else t.tileColour[i][j]=a.tileColour[i-this.cols][j];

}
}return t;

}

95

public void display(TextWindow f){
Grid d = new Grid(f,this.tileColour,this.cols,this.rows);
d.paintGridArray(); d.drawGridLines(Color.black,Color.gray);

}
}

The Grid class provides a series of tile-based operations based on scaling the rows
and columns of the tile pattern to fit a user-defined rectangle on the screen. The
display grid class sets up a co-ordinate framework in this rectangle that generates co-
ordinates to match the row and column indexes used to reference tiles in the grid. A
“CoordinateFrame” object provides this scaling, in the following way.

Figure 3.15 Co-ordinate framework: screen and tiles co-ordinates

The basic co-ordinate system of the display system is the row and column, integer,

index pairs used to reference pixels on the display screen. These indexes may relate
directly to the hardware defining the memory addresses of the pixels in the frame
buffer memory. Or in the Java environment it may relate to a pixel based co-ordinate
with its origin defined by the upper left-hand corner of a Container such as a Canvas,
which is displayed inside a window.

The task for the CoordinateFrame object is to map a different co-ordinate system
onto this underlying pixel array. The only assumption or constraint is that the
corresponding axes from the two systems are parallel, so the mapping operation has
to handle only scale and origin differences. The mapping functions are worked out
from the two diagonal corner points generally provided to define the working area on
the screen. These points are represented in both systems so that the relationship
between them can be calculated, allowing subsequent points to be transformed to
match. In Figure 3.15 the two points are P1 and P2 in screen space corresponding to

0, 0 xs

ys

0, 0

yt

xt

P1

P2

Pb

Pa

Interactive Tile Pattern Definitions

96 3 Programming Development Environment for Graphics

Pa and Pb in the tile space. The values of the screen co-ordinates and the tile pattern
co-ordinates are (xs

1, ys
1) matching (xt

a,yt
a), and (xs

2, ys
2) matching(xt

b,yt
b). Since the

x and y axes are orthogonal relationships along the x axis and the y axis can be
treated independently. If the x axis values are analysed first, then it is possible to
show the linear relationship between the two co-ordinate systems by labelling the
screen x- values “u”, and the tile x-values “v”.

Figure 3.16 CoordinateFrame scaling X axes

This allows the relationship between the two to be drawn up as the line graph

shown in Figure 3.16. From this the equation of the line can be written in the
intercept form:

cross multiplying gives: 0 = ax.v + bx.u + cx (cx = -ax.bx)

the slope of this line becomes:

the coefficients of this equation can be calculated by the code

dv
du = -bx

 ax

= 1
u
ax

+
v
bx

(Os , Ot) a xs
1 xs

2

xt
b

xt
a

b

u

v

u

v

Os

Ot xt
a xt

b

xs
1 xs

2 a

b

97

 ax = p2.x-p1.x;
 bx = pb.x-pa.x;
 cx = pa.x*p2.x - p1.x*pb.x;

The same treatment can be applied to the y axes:

Figure 3.17 CoordinateFrame scaling Y axes

Again the equation of the line can be written in the form: 0 = ay.s + by.r + cy
The coefficients of this equation can be calculated by the code:

 ay = p2.y - p1.y;

 by = pb.y - pa.y;
 cy = pa.y*p2.y - p1.y*pb.y;

Once these coefficients are set up in a CoordinateFrame object q by the method

q.setScales(..) then any point obtained from the screen with the mouse using
getCoord() can be converted using the method q.scaleStoW(..) or can be obtained
directly using the getCoord(q) which converts the screen co-ordinates to
CoordinateFrame q co-ordinates.

Similarly any points calculated in the context of a CoordinateFrame q, can be
converted to screen co-ordinates using the method q.scaleWtoS(..).

r

s

Os

Ot yt
a yt

b

ys
1 ys

2 a

b

s

(Os , Ot) a ys
1 ys

2

yt
b

yt
a

b

r

Interactive Tile Pattern Definitions

98 3 Programming Development Environment for Graphics

class CoordinateFrame{

public boolean scaleSet = false;
public double ax, bx, cx, ay, by, cy;

public CoordinateFrame(){ }

public void setScales(Point pa,Point pb,Point p1,Point p2){

if((pa==null)||(pb==null)||(p1==null)||(p2==null))
{ this.scaleSet = false; return;}

this.ax = p2.xd()-p1.xd(); this.bx = pb.xd()-pa.xd();
this.cx = pa.xd()*p2.xd() - p1.xd()*pb.xd();
this.ay = p2.yd()-p1.yd(); this.by = pb.yd()-pa.yd();
this.cy = pa.yd()*p2.yd() - p1.yd()*pb.yd();
if((ax==0.0)||(bx==0.0)||(ay==0.0)||(by==0.0)) this.scaleSet = false;
else this.scaleSet = true;

}
public Point scaleWtoS(Point p1){ // scale work-space to screen

Point p0 = null;
if (this.scaleSet){

p0 = new Point(2);
p0.n[0] = 1.0;
p0.n[1] = ((this.bx*p1.xd() + this.cx)/this.ax);
p0.n[2] = ((this.by*p1.yd() + this.cy)/this.ay);

}return p0;
}
public Point scaleStoW(Point p1){ // scale screen to work-space

Point p0 = null;
if (this.scaleSet){

p0 = new Point(2);
p0.n[0] = 1.0;
p0.n[1] = (this.ax*p1.xd() - this.cx)/this.bx;
p0.n[2] = (this.ay*p1.yd() - this.cy)/this.by;

} return p0;
}

}

Although it is possible to work directly with a CoordinateFrame object it is
convenient when working with grids and tile patterns to set up a new class, Grid to
bridge between the programming level and the display level of work. The Grid
variables and constructors are:

class Grid extends CoordinateFrame {

public int width, height; private TextWindow f=null;
public DisplayWindow dW=null; public int rows = 0,cols = 0;
private Color[][] array = null; private Color[][] dualArray = null;
private double[][] values = null;
private Point pa=null, pb=null, pc=null, pd=null;

99

Grid(){}
Grid(TextWindow t, DisplayWindow dW ,Color[][] a,int cols,int rows){

int width = cols; int height = rows; this.f = t; this.dW = dW; this.array = a;
if((a==null)||(cols<1)||(rows<1)) f.writeString("Null array for display \n");
}else setGridDisplay(a,cols,rows,width,height);

}
Grid(TextWindow t,DisplayWindow dW,
 Color[][] a,int cols,int rows,int width,int height) {

this.f = t; this.dW = dW;
if((a==null)||(cols<1)||(rows<1)) f.writeString("Null array for display \n");
else setGridDisplay(a,cols,rows,width,height);

}
public void setGridDisplay(Color[][] a,int cols,int rows,int width,int height){

this.array=a; this.rows=rows; this.cols=cols;
dualArray=new Color[cols+1][rows+1];
for(int i=0;i<cols+1;i++)

for(int j=0;j<rows+1;j++){dualArray[i][j]=Color.white;}
f.writeString("Please Enter Diagonal Corners of Display Grid \n");
pa = dW.getCoord(); pb = dW.getCoord();
if (pa.xd()>pb.xd())

{double save = pa.xd(); pa.n[1] = pb.xd(); pb.n[1] = save;}
if (pa.yd()>pb.yd())

{double save = pa.yd(); pa.n[2] = pb.yd(); pb.n[2] = save;}
pc = new Point(2); pc.n[1] = 0.0; pc.n[2] = (double)height;
pd = new Point(2); pd.n[1] = (double)width; pd.n[2] = 0.0;
setScales(pa,pb,pc,pd);

}

This arrangement allows direct access, using the mouse, to modify the colour
array model and sets up a third way of generating tile patterns: interactive
composition by the system user. Methods from the Grid class provide different ways
for manipulating tile images and their colour array models. An example of the way
these facilities can be used to manually modify a display pattern: to set up a 20 by 30
tile pattern for the display of a maze layout made up from black tiles on a white
setting, is as follows:

 int Cls = 30, Rws = 20;
 Tiles T = new Tiles(Cls,Rws,Color.white);
 T.setBorders(Color.black);
 Grid d = new Grid(IO, dW, T.tileColour, Cls,Rws,Cls,Rws);
 d.paintGridArray();
 d.drawGridLines(Color.black,Color.gray);
 int j=0, k=0; boolean test = false;
 IO.writeString("Use the mouse pointer to enter wall cells"); IO.writeLine();
 IO.writeString("To finish click mouse outside the maze"); IO.writeLine();
 do{
 Point p = d.getCell();

Interactive Tile Pattern Definitions

100 3 Programming Development Environment for Graphics

 k = p.xi(); j = p.yi();

double r = p.xd(); double s = p.yd();
 double cl = (double)Cls; double rw = (double)Rws;
 if(test =(((cl-r)*(-r)<0)&&((rw-s)*(-s)<0))){
 if(d.getCellColor(k,j) == Color.black){
 d.paintInnerCell(k,j,0,Color.white);
 }else{ d.paintInnerCell(k,j,0,Color.black);}
 }
 }while(test);

In order to support maze-solving applications in the next chapter, using a grid
based display to draw mazes -- various methods were added to this class. Different
ways for painting in the grid cells showing search paths and backtracking paths in
distinguishable ways needed to be provided.

 public Point getCell ()
 { Point p1 = dW.getCoord(); Point p = scaleStoW(p1); return p; }

The procedure getCell() returns a Point co-ordinate of type double in the number
range defined by the grid array indexes. For example if the mouse pointer is pointing
inside cell [5][6], the return values might be [5.4003][6.3145], in which case to use
these values they will have to be truncated to their corresponding integer values,
before they can be used to access the colour array.

 public boolean contains(Point p){
 if((p.xi()>0)&&(p.xi()<=cols) && (p.yi()>0) && (p.yi()<=rows)) return true;
 else return false;
 }

The contains method allows a point to be tested to see if it lies inside the rectangle
of the grid. A method for determining the existing colour of a particular grid cell and
one for setting a grid cell to a new colour was essential for interactive work and was
written as follows:

 public Color getCellColor(int i, int j) { return array[i][j]; }
 public void setCellColor(int i, int j, Color cc) { array[i][j] = cc; }

where getCellColor(..) and setCellColor(..) are two methods that can be used if
the colour array is not directly accessible to the user.

 public void paintArrayCell(int i, int j, Color cc){
 Point p1 = new Point(2); Point p2 = new Point(2);
 p1.n[1] = (double) i; p1.n[2] = (double) j;
 p2.n[1] = p1.xd() + 1.0; p2.n[2] = p1.yd() + 1.0;
 Point pa = scaleWtoS(p1); Point pb = scaleWtoS(p2);
 array[i][j] = cc;
 dW.plotRectangle(pa,pb,cc);
 }

101

The paintArrayCell(.) method fills in the cell indexed [i][j] with the colour
defined by cc. The paintGridArray() procedure paints in the whole grid, directly
from its object’s colour array.

 public void paintGridArray()){
 for(int i =0;i<cols; i++){
 for(int j = 0; j<rows; j++)

{ paintArrayCell(i,j,array[i][j]); }
 }
 }

The paintInnerCell(.) method gives a more versatile cell painting procedure which
leaves a frame k pixels wide round the edge of the painted cell area.

 public void paintInnerCell(int i, int j, int k, Color cc){
 Point pq1 = new Point(2); Point pq2 = new Point(2);
 pq1.n[1] = (double) i; pq1.n[2] = (double) j;
 pq2.n[1] = pq1.xd() + 1.0; pq2.n[2] = pq1.yd() + 1.0;
 Point p1 = scaleWtoS(pq1); Point p2 = scaleWtoS(pq2);
 if(k>0){
 if((Math.abs(p1.xd()-p2.xd())<Math.abs(2*k))
 ||(Math.abs(p1.yd()-p2.yd())<Math.abs(2*k))){
 if(Math.abs(p1.xd()-p2.xd())<Math.abs(p1.yd()-p2.yd()))
 k = Math.abs(p1.xd()-p2.xd())/2;
 else k = Math.abs(p1.yd()-p2.yd())/2;
 }
 }
 p1.n[1] = p1.xd()+1+k; p1.n[2] = p1.yd()-k;
 p2.n[1] = p2.xd()-k; p2.n[2] = p2.yd()+1+k;
 array[i][j] = cc;

 dW.plotRectangle(p1,p2,cc);
 }

The drawGridLines(..) procedure draws in the grid lines separating the separate
coloured cells. It permits the outer boundary line to be of colour “boundary”
distinguishing it, if required, from the colour “cc” of the remaining grid lines.

 public void drawGridLines(Color boundary,Color cc)){
 Point pq1=null, pq2=null;
 pq1 = new Point(2);
 pq2 = new Point(2);

for(int i =1;i<cols; i++){
 pq1.n[1] = (double) i; pq1.n[2] = (double) 0;
 pq2.n[1] = (double) i; pq2.n[2] =(double) rows;
 Point p1 = scaleWtoS(pq1); Point p2 = scaleWtoS(pq2);
 dW.plotLine(p1,p2,cc);
 }

Interactive Tile Pattern Definitions

102 3 Programming Development Environment for Graphics

 for(int j = 1; j<rows; j++){
 pq1.n[1] = (double) 0; pq1.n[2] = (double) j;
 pq2.n[1] = (double) cols; pq2.n[2] = (double) j;
 Point p1 = scaleWtoS(pq1); Point p2 = scaleWtoS(pq2);
 dW.plotLine(p1,p2,cc);
 }
 for(int i=0;i<=cols;i=i+cols){
 pq1.n[1] = (double) i; pq1.n[2] = (double) 0;
 pq2.n[1] = (double) i; pq2.n[2] =(double) rows;
 Point p1 = scaleWtoS(pq1); Point p2 = scaleWtoS(pq2);
 dW.plotLine(p1,p2,boundary);
 }
 for(int i=0;i<=rows;i=i+rows){
 pq1.n[1] = (double) 0; pq1.n[2] = (double) i;
 pq2.n[1] = (double) cols; pq2.n[2] =(double) i;
 Point p1 = scaleWtoS(pq1); Point p2 = scaleWtoS(pq2);
 dW.plotLine(p1,p2,boundary);
 }
 }

The procedure drawPath(.) has been included specifically for maze drawing,
allowing the current cell , to be linked to the next cell in the direction defined by the
variable direction, by a line segment joining the centres of the cells. Where the
current cell is defined by a Point object p2 in which the p2.x and p2.y values
correspond to the first and second indexes of the cell’s position in the colour array.
The use of this method will be illustrated in the next chapter

 public void drawPath(int direction, Point p, Color cc)
 Point p1 = new Point(2); p.c("t>",p1);
 Point p2 = new Point(2); p.c("t>",p2);
 switch (direction){
 case 0: p2.x("=",p2.xd()+1.0); break;
 case 1: p2.y("=",p2.yd()+1.0); break;
 case 2: p2.x("=",p2.xd()-1.0); break;
 case 3: p2.y("=",p2.yd()-1.0); break;
 }
 p1.x("=",p1.xd()+0.5); p1.y("=",p1.yd()+0.5);;
 p2.x("=",p2.xd()+0.5); p2.y("=",p2.yd()+0.5);;
 Point pa = scaleWtoS(p1); Point pb = scaleWtoS(p2);
 dW.plotLine(pa,pb,cc);
 }

Figure 3.14 illustrates a maze pattern constructed by defining a Tiles object, 30
cells wide by 20 cells high, setting up its boundary in black, and then hand editing in
the remaining pattern using the code given above. Automatically searching a maze
for its finish point is discussed in the next chapter as an introduction to computer
based problem solving.

4
Conditional Action
- Spatial Searching
& Problem Solving

Representing a Maze

If the pattern generating process described in the previous chapter is taken as a
starting point, then it is clear that a graphic model of a maze can be prepared using an
“array of colours” as its corresponding computer model. Working out a solution to
the maze by hand would involve marking up the route from the start point to the
finish point on a picture of the maze, and this would generally include redrawing a
few false exploratory attempts.

Unconditional Commands

If this marking up process is to be supported by the computer system then it will be
necessary to represent the walls by one colour the open space by another and the
route by either a third colour or by a line showing the path followed. Marking up the
route in Figure 4.1 could then be implemented by a sequence of simple move and
turn commands, which select the cells in the array model which need to be modified
to show the path taken, in the following way.

 M.setStart(11,3);
 M.setFinish(21,10);
 M.turnAntiClockwise();
 M.move(3);
 M.turnAntiClockwise();
 M.move(5);
 M.turnClockwise();
 M.move(10);
 M.turnClockwise();
 M.move(6);

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_4, © Springer-Verlag London Limited 2008

104 4 Conditional Action – Spatial Searching & Problem Solving

 M.turnClockwise();
 M.move(3);
 M.turnClockwise();
 M.move(3);
 M.turnAntiClockwise();
 M.move(3);
 M.turnAntiClockwise();
 M.move(12);

Figure 4.1 A sequence of direct commands

This operation merely automates the display task. It is clear that in order to do it, a

set of adjacent cells, which are not wall cells, that link the start position to the finish
position, have to be located. This has to be done by looking at the colours of the cells
in the display, and then specifying the sequence of computer commands needed to
mark up the selected route.

The next step is to see whether the representation used to create the display can be
used to automatically select the cells, which were chosen manually in this example,
by using an appropriate sequence of computer language statements. It is clearly
possible to test a cell to see if it is a “wall cell” by comparing its colour with the
colour selected to represent a wall. The question arises whether by testing these
colour values in a systematic way, the route finding operation can be automated in a
general-purpose search algorithm looking for the “finish” cell.

Conditional Commands

Examining the maze solving problem step by step: if simple direct instructions are
employed, such as move() or turnClockwise(), then only by viewing the maze and
selecting an appropriate sequences of commands, can the cursor be moved so that it
does not hit a wall. In maze M0, in Figure 4.2 a move of 3 places, stays in open
space. If in contrast a move of 30 steps is attempted in the way illustrated in the
Figures 4.3 then a wall is hit!

Conditional Commands 105

Figure 4.2 M0.move(3)

Figure 4.3 M0.move(30): Hits the wall

However, if a move is made one place at a time, testing the contents of the next

cell before moving in to it, which can be done because the colour array representing
the maze will have different colour codes for walls and for open space, then a test
wallAhead() can be programmed and used in the following way:

if (! M.wallAhead()) M.move(); else M.turnClockwise();

"If the next cell is open space then move", is a conditional statement that can be
repeated safely using a for(;;){} loop without fear of hitting a wall, and also can be
extended to act differently, for example by turning clockwise, if a wall is found in the
next cell. However, if this command is repeated 30 times the result is that shown in
Figure 4.4. What is needed is a repeat operation, which will continue until a test
indicates that the finish or target cell has been found. Such a test can be provided as a
Boolean function finished(), by comparing the current position, array index-pair, with

Finish
Position

Start
Position

Current
Position

CRASH

106 4 Conditional Action – Spatial Searching & Problem Solving

that of the predefined finish position index pair. Such a test can be used to terminate
a conditional repeat loop when or if a move command locates the finish cell.

Figure 4.4 (move if the next cell does not contain a wall, otherwise turn) 30 times

for(int i=0;i<30;i++) {

if(M.wallAhead()) M.turnClockwise(); else M.move();
}

Figure 4.5 An infinite loop where the target will never be reached

while(!M.finished()){

if (M.wallAhead())M.turnClockwise();else M.move();
}

Start

Finish

Current
Location

In the case of maze M0, in Figure 4.5, simply replacing the for loop with a while
loop still does not help. The program shown simply follows the outer wall forever. At
this point the maze-solving problem must be examined separately from the graphics

Conditional Commands 107

display task. If the finish position is to be found a systematic search of the total space
of the maze is required.

Figure 4.6 M0, a simple space filling search algorithm finding the target

 while(! M.finished()){
 if(M.wallAhead()) M.turnClockwise();
 else if(M.alreadyVisited()) M.turnClockwise();
 else M.move();
 }

Figure 4.7 M1, a space filling search algorithm, hemmed in, in an infinite loop

Hemmed In

If a cell has already been visited then clearly it is desirable not to visit it again if it

can be avoided. This can again be achieved using the colour codes stored in the maze
colour array to indicate that they have been visited, then setting up and using an
alreadyVisited() test in the conditional move command, in the way shown above.

108 4 Conditional Action – Spatial Searching & Problem Solving

When this test is used, the system follows a spiral path, systematically covering
open areas in the way shown. However though this has the right properties shown by
success in Figure 4.6 for maze M0, a difficulty occurs when the spiral reaches its
centre in the way shown in Figure 4.7 for maze M1! Again an infinite repetitive
sequence is generated that cannot be escaped from without some form of new test to
avoid the problem. The same situation occurs if the search path follows a single-cell
wide cul-de-sac, eventually movement is blocked by cells that have already been
visited. The route, which has been created by this algorithm, however is useful. It
defines an escape route, which, if it is possible to “backtrack” along, will eventually
locate further open space which can then be explored in a similar manner -- spiralling
into it until “hemmed-in”, and then backtracking out until further open space is
found. This generates a “tree structured” space-search, which will only ever, in the
worst case, visit a given cell four times and most of the time only once or twice. The
problem is how to implement the backtracking operation using the data stored in the
colour array. There is not enough information in the colour codes used for the
graphic display, to retrace the route systematically.

An Array Model to Represent Routes Through the Maze

At this point it becomes necessary to extend the model of the maze if this search
strategy is to be implemented effectively. The classical solution to finding the way
out of a maze is to use a ball of string! and one approach to this modelling task, is to
record the sequence of cells that have been passed through (as a list of cell locations
stored as index pairs) to represent the path which the string would recover. An
alternative strategy is to mark each cell passed through, by leaving “marks” or
“footprints” in the cell, which can also be used to retrace the path taken, when
required! This leads to a space or maze-searching strategy, analogous to one that a
person lost in newly fallen snow might adopt. A backTrack() function implemented
in this way, however, would depend on the cells being marked to give not only a sign
of previous occupancy but the direction of passage as well. Also this method could
only follow a path backwards if the “footsteps” had not been crossed over or messed
up at any point.

This is not a constraint imposed by the “ball of string” method of retracing a path,
where, however many times a particular cell was visited it would still be possible to
retrace the path taken. However, “following footsteps backwards in snow” if they are
set out in an organised way, can be implemented using an array model of the path to
support an effective spatial search strategy. Painting cells which have been visited
yellow, and cells which are subsequently found to be hemmed in green, produces
Figure 3.8: where a test for being hemmedIn() followed by a backtrack()command is
introduced into the overall conditional move statement in the program segment :

while(!M.finished()){
if (M.hemmedIn())M.backTrack();
else if (M.wallAhead())M.turnClockwise();
else if (M.alreadyVisited())M.turnClockwise();
else M.move();

}

109

Figure 4.8 Maze M1: no longer hemmed in and the target located

The problem is how to represent “footsteps in the snow” in an array model of the

maze. There are a variety of ways in which this can be done. One possibility is to
enter a sequence of integers into the open-space cells as they are passed through,
starting with 1 for the start position then counting up and tagging each new empty
cell as it is entered. Backtracking can be implemented by locating the neighbouring
cell to the current location, with the highest tag value that is less than the tag value of
the current location, and then moving into it. Backtracking does not change a cell’s
tag value.

The construction used for the conditional move statement in this repeat loop is
now of the form:

 IF (test 1) THEN Action 1;
 ELSE IF (test 2) THEN Action 2;
 ELSE IF (test 3) THEN Action 3;
 ELSE IF …
 ELSE Action n;

This form of statement can include as many else if subsections as there are

selection tests and actions to apply. This statement carries out a sequence of tests, in
a particular order, to test data. As soon as a test succeeds the associated action is
taken and the statement is finished. The algorithm then passes on to the next
statement. Only one else part is necessary in this statement to catch any unspecified
conditions!

The order of the tests can be very important. Since either the wallAhead() or the
alreadyVisited() test will succeed if the hemmedIn() test is going to succeed it is
clearly necessary to carry out the hemmedIn() test first. If it fails then it is still
possible for one of the other two to succeed if they are tried subsequently, whereas
the reverse sequence does not work correctly. If the tests in the example are
reordered this will quickly be seen to be true.

An Array Model to Represent Routes Through the Maze

110 4 Conditional Action – Spatial Searching & Problem Solving

Figure 4.9 Maze M2 : the general maze solving algorithm

Figure 4.9 illustrates the general maze solving procedure in action. An interesting

variation on its coding which makes the relationship between hemmedIn() and
wallAhead() and alreadyVisited() more explicit, can be obtained by observing that
there are three tests, and yet there are only three actions. If the full decision table for
the three tests is laid out there are, potentially, eight actions that can be discriminated
from each other. However, only five test combinations are possible, and two pairs
require identical actions. This suggests the use of a switch statement. If the truth
values of the separate tests are combined together as a single decimal number j
shown in the fourth row of the decision table it can be used as a switch variable. This
switch variable can be generated either by Boolean bit-wise operations or a matching
use of arithmetic operations in the way illustrated in the following code sequence:

 alreadyVisited() 1 true 0 false

wallAhead() 1 true 0 false 1 true 0 false
 hemmedIn() 1 true 0 false 1 true 0 false 1 true 0 false 1 true 0 false

j 7 6 5 4 3 2 1 0
ACTIONS

* * Back

Track
Turn Back

Track
Turn * Move

while(!M.finished()){

int j=0;
if (M.hemmedIn()) j=j+1;
if (M.wallAhead()) j=j+2;
if (M.alreadyVisited()) j=j+4;
switch(j){

case 3:case 5: M.backTrack(); break;
case 2:case 4: M.turnClockwise(); break;
default:M.move();

}
}

111

Having generated a solution to the maze-searching problem using a “bottom up”
exploratory approach, the next stage is to see if there are any ways in which the
resulting algorithm can be refined. A direct approach to this task is to layout as many
different ways of representing the algorithm’s structure as possible. One application
of a decision table analysis is to rearrange the order of tests in nested conditional
statements to group common actions together to simplify code. In this case there are
not many possibilities however one pair of actions can be merged in the following
way. If the wallAhead() and alreadyVisited() tests are combined as the single test
obstructed()

public void obstructed() { return (this.wallAhead()|| this.alreadyVisited()); }

this will support the code:

while(!M.finished()){
int j=0;
if (M.hemmedIn()) j=j+1;
if (M.obstructed()) j=j+2;
switch(j){

case 3: M.backTrack(); break;
case 2: M.turnClockwise(); break;
default:M.move();

}
}

Switch or case statements are very effective constructs for handling a range of

simple geometrical programming problems. There are many cases where a discrete
number of patterns characterise a particular task while the variations in the problem
space are continuous. If tests can be set up to classify the patterns involved then the
switch statement allows a function table to be set up; each function able to handle the
particular patterned interpretation of the otherwise continuously varying data. These
patterns can be considered to be states of the continuous problem, so allowing it to be
turned into a finite state problem by the appropriate classification and naming of
parts. The maze-solving algorithm turns into the finite state machine given in Figure
4.10.

Figure 4.10 Maze-solving automata

Start

Finished()

BackTrack()

FreetoMove()

Turn()

HemmedIn()

Obstructed()

Move()

BackTrack()

Move()

An Array Model to Represent Routes Through the Maze

112 4 Conditional Action – Spatial Searching & Problem Solving

The Maze Class

Maze objects were set up from Tiles objects by passing the colour array of a tile
object and converting it into a new maze “integer” array model mazeArray. This was
done by converting wall colours to wall codes ‘-1’, open space from white space
coloured cells to codes of ‘0’, and then setting up start and finish cells in the colour
array part of the maze model as red and magenta cells respectively.

class Maze{
 private TextWindow f;
 private Grid d = null;
 private Color[][] tileArray = null;
 private int delay = 100000, maxValue = 0;
 private boolean singleStep = false;
 public int[][] mazeArray = null;
 public int cols = 0, rows = 0, direction = 0, count = 1;
 public Point start = null, finish = null, cursor = null;

 Maze(){}

 Maze(Tiles t, Grid g, TextWindow h){
 this.f = h; this.d = g; this.cols = t.cols; this.rows = t.rows;
 this.tileArray = t.tileColour; // link to a tile colour array
 if ((this.cols <1)||(this.rows<1)){
 this.cols = 0; this.rows = 0;this.mazeArray = null;
 } else{
 this.mazeArray = new int[this.cols][this.rows];
 for (int i=0; i<this.cols;i++){
 for(int j=0;j<this.rows; j++){
 if(t.tileColour[i][j] == Color.black) this.mazeArray[i][j] = -1;
 else if(t.tileColour[i][j] == Color.gray) this.mazeArray[i][j] = -1 ;
 else this.mazeArray[i][j] = 0;
 }
 }
 }
 } /* end of maze constructors */

The maze methods were built to provide the commands and tests discussed above
based on this array model of the maze. The direct commands were move(),
turnClockwise(), turnAntiClockwise(), and backTrack(). In order for these commands
to be implemented it was necessary to define the direction in which any movement
would take place when the move command was issued. An integer variable
‘direction’ was defined for each maze object along with a current location point for
the cursor. The direction variable was allowed to hold one of four values 0, 1, 2, 3. to
represent East, North, West, and South in corresponding order. This made it possible
to define the turn clockwise operation as that of subtracting one from the ‘direction’,
modulo 4, and turn anticlockwise operation as adding one to the ‘direction’, modulo 4.

113

 public void turnClockwise()
 { direction = direction -1; if (direction < 0) direction = 3;}
 public void turnAntiClockwise()
 { direction = direction +1; if (direction > 3) direction = 0;}

The direction variable could then be used in a switch statement to select the code
that would implement the appropriate modification to the current cursor position for
the move commands in the following way:

 public void move(){
 int i = this.cursor.xi(); int j = this.cursor.yi();
 switch (direction){
 case 0: this.cursor.x(“=”,i+1); break;
 case 1: this.cursor.y(“=”,j+1); break;
 case 2: this.cursor.x(“=”,i -1); break;
 case 3: this.cursor.y(“=”j -1); break;
 }
 this.mazeArray[i][j] = this.count++;
 }

However, testing the next adjacent cell is done repeatedly, and is most neatly
implemented using a separate index-increment method controlled by the direction,
saving a switch statement in every procedure that wishes to look ahead:

 public int nextI(int i,int k,int direction){
 int dir; if((dir = (direction+k)%4) == 1)return ++i;
 if(dir == 3)return --i; else return i;
 }

This simplifies the move method to give:

 public void move(){
 int i = this.cursor.xi(); int j = this.cursor.yi();
 this.cursor.x("=", this.nextI(i,1,direction));
 this.cursor.y("=", this.nextI(j,0,direction));
 this.mazeArray[this.cursor.xi()][this.cursor.yi()] = this.count++;
 /* Mark this cell yellow*/
 }

 public void backTrack(){
 this.maxValue = 0; int i = this.cursor.xi(); int j = this.cursor.yi();
 checkDirection(i+1,j,0); checkDirection(i,j+1,1);
 checkDirection(i-1,j,2); checkDirection(i,j-1,3);
 /* Mark this cell green */
 this.cursor.x("=", this.nextI(i,1,direction));
 this.cursor.y("=", this.nextI(j,0,direction));
 }

The Maze Class

114 4 Conditional Action – Spatial Searching & Problem Solving

The backtrack command is more complicated in that the appropriate direction to
move has to be determined by comparing the surrounding tag values in the maze
array cells. The direction for the backtracking move is set up by a separate procedure
checkDirection(..)

 private boolean checkDirection(int i,int j,int dir){

if(!outOfBounds(i,j) && (mazeArray[i][j]>this.maxValue)){
if(mazeArray[this.cursor.xi()][this.cursor.yi()]>mazeArray[i][j]) {

 this.maxValue = mazeArray[i][j];
this.direction = dir; return true;

}
}
return false;

 }

The various tests are relatively simple comparisons of either index values or next
door neighbour, array cell values in the following way:

 public boolean finished(){

if((finish.xi()==cursor.xi())&&(finish.yi()==cursor.yi())) return true;
return false;

 }

 public boolean wallAhead(){

int i = this.cursor.xi(); int j = this.cursor.yi();
i = this.nextI(i,1,direction); j = this.nextI(j,0,direction);
if(outOfBounds(i,j)||(mazeArray[i][j]<0)) return true;
else return false;

 }

 public boolean alreadyVisited(){

int i = this.cursor.xi(); int j = this.cursor.yi();
i = this.nextI(i,1,direction); j = this.nextI(j,0,direction);
if(!outOfBounds(i,j) && (mazeArray[i][j]>0)) return true;
else return false;

 }

 public boolean hemmedIn(){

int i = this.cursor.xi(); int j = this.cursor.yi();
if (openSpace(i-1,j))return false;
else if (openSpace(i+1,j))return false;
else if (openSpace(i,j-1))return false;
else if (openSpace(i,j+1))return false;
/* Mark the cell green */
return true;

 }

115

These procedures developed step by step as the maze problem was analysed. The
final step in this sequence was to take the finite state machine shown in Figure 4.10
and attempt to simplify its structure. The inputs to trigger the transitions between the
states are relatively complex tests on the data in the array representing the maze,
round the current cell. Figure 4.11 illustrate a reconstruction of this state diagram to
give a different state transition system where these tests are simplified to identifying
if the next cell directly ahead in the direction being travelled is free to be moved into.
This still leaves the backtrack operation as a relatively complex task, needing to
interrogate more than one cell’s contents to determine its implementation. This
information can be gathered in the Obstructed states ready for use if the system
enters the HemmedIn state.

Figure 4.11 State machine for maze solving

Move
Turn 2

Turn 3

Turn 4

BackTrack

Back
Track

Turn 2

Turn 3

Turn 1 Turn 1

Move

Start

Obstructed

3

Obstructed

2

Obstructed

1

Free to Move

Stop

Obstructed

4

Hemmed In

1

2

3

4

The Maze Class

116 4 Conditional Action – Spatial Searching & Problem Solving

public int x,y,nx,ny,X,Y, state=0, savevalue=0, savedir=0, dir=0, cellcount=1;
public int[] xincr = new int[]{1,0,-1,0}; public int[] yincr = new int[]{0,1,0,-1};
public void finiteStateMachine(){

x= start.xi(); y= start.yi(); X= finish.xi(); Y= finish.yi();
dG.paintInnerCell(x,y,0,Color.magenta);
while((x!=X)||(y!=Y)){

switch(setstate()){
case 0:move(Color.yellow,2); mazeArray[x][y]=cellcount++; break;
case 1:case 2:case 3:case 4: checknext();dir=(dir+1)%4;break;
case 5:dir=savedir; move(Color.green,4);break;

}nx = x+xincr[dir]; ny = y+yincr[dir];
}dG.paintInnerCell(x,y,0,Color.cyan);

}
private void move(Color cc,int b){

int xx=x, yy=y;
x=x+xincr[dir]; y= y+yincr[dir];
dG.paintInnerCell(xx,yy,b,cc);
Point pa = new Point(2); Point pb= new Point(2);
pa.x("=",x); pa.y("=",y); pb.x("=",xx); pb.y("=",yy);
dG.drawPath(pa,pb,Color.black);

}
private int setstate(){

if(mazeArray[nx][ny]==0)state=0;
else if(state<5){state++; return state;}
else state =1;
savevalue=0; savedir=dir; return state;

}
private void checknext(){

if((mazeArray[nx][ny]<mazeArray[x][y])&&(mazeArray[nx][ny]>savevalue))
{savevalue=mazeArray[nx][ny]; savedir = dir;}

}

Figure 4.12 Finite state algorithm

117

This way of evolving a programming solution to a problem by trying out different
ways of combining primitive operations and tests, and building up towards a solution
is called Bottom Up design. It can be contrasted with the subdivision method
employed in the case of the Tiles examples, which by starting with the whole
problem was able to work from the top downwards to a solution: an approach called
Top Down design, a form of structured reverse engineering!

Once an initial algorithm has been put in place it is possible to evaluate it and
refine it. The observation made earlier that a tree-structured search results from the
“footsteps in the snow” strategy, opens up several important possibilities. However,
firstly it is necessary to check that this assertion is valid. If it is then a more efficient
and terse program can be written to achieve the same result that the “game playing”,
exploratory-approach, has achieved so far.

Figure 4.13 Search patterns

A maze is assumed to be made up from a set of connected cells. By this is meant
that a route exists from any cell to any cell through adjacent cells, if the appropriate
sequence is chosen. There are no disjoint sets of cells in the original collection and
every cell is adjacent to at least one other.

If a path is taken through a maze from cell to adjacent cell, but only entering cells
that have not previously been visited, then two outcomes are possible. In the first
case all cells in the set are visited, case (a) in Figure 4.13. In the second case only
some of the cells are visited before a cell is reached from which no progress can be
made, but where there are other cells in the initial set that still have to be visited.
Figure 4.13(b).

At this point consider the collection of unvisited cells. They may be one connected
set, or they may be divided into several internally connected subsets disjoint from
each other. Even though separated these subsets must be connected through the
earlier search path because of the initial condition that they start out as one connected
set. The separation is by cells that have already been visited. Since the search path is
linear, it is clear that backtracking along it will potentially visit all these subsets in
order. If each sub-area that is located in this back track sequence is searched
fully then at the end of the back track the whole area of the maze will have been
searched.

The search problem created by entering one of these sub-areas is identical in
nature, to the initial search problem. It can therefore be treated recursively. This was

a b c

The Maze Class

118 4 Conditional Action – Spatial Searching & Problem Solving

the property, which led to the assumption that the search path would be a tree
structure. To ensure that this is the case it is necessary to show that each sub area can
be totally searched and that the search path returns to the entry point used for
accessing each sub-area, when backtracking. The latter is necessary to ensure that the
backtrack-route can fully search its initial search path, for all links to sub-areas, and
cannot bye pass any links to sub-areas. For example, by entering an area at point 1 on
its route but exiting back onto its search path at point 2, in between which links to
other areas might lie.

Although a sub area may have several potential links to an initial search path, they
will be inaccessible to normal move commands because they will already have been
visited as shown in Figure 4.13 (c). This means that the only route out of an area is
by using a backtrack operation, which by definition must exit by the route used for
entry. The areas will be fully searched because unless the target cell is found in a sub
area, this algorithm will hierarchically continue to subdivide it until all the sub-areas
it finds can be fully explored. This argument allows the following program to be
written:

public boolean mazeSearch(int i,int j){
delays();
Point p = new Point(); p.x("=",i); p.y("=",j);
for(int k =0; k<4; k++){

int ii = nextI(i,1,k);
 int jj = nextI(j,0,k);
if((finish.xi()==ii)&&(finish.yi()==jj)) return true;
if (mazeArray[ii][jj]==0){

mazeArray[ii][jj] = 1;
/* mark cell [ii][jj] yellow */
if (mazeSearch(ii,jj))return true;

}
}
/* mark cell [i][j] green */
return false;

}

In this algorithm when a cell has been visited it is marked with a single value 1.
This means this approach can be employed using the original colour-array model of
the maze, since a single colour can be used in the same way as this integer value. The
reason why this is possible is because this method is recursive. Each call of the
procedure will place the local variables i and j onto the program stack, effectively
modelling the route using the “ball of string“ approach, which makes the marking up
of a maze array model to record the track, unnecessary.

The algorithms explored so far in this chapter will search for a target cell in a
closed maze. Once such a cell has been located, which in the worst case may have
meant visiting all the cells in the maze at least twice, the next task to consider, is
finding the best route from the start of the maze to its finish point. This optimisation
process will be discussed in the next section.

119

Backtracking and Optimum Route Finding

Looking at the display in Figure 4.14 an interesting pattern is evident. The cells that
have not been backtracked over provide an almost direct route from the beginning to
the end of the maze. The places where they do not are rectangular areas of yellow,
like that on the right hand side of the display. This suggests the next stage in the
evolution of this program.

Figure 4.14 Tree search maze solving algorithm

If as before the cells are marked with ascending integer values as the search is
carried out, but cells that are backtracked over are set back to open space, then the
yellow cells will be in ascending order from the start to the finish. Once the finish
point is found the method backTrace(), by moving to the neighbouring cell with the
smallest marked value, can trace out the direct route, and because of the ordering of
cells in rectangular areas of yellow cells, will select a boundary route through them,
as shown in Figure 4.15.

 public boolean mazeSearch (int i, int j){
for(int k =0; k<4; k++){

cursor.x("=",(int ii = nextI(i,1,k)); cursor.y("=",(int jj = nextI(j,0,k));
if((finish.xi()==ii) && (finish.yi()==jj)){

mazeArray[ii][jj] = this.count++;
return true; }

if (mazeArray[ii][jj]==0){
mazeArray[ii][jj] = this.count++;
/* mark cell [ii][jj] yellow */
if (mazeSearch(ii,jj))return true;

}
}
/* mark cell [ii][jj] green */
mazeArray[i][j]= 0; return false;

}

Backtracking and Optimum Route Finding

120 4 Conditional Action – Spatial Searching & Problem Solving

 public void backTrace(){

int savei=0, savej=0, i=cursor.xi(), j=cursor.yi(),
minvalue = mazeArray[i][j];
for (int k = 0; k<4; k++){

int ii = nextI(i,1,k); int jj = nextI(j,0,k);
if ((mazeArray[ii][jj]>0) && (minvalue > mazeArray[ii][jj]))
{ savei = ii; savej = jj; minvalue = mazeArray[ii][jj]; }

}
cursor.x("=",savei); cursor.y("=",savej);
/* mark cell [savei][savej] red */

}

Figure 4.15 Tree search and back trace algorithm

At first sight a shortest route algorithm seems to be appearing, however when the

mazes shown in Figure 4.16 are compared it can be seen that though it is an
optimised route from tree pruning, it is not the shortest route. In each row, in the two
examples, the target position is placed above and below the mid-point of the
intervening wall. The search path in yellow, in each case fills the search space from
the top, because of the arbitrary initialising conditions in the program. Consequently
the optimised route goes above the wall even when the shortest route should take a
path below the wall. It is clearly unable to do this because the search has found the
target working from the top before any of the lower cells are visited.

The tree algorithm given, implements what is in effect a depth first search
strategy. A route is followed as far as possible until, being blocked, the search
process is forced to backtrack. As has already been observed, where a set of cells has
several entry points from an initial pathway, only one will be explored. This
exploration will then block the other routes by labelling the alternative access cells as
having “already been visited”. To find the shortest route it is necessary to explore the
paths that might be generated by following these alternative access points.

121

Figure 4.16 Depth first tree search and back trace algorithm

This can be done, by implementing the tree search algorithm in a different way. In

the previous approach once a cell had been visited then it was blocked from
subsequent visits. If this constraint is relaxed then the tree search will visit every cell
many times from all possible routes. To find the shortest route it is necessary to do
two things: one is to reduce unnecessary visits in this recursive process, secondly, as
part of this task, to keep an account of the minimum distances travelled.

 public void branchAndBound(int i, int j, int cnt){

if(this.maxCount<cnt) return;
mazeArray[i][j] = cnt;
if((finish.xi() == i)&&(finish.yi() == j)){

this.maxCount = cnt; cursor.x("=",i); cursor.y("=",j); return;
}
for(int k =0; k<4; k++){

int ii = nextI(i,1,k); int jj = nextI(j,0,k);
if (mazeArray[ii][jj]==0){

/* paint cell yellow */
branchAndBound(ii,jj,cnt+1);

}
else if (mazeArray[ii][jj]>(cnt+1)) branchAndBound(ii,jj,cnt+1);

}
return;

}

Direction of Motion Direction of Motion

Backtracking and Optimum Route Finding

122 4 Conditional Action – Spatial Searching & Problem Solving

All possible routes through a grid of cells where each route is defined by visiting
most of the cells for each route definition will involve an unreasonably large amount
of computation, if it is not limited in some way. Each call of the tree searching
method can keep a value for how far it has travelled by keeping a count of how many
times it has called itself. In the recursive revisits to cells if it finds that it has travelled
further than some other path has taken to get to the same point, then it can stop and
return.

Figure 4.17 Branch and bound determination of the shortest route

To allow this to operate the minimum travel distance to each cell so far found
needs to be recorded in the maze cell as an integer number. Another limitation that
can be set on researching new routes, which is associated with the name given to this
approach, “branch and bound”, is that once a route has been found to the target cell
there is no point in pursuing other routes that are longer than this solution. As shorter
routes are found they can be used to update this minimum search path distance, so
reducing subsequent searches.

Experiments with this algorithm are shown in Figure 4.17 for the test maze
layouts used before. The result of using the back trace algorithm to select the optimal
route generates a shortest “Manhattan” route in each case. The problem with this
approach is that, even with the constraints on unnecessary searching it is still fairly
time consuming. Not only are the whole areas of the mazes shown in Figure 4.17
visited in the search pattern they are visited many times, as all the alternative routes
are explored.

123

Figure 4.18 Travel-distance wave fronts generated by branch and bound

In Figure 4.18 the result of applying the branch and bound algorithm on the maze-
array tag-distance values is shown. The distribution of values is the same for the
same start position, wherever the target is placed. The branch and bound tree search
generates a wave fronts of equal travel distance values in rings round the start cell
which produces the V shape shown, where the wave front folds round the wall and
meets up on its other side. It is this, which enables the back trace procedure to find
the shortest way back to the origin.

If the distance values in the yellow shaded area are examined, this approach
becomes similar to steepest ascent or steepest descent, optimising algorithms. The
initial search path creates rings round the source point each “higher” than its
immediate predecessor, which means that the back trace path simply has to follow
the steepest route down to get to the origin by the shortest route.

If the general algorithm for finding the shortest or fastest route through a network
shown in Figure 4.19 is taken as the starting point, then it can be seen that a wave
front approach is also employed, followed by backtracking to locate the successful
route.

Working out from the start box S, in Figure 4.19 the first step is to fan out to all
the directly adjacent cells. Each of these cells will collect the time or distance cost of
getting to them. The next step is to fan out from the cell with the lowest values in this
case from A to D. The cost of getting to D will be 4, this is still less than the cost of

Backtracking and Optimum Route Finding

124 4 Conditional Action – Spatial Searching & Problem Solving

getting to B or C, so continue fanning out from D. This will take the wave front to
cells G and B. This will lower the cost of getting to B from seven to six.

Figure 4.19 Shortest route or critical path

From B the next step is to E, where the cost goes up to 8, which is still less than

any of the other routes from A. The next step from E is to C, F, G, H and I. The cost
of getting to H is 14, the same as that getting from A to C, and from B to F, therefore
the next tree structured links fan out from C, F and H to G, J, and I.

Figure 4.20 Propagating the wave front through the network

The cell with the minimum distance of 16 is now G. Fanning out from G gives the

first link to the terminal box T, however there may be other shorter routes. Fanning
out from C and F merely links to I. Fanning out from H links to J and I. Completing
the tree-structured expansion following the minimum distance cells gives the final
links to the end cell T, in the way shown in Figure 4.21. Backtracking through the
links, which have contributed to the minimum score of 25 at the terminal cell defines
the shortest route shown coloured red.

Working with a grid is simpler than this general network because there are only
unit steps from cell to cell. Notice that each grid cell is four-way connected to its
neighbours. However, if a sequential wave front expansion is generated then these

9

17

8

16

14

4 2

6 7

19

14

S

14 28 17

22

30

17

16

14

19

A D

B

E

C

H

F

I

J

14

G

14

19

17

7
J

T

4

6
9

12

8

12

6 5
8

3

G

H

I

15
2

D

E

F

9

2

6

A

C

S

2

7

14

2

8

3

16

B

125

links are divided to give one entry link followed by three, two, one or no exit links,
depending on whether neighbours are walls or have already been visited.

Figure 4.21 A tree search through the network followed by a backtrack

In the case of the grid it is not necessary to find the minimum distance taken to
reach the cell in the way required in the general algorithm, since this will be one
more than the cell providing its entry link.

Figure 4.22 Tree structured wave front generation

These links created by the wave front expansion give a tree structure in the way
shown in Figure 4.22. The numbers in the yellow cells indicate one possible ordering
in which they might be visited by the search algorithm. The red cells indicate the
newly generated wave front, and the purple line indicates the threaded list set up to
link the wave front cells together. The order of the cells in this list is controlled by
the order of the visits to the neighbouring cells made by the search algorithm and the
nature of the linked list used.

1 2

3

4

5

6

7

8

9

10

11

12

13

4

4

4

4

4

4

4

4

4

4

4

4

21 29

25

26
T

25

I

J
19

22

17

8

16

14

4 2

6 7

19

14

S

14 2817

22

30

17

16

14

19

A D

B

E

C

H

F14

G

14

17

Backtracking and Optimum Route Finding

126 4 Conditional Action – Spatial Searching & Problem Solving

One implementation of the algorithm is two nested iterative loops. The inner loop
searches all the neighbouring cells, not already visited, adjacent to the current wave
front path, labels them with the wave front number shown in red and creates from
them a new wave front list. The outer loop processes successive wave fronts until the
target cell is located or the maze space has been totally explored. Given the tree
structure shown, all the cells in each wave front lie at the same depth in the tree. This
is the reason for classifying this approach as a breadth first tree search.

Figure 4.23 Expanding wave-front search followed by back trace

In Figure 4.23 the outward flow of the wave front is shown followed by the back
tracing operation to give the shortest route. In Figures 4.24 the corresponding maze
layouts to those shown in Figure 4.16 are given to illustrate the selection of the true
shortest route.

The original search area covers alternative routes from the start to the finish so the
back tracing will select the shortest one, depending on the tag values it finds in the
neighbouring maze cells. However it must be noted that there are still alternative
layouts for this path because the shortest route is defined as a “Manhattan” distance.

The selections made in Figure 4.24 are based on the backTrace() algorithm which
selects the smallest neighbouring tag value starting in the Easterly direction and then
rotating round through North, West and finishing in a Southerly direction.

The same maze relationships are shown in Figure 4.25 but in this case using the
original backTrack() procedure to find the shortest route. This employs a selection
operation where the order for testing neighbouring cells is West, East, South then
North, which gives the alternative shortest route layouts shown, for comparison with
the output from the backTrace() algorithm. Having made this distinction, Figure 4.26
shows that the route selected will also differ in detail if the start and finish locations
are reversed.

One advantage that these tree-structured searches provide is to give methods for
handling the same task in three or more dimensions. Working out a systematic search
path in three dimensions is not an easy problem however extending this tree
structured search to enter five neighbouring cells in a three dimensional grid provides
a relatively easy starting point.

127

Figure 4.24 Breadth first tree search and backTrace() method

Figure 4.25 Breadth first tree search and backTrack() method

Backtracking and Optimum Route Finding

128 4 Conditional Action – Spatial Searching & Problem Solving

Figure 4.26 Forward and backward shortest routes

class MCell{
 public int i=0,j=0; MCell nxt = null;
 MCell() { }
}

class Maze{
…
 public void ShortestRoute(){
 int i = this.cursor.xi(); int j = this.cursor.yi(); int ii=0,jj=0;
 MCell lst = null, cll=null; MCell cell = null;
 boolean finished = false; mazeArray[i][j] = 1; int level = 2;
 cell = new MCell(); cell.i = i; cell.j=j;
 while(!finished){
 while((cell != null)&&(!finished)){
 i = cell.i; j = cell.j; p.x("=",i); p.y("=",j);
 for(int k = 0; k<4; k++){
 ii = nextI(i,1,k); jj = nextI(j,0,k);
 if (mazeArray[ii][jj]==0){
 /* mark cell [ii][jj] yellow */
 tileArray[ii][jj] = Color.yellow;
 mazeArray[ii][jj] = level;
 cll = new MCell(); cll.i=ii; cll.j=jj; cll.nxt = lst; lst = cll;
 }
 if((finish.xi() == ii)&&(finish.yi() == jj)) {finished = true; break;}
 }cell = cell.nxt;
 }level = level+1; cell = lst;count = level;lst=null;
 }
 this.cursor.x("=",ii); this.cursor.y("=",jj);
 while(mazeArray[cursor.xi()][cursor.yi()]>1){
 backTrack(); // or backTrace();
 /* mark cell [cursor.x][cursor.y] red */
 }
 }
…
}

129

It is instructive to visualise the way in which both the hill climbing, and steepest
descent, shortest-route finding algorithms work, using a three-dimensional display of
the search distances to each cell, which can also be constructed from these maze
arrays in a reasonably simple way.

If the tag values generated by the search path in the maze array are projected
upwards, perpendicular to the maze plan, then a three-dimensional structure is
generated. If each of these cell values is scaled and converted into a vertical bar then
a simple drafting technique can be used to create a projected drawing of the resulting
block model.

The first step is to rotate the maze grid through 45 degrees. If the cells are
considered to be square then the geometry of the orthogonal grid allows a secondary
grid to be set up, shown coloured blue in Figure 4.27. The bars can then be defined as
six triangles with co-ordinates determined by the layout shown on the left of Figure
4.27. This is a parameterised shape, which adjusts its vertical size depending on the
value used to define its height.

h

y

x

value

w

w

w

w

w

w

rows

cols

rows cols

Figure 4.27 Axonometric drawing

If bars are processed from the back of the grid working forward then each new bar
will overwrite the previous bars to give an image of the form shown in Figure 4.27.
In the examples given the vertical dimensions are determined by the rectangle
entered into the display window using the mouse. The parameterised shape is then
scaled to fit. This gives the apparently less distorted images shown in Figure 4.28.

Start Processing
x = cols

y = rows + cols -1

Backtracking and Optimum Route Finding

130 4 Conditional Action – Spatial Searching & Problem Solving

Figure 4.28 Steepest descent shortest route finding

131

Figure 4.28 Steepest descent shortest route finding

 public void bar(double x,double y,double w,double h,Color cc){
 Point p0 = new Point(2);
 Point p1 = new Point(2); Point p2 = new Point(2);
 Point p3 = new Point(2); Point p4 = new Point(2);
 Point p5 = new Point(2); Point p6 = new Point(2);

 p0.x("=",x); p0.y("=",h+w);
 p1.x("=",x-w); p1.y("=",h); p2.x("=",x); p2.y("=",h-w);
 p3.x("=",x+w); p3.y("=",h); p4.x("=",x-w); p4.y("=",y);
 p5.x("=",x+w); p5.y("=",y); p6.x("=",x); p6.y("=",y-w);

 Point pa0 = scaleWtoS(p0);
 Point pa1 = scaleWtoS(p1); Point pa2 = scaleWtoS(p2);
 Point pa3 = scaleWtoS(p3); Point pa4 = scaleWtoS(p4);
 Point pa5 = scaleWtoS(p5); Point pa6 = scaleWtoS(p6);

 dW.plotTriangle(pa0,pa1,pa3,cc,Color.gray);
 dW.plotTriangle(pa1,pa2,pa3,cc,cc);
 dW.plotTriangle(pa2,pa1,pa4,Color.gray,Color.gray);
 dW.plotTriangle(pa2,pa4,pa6,Color.gray,Color.gray);
 dW.plotTriangle(pa2,pa5,pa3,Color.lightGray,Color.lightGray);
 dW.plotTriangle(pa2,pa6,pa5,Color.lightGray,Color.lightGray);
 }

Backtracking and Optimum Route Finding

132 4 Conditional Action – Spatial Searching & Problem Solving

 public void displayBlock(){
 double value;
 double x = (double)cols; double y = (double)(cols+rows);
 double range = x+y;
 for(int i =0; i<rows; i++){
 double xx =x, yy=y;
 for (int j=0;j<cols; j++){
 if(values[cols-1-j][rows-1-i]>0)
 value = (double)values[cols-1-j][rows-1-i];
 else value = 0.5;
 dG.bar(xx,yy,1,value+yy,array[cols-1-j][rows-1-i]);
 xx=xx-1; yy=yy-1;
 }
 x=x+1; y=y-1;
 }
 }

These two procedures can be called from the main program in the following way
to create the displays shown in Figure 4.28.

 M.ShortestRoute();
 dW.clearScreen(Color.white);
 int width = T.cols+T.rows; int height = width*2;
 dG = new Grid(f,T.tileColour,T.cols,T.rows,width,height);
 M.setDisplayGrid(dG);
 M.displayBlock();

The method used to generate the block model as a three dimensional bar graph can
be extended to model the surface of a function calculated as an array of values
located on the nodes of a regular grid in the way illustrated for the Sync function,
using the displayFunction() method given below.

The construction is carried out in a similar way to the previous block model. The
tile grid is rotated by 45o to obtain the secondary grid drawn in blue. In this case,
however, instead of the tile boundaries, shown dashed, the dual grid shown in heavy
dark grey lines, linking the centres of the tiles is taken as the main data grid. This is
because instead of the bars being projected up from each tile, only the centre point is
projected upwards to act as the corner value for triangular patches in the way shown
in Figure 4.29. Each square cell gives two triangular patches. The values on the dual
grid are processed cell-by-cell working from the back, towards the front, as before, to
allow nearer triangles to overwrite those further from the viewing point. This gives
the simplest hidden area removal process called the painter’s algorithm, which will
be discussed in a latter chapter. Although all the geometric dimensions are calculated
using the orthogonal blue grid as a framework, the final drawings are made more
realistic and less distorted by the foreshortening which occurs when these images are
scaled into a rectangular rather than a square display window by the DisplayGrid
method displaySurface().

133

Tile grid
boundary

rows

cols

rows cols

Function Surface

Dual grid

x = cols - 1, y = rows -1

Figure 4.29 Triangulated surface block model

The Sync function y = sin(x)/x rotated about the y axis gives the Mexican hat

surface shown in Figure 4.30.

public void displayFunction(){
 double PI = 3.1415962;
 values = new double[this.cols][this.rows];
 double c = ((double)this.cols)/2.0; double d = ((double)this.rows)/2;
 for(int j=0; j<rows;j++){
 for(int i=0;i<cols;i++){
 double x = (double)i; double y = (double)j;
 double r = Math.sqrt((c-x)*(c-x)+(d-y)*(d-y));
 double X = 3.0*PI*r/c;
 double sinx = Math.sin(X);
 if(X==0)values[i][j] = 1.0;
 else values[i][j] = sinx/X;
 }
 }
 }

Backtracking and Optimum Route Finding

134 4 Conditional Action – Spatial Searching & Problem Solving

 public void displaySurface(){
 double value;
 double x = (double)cols; double y = (double)(cols+rows);
 double h = (double)rows*2.0; double range = x+y;
 for(int i = 0; i<rows-1; i++){
 double xx =x, yy=y;
 for (int j=0; j<cols-1; j++){
 Point p1 = new Point(2); Point p2 = new Point(2);
 Point p3 = new Point(2); Point p4 = new Point(2);
 p1.x("=",xx); p1.y("=",yy + h*values[cols-1-j][rows-1-i]);
 p2.x("=",xx+1.0); p2.y("=",yy - 1.0 + h*values[cols-1-j][rows-2-i]);
 p3.x("=",xx); p3.y("=",yy - 2.0 + h*values[cols-2-j][rows-2-i]);
 p4.x("=",xx-1.0); p4.y("=",yy -1.0 + h*values[cols-2-j][rows-1-i]);
 Point pa = this.scaleWtoS(p1); Point pb = this.scaleWtoS(p2);
 Point pc = this.scaleWtoS(p3); Point pd = this.scaleWtoS(p4);
 dW.plotTriangle(pa,pb,pd,Color.lightGray,Color.black);
 dW.plotTriangle(pb,pc,pd,Color.lightGray,Color.black);
 xx=xx-1; yy=yy-1;
 }
 x=x+1; y=y-1;
 }
 }

Figure 4.30 Rotated Sync function

These developments introduce the concept of a “graphics primitive”, which will
be discussed further in the next chapter. The primitive operation in this case is
displaying a triangle. The DisplayWindow class generates and displays the triangles
needed for these examples. Two triangles were needed to shade the top of vertical
bars in the block-models, (in their simplest forms as bisected squares), and triangles
were also needed to shade the sides of the bars. The Sync function surface was
entirely constructed from an array of triangles where the triangles were of both
variable size and variable shape.

 5
Display System
and Hardware
Programming
Primitives

Introduction

In this section the “primitive” operations are reviewed, which the computer system
provides the programmer for generating graphic displays. Because the idea of a
primitive operation is a relative concept in the hierarchy of a modern computing
system, the idea is to start at the lowest level in the hierarchy, with the hardware, and
then briefly demonstrate how each level has emerged to handle more and more
complex tasks.

In the previous chapter two “primitive” operations were used to compose a range
of more complex images. The first primitive operation was displaying a rectangle, the
second displaying a triangle. The Grid class generated rectangles and the
DisplayWindow class generated triangles. However, the display hardware consists of
a surface divided up into a fine mesh of grid points where the colour and brightness
of each point is controlled by a number stored in a matched array of memory cells in
the computer. Consequently these “primitive” elements the rectangle and the
triangle have to be approximated by the appropriate selection of picture elements
(pixels), which in turn are controlled by the values stored in their corresponding
memory cells.

The relationship between these two levels of working illustrates a key aspect of
the problem facing the computer graphics programmer. The rectangle and the triangle
are used as abstract geometrical objects that have different properties to the set of
point values used to display them on a grid. Lines are used as primitives for
constructing drawings in a similar way. To construct complex images using programs
it is not only convenient to use these abstract geometrical elements, it becomes an
essential step if the content of a display is to be defined in a flexible way.

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_5, © Springer-Verlag London Limited 2008

136 5 Display System and Hardware Programming Primitives

In traditional graphics work, geometrical, analogue processes are employed to
handle the interactions between elements. For example locating the intersection point
between two lines is a matter of measuring where they cross in a drawing. Changing
scale, zooming in on such an intersection point can be done photographically. The
physical recording medium models the required result.

In contrast if the same operation is carried out using a grid of display points to
represent the two lines, then it is not possible, using this data representation, to
“zoom in on the intersection point” to see the point with higher accuracy. It is
necessary to apply the abstract mathematical properties of a line to recalculate the
display points approximating the lines on a new grid at a higher resolution, before the
common point where they intersect can be defined more precisely. This example
illustrates that computer models exist in two modes shown diagrammatically in
Figure 5.1: The functional or implicit model and the data or explicit model. The
explicit model poses particular difficulties for graphical or spatial entities using
point data. This is because representing a “spatial-continuum” would require an
“infinite set of points” which is a practical impossibility using a fixed-size computer
memory.

Algorithm Data Structure B Data Structure A +

Implicit Model Explicit Model

Figure 5.1 Computer models

At best, in Figure 5.1, data set B, the explicit model can only be a sampled set,
such as a grid of point values. In most cases it is necessary to work with an implicit
model using a finite data set A, and a corresponding algorithm to give the required
data set B also as a finite set of values. Lines will consequently have to be treated as
implicit models except for the explicit forms used for grid based display data, and
interactions between lines will be between implicit model data sets. A simple
example is the calculation of the crossing point between a pair of lines. This will start
with an implicit model of the point calculated from two sets of line equation
coefficients, from which the appropriate algorithm will calculate the explicit co-
ordinate defining the crossing point.

Although the behaviour of the human perception system allows a high-resolution
array of pixels to convince viewers they see a continuous object. It is desirable that
the objects they portray should be represented in the computer system in a form that
allows their properties to be modelled in a more accurate way. In a software system
models of the basic form shown in Figure 5.1 can be chained together, and the flow
of data from a user into the system and out again, back to the user, will have the
structure shown in Figure 5.2.

Introduction 137

Input Data
Structures:
Language
Numerical

Internal Data
Structures

Output Data
Structures:
Language
Graphic

Input
Algorithms

Output
Algorithms

Modelling
Algorithms Computer System

USERS

Figure 5.2 System data flow

The input to this chain must be in a form that can be understood by the user. At
the minimum, this will be in a high-level, computer language for programs, and
formatted numbers for numerical values. Output will be in similar highly structured
presentations usually through a graphics user interface (GUI), and the software
system has to be built hierarchically to support these facilities.

It is necessary to provide a bridge between the desirable forms of input and output,
and the primitive operations supported by display and computing hardware. To
handle the complexity of this task in a manageable way, the computer system is
usually divided into the following layers:

• Application level tasks
• Programming levels
• Hardware level primitives

Although it is possible to design special purpose hardware for each application

task, this loses the advantage of having a general purpose, programmable device. A
program dedicates the computer to a particular task, which means building one type
of machine can service many different requirements simply by changing programs.

In much the same way it would be possible to program application tasks directly
in dedicated machine code programs. However the complexity of this task quickly
puts a practical upper threshold on the approach. It also involves a considerable
amount of duplication of the many intermediate tasks that are common in most
application programs. Consequently, it is efficient to build libraries of “sub-
programs” that can be reused in different applications to provide these common
operations or functions. Using libraries of prewritten functions provides the
programmer with a more powerful working context. In a sense the programmer then
faces a new, “virtual” machine with an extended instruction set or programming
language. This view has led to an alternative classification of the layers in a
computing system by the “language” used to write programs at each level.

However, the nature of what is practical to build as superstructure in this way
often depends on limitations imposed by the basic elements in the system. Very
simple devices will support general-purpose computing and therefore any
functionality required from the superstructure, however, the architecture and design
of the computing and display system’s hardware ultimately determines its cost, size,
speed and efficiency and therefore its practical usefulness in different application
systems.

138 5 Display System and Hardware Programming Primitives

Display Technologies

There are a variety of mechanisms and physical properties that can be used to
generate displays. One division is between on-line interactive systems where the
displays are ephemeral and disappear when the machine is switched off, and
hardcopy systems, which as their name implies create permanent graphic products
such as drawings or photographs. Another division is between line display systems
and raster based pixel array systems. Yet another is given by the delivery technology,
projection, off screen, or direct-view systems.

Figure 5.3 Display technologies

OFF-SCREEN

PROJECTION

DIRECT-VIEW

CRT

OIL FILM

LASER

LIQUID CRYSTAL

COHERENT

NON COHERENT

CRT

LENTICULAR
SCREENS

FLAT PANEL

NON-EMITTER

EMITTER
 Incandescent

EMITTER
 Luminescent

Large Screen TV

Monitors, VDUs

Plotters

Mirrors

Light Valves

Holograms

Light Valves

3D TV

Liquid Crystal
Electrochromic
Electrophoretic
Ferroelectric

Direct Radiation
Indirect Radiation

Cathodoluminescent
Electroluminescent
Photoluminescent
Light Emitting Diode
Gas Discharge Plasma

139

The line plotter and Cathode Ray Tube (CRT) were the earliest dedicated output
devices used to create graphic displays. The plotter was developed to automate the
production of technical drawings for the automobile industry and the aerospace
industries. CRT displays initially were used to create interactive point and line
displays, but later by using a different electron beam deflection technology, moved
from the expensive but more accurate, electrostatic control, to the cheaper but less
accurate magnetic control used in TV systems. Eventually this permitted the
development and wide spread use of raster display systems. Refresh line display
systems were expensive and before TV technology matured, storage tubes
represented an affordable compromise for many applications through the 1970s.

The nature of display devices depends on physical systems either holding changes
in colour from the application of ink or paint, or changing colour from the application
of light such as photographic paper and in a sense TV cameras, or changing colour
from the application of an electrical field. Alternatively display devices can be built
from elements that give out light when electrically stimulated, such as phosphors in
CRT and TV tubes, LED s - light emitting diodes and plasma panel cells.

Although there are many delivery mechanisms, there is a limited number of ways
in which images can be generated and transferred to these varying display surfaces.
The main division is between continuous and discrete methods. These in turn mostly
come down to line or point based systems. However, it is convenient to use the
following headings:

1. Free form line drawing systems
2. Raster systems, scan line based systems
3. Raster systems, block fill systems
4. Addressed cellular structures.

Drawing systems generate lines as continuous elements from which the display is

constructed. Line plotters give hard copy while vector CRT systems give interactive
refresh displays.

Time

x

y

Figure 5.4 Refresh line drawing systems

The deflection of the electron beam or pen plotter turret is controlled by time
based x and y signals of the general form shown in Figure 5.4.

Display Technologies

140 5 Display System and Hardware Programming Primitives

Time

x

y

Figure 5.5 Refresh line raster scan systems

Black and white TV systems are in effect a continuous line system except that the

line is folded to give an area, shading effect. Along the line continuous changes are
possible, whereas line-to-line there are discrete steps. The move to colour TV
introduces the shadow mask where though the image is generated by a continuous
line sweep it is broken down into discrete colour phosphor dots. Each phosphor dot,
either red blue or green, is stimulated by a modulated electron beam in the same way
that is employed in the black and white system however there are three beams for the
three primary colours. To ensure that they are able accurately to affect the correct
phosphor dots on the screen requires an arrangement of the form shown in Figure 5.6.
The shadow mask sets up the correct geometry for the scanning electron beams to hit
their matching colour phosphor dots.

R

R

R

R

R

R

R

R

R

R
G

G

G

G

G

G

G

G

G

G

G

G

G

R

R

R

R
G

G

G

G

G

B

B

B

B R
G

B

B

B

B

B

B

B

B

B

B

B

R G
B

R

R

R

R

R

G

G

G

G

B

B

B

B

R

R

R

R

R

G

G

G

G

B

B

B

B

R

R

R

R

R

G

G

G

G

B

B

B

B

R

R

R

R

R

G

G

G

G

B

B

B

B

R

B
G

Shadow Mask

Phosphor Array
Display Screen

Electron Guns

Figure 5.6 Shadow mask colour TV monitor

The final group of display systems is totally discrete in its operation and consists

of configurations of pixels or display cells that are addressed directly when they need
to be switched on. Plasma panels liquid crystal and other arrays of pixel cells are all
accessed by row and column addresses. However, the values in each cell usually
have to be entered serially, so the refresh is still linear but there is no constraint on
the order in which it is done, such as that imposed by the CRT or TV electronics.

Interactive Refresh Display Systems 141

Direct addressing gives greater flexibility to the programmer, only the necessary cells
in a display need to be refreshed, and it is possible to subdivide the screen into sub
panels and refresh each in turn if it suits the algorithms generating the display.

Specialised systems for displaying characters and numbers exist. Special shadow
masks with numbers and letters as cut out templates allow a continuous aerial
technique to be used for CRT displays. Seven segment displays for numbers are a set
of discrete cells which when switched on in different configurations give the ten
decimal digits. A variety of stereo viewing systems based on these basic systems
have been constructed, and new systems are being developed round lenticular lens
screens to give fully three-dimensional autostereo displays supporting parallax
motion in scenes as the viewpoint is changed.

Interactive Refresh Display Systems

One of the earliest display systems using refresh cathode ray tube technology, was
one whose task was to display a set of points. As a machine it took the schematic
form shown in Figure 5.7. The task of generating the display file of points for this
processor fell on the main computing system, as well as the task of feeding the
display refresh cycle. The refresh operation was a heavy computational load in its
own right, and as the size of the point set went up with resolution and scene
complexity, it commandeered most of the available computer time merely to keep the
image refreshed.

X R e g is te r

D ig it a l to
A n a lo g u e

C o n ve rs i o n

D ig it a l to
A n a lo g u e

C o n ve rs i o n

Y R e g is te r

E le c t ro n
 B ea m
 O n /O f f

Y
D e fle c t i o n

 D ri ve r

X
 D e fle c t io n

 D ri ve r

C o m p u te r
D a ta B u s

B e a m I

C o n t ro l

Y

X

Figure 5.7 Point set display system

It is interesting in this context that a solution to this problem, came from the use of
analogue line generators. From one point of view this was the result of providing
primitive display operations that merely automated existing manual methods for
creating drawings. From another, it provided a way of bridging the gap between the
discrete and the continuous. It led to an effective way of working with continuous
models in a system context that at first sight could only represent discrete things.

There are several ways of representing points and lines within programs using the
various geometric or algebraic structures available to the program writer. However,
the actual way that points and lines are represented as data that can be used to
generate a display, depends on the nature of the hardware of the display delivery
system and on the primitive operations it supports.

142 5 Display System and Hardware Programming Primitives

Line Segments

If we represent a line segment by its end points, specified by the two Cartesian co-
ordinates (x1, y1) and (x2, y2), then the straight line between them can be defined,
where λ takes on the continuous range of values [0..1], by the parametric equations:

x = λ.x1 + (1-λ).x2
y = λ.y1 + (1-λ).y2

An elegant hardware system, which uses this representation to interpolate a line
segment, has been built, based on the Multiplying Digital to Analogue Converter
circuit.

V volts
Analogue Input

R 2R 4R 8R A amps
Analogue Output

F2 F1 F3 F4

Digital Input Regis ter

Figure 5.8 Schematic Multiplying Digital to Analogue Converter (MDAC)

What this unit does is to multiply a value represented as an analogue voltage V, by

one represented by a digital value F to give an analogue output suitable for controlling

X1

X2

Y1

Y2

+
−

-1

+1

MDAC

MDAC

MDAC

MDAC

Integrator

+
+

crt

+
+

Voltage 1-λ

Voltage λ

Figure 5.9 Schematic vector generator circuit based on MDAC s

143

the deflection circuits of a Cathode Ray Tube display system. Each “1” bit of the
digital value F is used to switch a resistor into a network in the way shown in Figure
5.8. This is an electrical network, which produced the product V.F as a current output
proportional to the input voltage multiplied by the digital value in the MDAC
register. If a continuously varying analogue voltage V (varying from 0 to 1) is used to
represent the parameter value λ and a matching value of (1-V) is derived from it, then
it is possible to create smoothly varying analogue current outputs to represent the
changing x and y values of a point moving along a line. A line segment can in this
way be generated as a display on the CRT, between the end point digital values (x1,
y1) and (x2, y2) held in the registers of four MDAC units, by a circuit of the form
shown schematically in Figure 5.9.

A line generator in the display system allowed the computer model to be a set of
line segment endpoint co-ordinates. Where line-crossing points were not required
explicitly as co-ordinates, they would occur naturally by the display system
overlapping two lines, as a conventional drawing operation. Where they were
required explicitly, say to clip a line where it crossed another line then the new point
would have to be calculated using the end points of the two given lines: using the
implicit model of the line: “data set A” in Figure 5.1.

L in e
G e n e ra to r

Y o ld

Y
D e fle c t io n

 D ri ve r

X
 D e fl e c t ion

 D ri ve r

B ea m I

C on t r o l

Y

X

Y n ew

X o ld

X n e w

Figure 5.10 Line generator display system

The most exciting advance that resulted from including line or vector generators

in a display processor was that the consequence of moving or changing a vertex point
in a display file automatically moved all the lines linked to it in the display. Where
this operation could be done interactively with a mouse or pointer device, it created a
new form of editing allowing points to be dragged from one place to another, and
allowing the lines linked to the points to rubber band into their new locations.
Interactively working with a set of lines in this way was a major improvement over
existing techniques, and the natural desire to drag objects around the screen in a
similar way, led to the next evolutionary step in the development of hardware display
primitives.

Representing an object by a set of vertex points, reduced the data required to
represent a display scene, and allowed more computation to be undertaken in each
refresh, display-regenerating cycle. However, this was still a relatively low-level
form of implicit modelling. Duplicate objects in different positions in the screen
needed different co-ordinate sets.

Line Segments

144 5 Display System and Hardware Programming Primitives

The introduction of absolute and relative co-ordinates (which can be thought of as
vectors) meant that only a single instance of an object model needed to be held in
store if held as a set of relative co-ordinates. These models could be copied or
dragged to a new location, whenever new objects or symbols of the same type were
required. By adding the relative co-ordinates representing the object, to absolute co-
ordinates representing true locations in the display space, meant that multiple copies
of the object could be placed all over an image at a relatively small extra
computational cost to the overall display process. This calculation was akin to base-
displacement addressing (see chapter 6) used to access blocks of storage in a
computers memory, for example, in paged virtual memory systems, so it was
relatively easy to justify the hardware to support the new vector display systems
which evolved from these developments.

V e c to r
G e n e ra to r

Y o ld

Y
D e fle c t io n

 D ri ve r

X
 D e fl ec t io n

 D ri ve r

B e a m I

C o n t r o l

Y

X

Y n e w

X o ld

X n e w

A d d e r Y a b s o lu te

X a b s o l u te

Figure 5.11 Vector generator display system

These operations led to the use of picture subroutines. By increasing the

independent processing power of the display system, it was possible to define shapes
by collections of “relative” co-ordinates, and to display them with a command that
referred to the collection by name and bound them to the absolute co-ordinate, which
would locate them in the final image. This form of subprogram could be invoked
recursively, by including commands in co-ordinate data streams, allowing shapes to
be nested and duplicated in complexly interrelated ways.

Figure 5.12 The development of picture subroutines for display processors

145

A common illustration of the result of using this kind of picture subroutine is the
train shown in Figure 5.12. This shows the use of a large number of directly
duplicated elements, and groups of elements, and an even larger number of common
shapes, which only differ in size and proportion, in other words many circles and
rectangles. Including object level manipulation commands like scaling extended the
power of these systems even further.

Raster Graphics Systems

Refresh vector graphic systems were expensive, and cheaper storage tube systems
which were less flexible and limited to monochrome line-displays dominated the
evolution of the graphics based systems used by most people, during the sixties and
early seventies.

It was the transfer to TV display technology that brought the price of refresh-
display units within range for a larger number of users. The major development that
made this possible was the production of memory as integrated circuits, massively
increasing the volume and reducing the price of data storage. It was the frame store,
the block of memory holding the display values of an array of pixels that allowed the
TV raster to be harnessed for synthetic image displays. This associated with the
evolution of the personal computer, allowed graphics to take off and become the
primary mode of man machine communication now in use.

X R e g is te r

D ig it a l to
A na lo g u e

C o n ve rs i on

D ig it a l to
A na lo g u e

C o n ve rs i on

Y R eg is te r

D ig it a l to
A na lo g u e

C o n ve rs i on

Y
D e flec t i on

 D ri ve r

X
 D e flec t io n

 D ri ve r

B e am I

C o n t ro l

Y

X

R e fr e s h B u ffe r
A rra y o f P ix e l

V a lu es
TV

Figure 5.13 Raster display systems

A schematic for the raster display system is given in Figure 5.13. The X and Y
registers are coupled counters, which run through the address space of the memory at
the same time as setting up corresponding pixel positions in the TV raster-scan. The
values addressed in the refresh buffer are therefore output as a linear analogue
sequence that modifies the beam current to the TV tube in a time sequence that
matches the raster pattern sweep of the screen. This constructs or refreshes an image
on the screen for a picture stored digitally in the refresh buffer.

These systems supported refresh graphics with their convenient modes of editing,
but also allowed area shading either in varying grey scales or in colour. However,
most importantly, they built the bridge between camera-captured images, which
could be digitised from TV cameras into such a display buffer, and synthetically
generated images. Because of the flexibility offered by computer memory, these could
be generated by a very large number of software methods, shown in Figure 5.14.

Raster Graphics Systems

146 5 Display System and Hardware Programming Primitives

Figure 5.14 Common base for display generation

The speed of scene-content generation being de-coupled from the refresh scanning
of memory needed to keep the display set up and flicker free supported a new level of
computer graphics. The separation between the input and output tasks meant that the
output had to be serviced first if a coherent display was to be maintained. The rubber
banding effect was lost at the basic level, since lines had to be erased and redrawn in
the frame buffer, in order to move them in the display.

In order to explore this topic further it is necessary to examine the implementation
of both the computer system and display buffers at a more detailed level.

The Basic Digital Hardware System

Historically the automation of computing can be traced back to mechanical
calculators. However, its roots go back further to the calculating table and the abacus
where the position of stones or beads in a frame allowed calculating procedures to
develop with highly “automata” like characteristics. In other words the rules for
applying the calculating process were simple and easy to operate even if the theory
behind why they worked were more difficult to understand. Consequently, adopting
the Arabic notation for numbers, because it derived from the states of the abacus
represents the first substantial step towards mechanising arithmetic.

Leibniz and others developed mechanical devices for adding and subtracting
numbers based on this notation. The developments made by Charles Babbage and
Lady Lovelace extended these into a mechanism, which could carry out a sequence
of such operations under the control of a program, coded on a series of punched
cards. This work established the main components of the modern computer system.
These were a “store” to hold numbers; a “mill” to carry out calculations, “input” and
“output” devices, and a “control unit” to execute the sequence of commands in the
program. All that was lacking was a satisfactory technology to implement the
scheme. Only with the development of electronics has the information processing
revolution been able to take off! The problem with mechanical systems was the

TV
Camera

Input
Surface and

Region Based
Models

Volume and
Half-Space

Based Models

Point and
Vertex Based

Models

Line and
Edge Based

Models

Property and
Depth Values
Frame Buffer
Depth Buffer

Raster
Display
Devices

147

transfer of values from one place in the computing machine to another. The
difference in the way that values were stored using the new technology, by active
electrical components, made these difficulties vanish. All that was needed was to link
devices together by setting switches in a communication network, and the active
nature of electronic components allowed values to be transferred at electronic speeds
as electric current flowed from one device to the other. The early computers were
electromechanical, and still represented numbers in a decimal notation. A digit was
represented by the state of a wheel, which rotated in ten steps, matching the
construction of mechanical calculators. However, the basic nature of electronic
switching devices made two-state systems simpler to implement, consequently,
numbers became easier to represent and handle as binary codes.

For the purposes of this book, it is not necessary to explore the electronic level of
computing systems in any great depth. However it is useful to know how certain key
parts of the system, at this level, operate. The key advantage offered by electronic
components was that they were active, in the sense that they generated different
voltages to represent the state they were in. A voltage difference could be used to
transfer electrical energy to a receiving unit linked to it by a wire, which could in turn
be used to control subsequent dependent changes in the state of the receiving unit.

This can be contrasted with the state of a mechanical register being the position of
number wheels, which is a passive representation. Transferring its state needs the
positions of the wheels to be sensed and some way of replicating its state at a
different location to be implemented. The output voltage of an electronic element, by
signalling its state, can be used as a direct input to a second element. It can also be
amplified and transferred at electronic speed over long distances, again over linking
wires to many receiving elements. This has given increases in speed of many orders
of magnitudes over previous computing devices, and at the same time has resulted in
a technology that it has proved possible to reduce in size by matching orders of
magnitude.

Switch Circuits and Logic Functions

The basic electronic component is the field effect transistor. This can be considered
to be a switch in the way illustrated in Figure 5.15. When the control C, input voltage
is low the switch is off and no current can pass through the transistor, when the
control input voltage is high the transistor conducts current and the switch is on.

C
T

C

Figure 5.15 Transistor switch

A large variety of circuits can be built up using switches or relays. However, it is

the logic gate, which is the building block that is the primitive component for

Switch Circuits and Logic Functions

148 5 Display System and Hardware Programming Primitives

building most digital electronic components. The easiest way to visualise how these
units operate is given in the diagrams in Figures 5.16 to 5.18. These circuits are based
on the ability of an electric current to activate an electro-magnet solenoid. When the
current is on then the magnet is active and can be used to control the setting of a
switch. If a switch is controlled by a solenoid, which is activated by a second switch,
then if this control switch turns the second switch off, as in Figure 5.16 b, then the
relationship between the settings of the two switches is defined by a not truth table.

A

L

A

L

(a) Light On = (A On) (b) Light On = (A Off)

Figure 5.16 Coupled switching circuits

A

L

B

A

L

B

(a) Light On = (A On) or (B On) (b) Light On = (A Off) or (B Off)

Figure 5.17 Coupling parallel pairs of switching circuits

149

Where the second circuit is activated, this can be shown by a light bulb being
switched on. Figure 5.16 shows the two forms of coupling (a) and (b), which the two
kinds of switches, active on and active off, permit. If more than one controlled switch
is used to couple circuits in the way shown in Figures 5.17 and 5.18, then the way
they affect the light can be defined in input output tables that correspond to various
logic truth tables.

A

L

B

(a) Light On = (A On) and (B On)

A

L

B

(b) Light On = (A Off) and (B Off)

Figure 5.18 Serial pairs of coupled switching circuits

Transistors and Logic Gates

The basic digital electronic component is the logic gate. This is a unit that can be
considered to process signals in two states: {low, high}, {0, 1} or {false, true}.
Although gates operate on continuously varying electrical values of voltage and
current, operationally these are masked from the user (in most cases). The gate is an
element that combines these binary values as input signals in different ways
depending on its function, to give a binary output value. So different gates exist to
provide the logical operations {and, or, not, nand, nor, exclusive-or} on binary input
signals to give binary outputs.

These elements can be presented as black boxes defined by their input output
tables. and, or and not are defined in Chapter 2, nand is not-and: !(A&B), the
exclusive-or is (A&(!B)) | ((!A)&B) and nor is not-or: !(A|B). However, using the

Transistors and Logic Gates

150 5 Display System and Hardware Programming Primitives

transistor switch it is possible to illustrate how these gate circuits can be constructed.
These circuits serve two purposes. They generate the various logical functions from
their inputs, but they can also amplify the output signal, or at a minimum prevent it
from dying away as it passes from one unit to the next.

Gates have a directional behaviour in contrast to the transistor, which acts as a
simple switch in other words an open or closed link in a wire.

A

Vcc

Ground

Y Output X Input
T

R

A

A A

X Y
0

0 1

1

Figure 5.19 Inverting, not gate

The basic circuit for an inverting gate is given in Figure 5.19. The resistor R
creates a voltage gradient between the Ground, the Output and the Vcc line, while the
transistor switch T is on, which occurs when the Input is high. This makes the Output
low. Conversely when the voltage applied to the Input goes low, the transistor switch
is turned off, and the voltage at the Output goes high as current flows through the
resistor until the Output voltage reaches Vcc. The relationship between Input and
Output is the same as the logic function not.

Vcc

Ground

Z
Output

Input

R

T1 A
(A.B)

T2 B

(A.B)

A

B

A

B
 0

1

1

0
 0
 1

0

1

1

1
 0 1

Z

Figure 5.20 Nand gate

Two transistor switches in series produce a nand gate circuit in the way shown in

Figure 5.20. In a similar way two transistor switches in parallel as shown in Figure
5.21 produce a nor gate.

151

Vcc

Ground

Z Output Input

R

T1 A

(A+B)

T2 B

(A+B)
A

B

A

B

0

1

1

0

0

 1

0

0

1

0
 0 1

Z

Figure 5.21 Nor gate

The basic digital electronic primitive is the logic gate. For the purposes of this
discussion a second primitive element will be defined. This is the memory cell. In
practice a memory cell can be constructed from gates using feedback paths from one
gate to another.

nand

nand

0, 1, 0, 0

0, 1, 1, 1

0

1

0, 1, 0, 0

0, 1, 1, 1 nand

nand

0, 1, 1, 1

0, 1, 0, 0

1

0

0, 1, 1, 1

0, 1, 0, 0 nand

nand

1, 1, 1

0, 0, 0

1

1

1, 1, 1

0, 0, 0

Figure 5.22 Latch using nand gates

In figure 5.22 the sequence of changes in outputs for two nand gates given

different inputs is shown. Where the two external inputs are opposite, then the circuit
settles down to a stable output, shown by the sequence of outputs and feed back
values. Where one of these stable outputs is matched with an input of two 1s then
there is no change the outputs are held as they were. If the two inputs are changed to
two 0s then the output becomes unstable. A similar set of results is obtained for a pair
of nor gates shown in Figure 5.23, in this case the two 0s hold the value in memory,
whereas the two 1s cause instability.

nor

nor

0, 0, 0, 0

0, 1, 1, 1

0

1

0, 0, 0

0, 1, 1,
nor

nor

0, 1, 1, 1

0, 0, 0, 0

1

0

0, 1,

0, 0,
nor

nor

1, 1, 1

0, 0, 0

0

0

1, 1, 1

0, 0, 0

Figure 5.23 Latch using nor gates

Transistors and Logic Gates

152 5 Display System and Hardware Programming Primitives

The only problem with these circuits is they take a certain amount of time to settle
with changed inputs. This creates difficulties when passing a value down a chain of
these memory cells. The visualisation of the problem is having a row of people each
holding a different coloured baton in their hand, being asked to transfer the baton to
their immediate neighbour on their left. Chaos is the likely result! The solution is to
make the operation a two-step process. Step one is to start with the baton in the right
hand, then pass the baton to the other hand. Step two is then for each person to pass
the baton from their left hand to their neighbour’s right hand. Repeating this cycle
will safely transfer all batons down the line. This introduces the master-slave
memory cell, shown for nand gates in Figure 5.24.

nand

nand
nand

nand
nand

nand
nand

nand

Master Slave

Q

Q

Clock

Data

Figure 5.24 Master slave memory cell

This also introduces the idea of a synchronising clock signal to control the

alignment of actions in a large circuit. The transfer of batons down the line would fail
even with the second strategy, if the transfers were not synchronised in time so the
action of each person matches with his or her neighbour. In Figure 5.24 when the
clock is high or 1, then data is allowed to enter the master stage latch. When the
clock signal goes low or 0, then the first latch is held in memory mode and its outputs
are allowed to enter the second stage into the second latch. When the clock goes high
again then the second latch is switched to memory mode holding its values on its
output lines. This arrangement corresponds to using two hands to pass a baton down
a line.

The clock signal allows time for circuits that need time to settle to reach a stable
state before entering values into memory cells. Where there are feed back paths in a
circuit this can be critical. The feedback links in the latches themselves are local and
their design can be arranged to avoid incorrect behaviour. Where long wires are
encountered or complex logic functions, which take indeterminately different
amounts of time, depending on data, then the use of a synchronising clock signal
makes the task much simpler to manage correctly.

A similar use of a two-stage memory unit can be constructed using transistor
circuits in the following way. Two clock signals are set up where each clock goes
high in turn, to switch on pass transistors, i.e. switches to let signals pass through.
Each clock signal only goes high when the other one is low. This produces the same

153

two-step storage sequence as the master slave unit. Each stage consists of an inverter,
and they are arranged in a feedback loop separated by pass transistors each controlled
by one of the two clock signals {Φ1, Φ2}. This arrangement means that during the
first stage, when the inputs to the first inverter are isolated, the charge, currently
controlling the setting of the inverter-input, holds the output to the second stage
steady. The second pass transistor in this stage is on and allows this signal into the
follow on inverter, charging up its input transistor. During the second phase the
second clock pass-transistor switches off, so the charge on the second inverter’s
transistor is isolated holding its output steady, which is switched through the first
clock pass transistor which is on during the second stage, allowing it to recharge the
first inverter’s transistor.

Vcc

Ground

Enter

R R R R

New Data Φ1 Φ2

Q Q

T7

T6

T5

T4

T3
T2

T1

T0

Φ 1

Q

Q

Data

Φ 2

Enter

T6

T4
T1

T2

Figure 5.25 NMOS memory cell

Although it is useful to have some idea how memory units work, there are several

alternatives, often using the physical properties of their storage medium, in special
ways. It is consequently, easier to treat memory units as a second form of black box
when constructing more complex components.

The memory cell holds a value or stores it, until it receives an “enter” signal. The
“enter” signal causes whatever is waiting on the memory cell’s input wire to enter
the unit and be stored. This value is then held constant on its output wire until a new
enter signal is received to change it.

Placing memory units between functional blocks provides a robust way of
breaking down complex tasks into sequences of more manageable operations. It is
the basis for pipelined and systolic processing, which is a topic, which will be
returned to in a later chapter discussing more advanced display processor concepts.

Transistors and Logic Gates

154 5 Display System and Hardware Programming Primitives

Memory, Function Blocks and Micro Programming

A single memory cell is of limited usefulness, however a large collection of memory
cells poses the problem of accessing the desired cell. What is needed is a circuit,
which allows a specific cell to be addressed, either to input a new value, or to obtain
its contents as output. These input and output values will need to be transferred onto
common communication wires, so the task is to route the input to the target memory
cell from the wire carrying it, or to link the output from the target cell to the desired
output wire. However, any one of the memory cells may need to be linked to the
same input or output wire. One solution is an accessing switch on the input and the
output of each cell. This can be a physical switch in the sense that it breaks the
conducting path of the wire, or it can be a logic gate. In the latter case either and or
or gates can be used depending on which value {0, 1} is taken as the off state. In the
examples given below {0} is taken as the off value, where it is needed.

Logic Switching Circuits

S

A

R

and S

A

R

or S

A

R

Figure 5.26 Switching circuits using logic gates

The problem remains how to select which memory access-switches should be on
and which off. This can be done using an addressing circuit. If the switches are all
controlled by a switching signal S: all the addressing circuit has to do is to route it to
the appropriate cell. The black box definition of this unit is given in Figure 5.27.

Addressing Circuits
S T A B

0 0 0 S 0 0

0 1 0 0 0 S

1 0 1 S 0 0
S

T

A

B

 1 1

0 0

1 S

Figure 5.27 A basic routing cell

This unit can also be implemented by the appropriate combination of gates in the
way shown in Figure 5.28. The logic functions that give the same behaviour as the
black box are given at the top of each output column under the output labels A and B.
Notice in this case the use of the {0} value as the off value. Equivalent circuits can be
set up where the off value is taken to be {1}.

155

S T
 A

S& !T
 B

S & T

0 0 0 S 0 0

0 1 0 0 0 S

1 0 1 S 0 0

S

T

A

B

and

and

not

1 1

0 0

1 S

Figure 5.28 A basic routing cell implemented using gates

A signal T is used to select one of two output-wires onto which the value of the

switch signal S will be transferred. The implication in this arrangement, having off as
0, is that only when a 1 is received, will the receiving unit be switched on. The
application of this unit becomes apparent when it is used in layers to select from a
larger number of output wires. This gives the tree structure shown in Figure 5.29
addressing a larger block of memory cells.

T1 T0 T2

S

V3 V0 V2 V1 V7 V4 V6 V5

A
3

A
0

A
2

A
1

A
7

A
4

A
6

A
5

000

001

010

011

100

101

110

111

T

1 0 1

Figure 5.29 Routing cells used in an addressing tree

If the routing units (circles) are arranged in the tree structure shown in Figure 5.29

and each column of routing units in the tree is switched on by the same signal. In this
case there are three routing values T0, T1, T2 stored in a register T. If the values
stored in T are entered as a binary number they will sequentially access the addresses

Addressing Circuits

156 5 Display System and Hardware Programming Primitives

A0, A1, A2, A3, A4, A5, A6, A7 shown to the side of the diagram as row labels as
the number in T is incremented from 0 to 7. In this way this accessing circuit
associates every row of memory cells with an index number, its address.

Although it is possible to define complex logic functions as expressions which can
then be implemented as a circuit of gates. An alternative approach to implementing
the same function can be adopted using the way that some mathematical functions
are defined as sets of relation pairs. A mathematical function can be defined as a
mapping from one set, the input values to another, the output values, where no
element of the first set maps to more than one element of the second set. If the
elements of the first set are indexed by a set of numbers, these can then be used as
addresses into a block of memory in which the codes or values of the related
elements in the second set are stored. This is the approach already adopted to
illustrate sorting three and four numbers in chapter 2.

Functions as Lookup Tables

In this chapter look up tables provide a unified way to define the next set of higher
level functions or building blocks needed to construct a computer, from gates and
memory cells. These are the arithmetic and logic functions needed for calculation and
for testing data relationships. How are these operations going to be carried out using
basic logic elements? The standard example is to consider adding two numbers
together. If two memory registers A and B are linked to a black box whose task is to
output the sum of the two inputs, how can its internal structure be defined and
constructed?

If the two input numbers were concatenated to give a single number then this
number could be used as an address to a block of memory which would hold the
corresponding output value which would be the sum of the original two input values.
However, the number of memory locations to hold all the output values in this
explicit form, (compare sorting seven numbers in Chapter 2), is unreasonably large.
However, what the Arabic numeral system allows is for arithmetic operations to be
divided into digit based tasks. Using the table given below and place-based
arithmetic, even multiplication can be carried out in a sequence of manageable steps.

Decimal Digit Multiplication Lookup Table

Multiply 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 10 12 14 16 18
3 0 3 6 9 12 15 18 21 24 27
4 0 4 8 12 16 20 24 28 32 36
5 0 5 10 15 20 25 30 35 40 45
6 0 6 12 18 24 30 36 42 48 54
7 0 7 14 21 28 35 42 49 56 63
8 0 8 16 24 32 40 48 56 64 72
9 0 9 18 27 36 45 54 63 72 81

157

S7 S6 S5 S4 S3 S2 S1 S0

C7 C6 C5 C4 C3 C2 C1 C0

A7 A6 A5 A4 A3 A2 A1 A0

B7 B6 B5 B4 B3 B2 B1 B0

+ + + + + + + +

A Register

B Register

Adding
Function
Block

Figure 5.30 Eight-bit adder with a sequential carry

There is a highly repetitive structure to adding two numbers together and it can be
broken down into a sequential set of simpler digit based operations shown in Figure
5.30. The operation at each digit position is the same. The two input digits for a
particular register position and the carry value from the lower neighbouring digit
position need to be processed to give the digit for the sum at that position and also
the value of the carry to the next position along. For binary arithmetic this means a
digit position has three binary values to combine to give two binary outputs. If the
three inputs are arranged as a three-bit number, these can be used to address the result
from eight pairs of binary output values held in a 2 by 8 array of memory cells
holding all the possible sum and carry values for this bit position.

B A S

000

001

010

011

100

101

110

111 T

Sum = 0

Carry
out = 1

Carry in

0 1

0 0 0 0

0 0 0 1 1 1

1 1 1 1

1 0

1

Figure 5.31 Adding cell as a look up table

+ + + + + + + +

Functions as Lookup Tables

158 5 Display System and Hardware Programming Primitives

Figure 5.31 illustrates this look up table implementation of the adding function.
When inputs from A, B and C are 1, 0, 1 respectively the composite of these bit-
values addresses location 101, i.e. position 5, where the carry bit is 1, and the
summation result is 0. It is possible to take this arrangement and optimise it into
fewer logic gate components that will execute the same function.

One possibility can be built up from rebuilding the addressing circuit as a single
level set of logic functions that directly create the selection signal at the correct
location as a combination of the addressing or input digit values of T. For example
only when the values of T2, T1, T0 are 000 will the logic function (! T2)&(! T1)&(!
T0) generate an output of 1. Similarly only when T2, T1, T0 are equal to 110 will the
logic function (T2)&(T1)&(! T0) give the value 1. Consequently a series of functions
such as these matching the address index for each line will also allow index based
addressing to be implemented and a look up table approach be adopted.

The next step in this optimisation process is to notice that only a few of the
locations create a 1 output, when the selection circuit passes a 1 value to switch on
the memory cell at that position. A more direct approach would be to use the
addressing values that would locate a 1, to be the circuit that directly generates the
required 1. In other words leave out the selection functions for the value 0. An or
function collecting the outputs from the addressing functions that might generate a 1
in this way, will allow the circuit in Figure 5.31 to be modified into the form in
Figure 5.32 to give the same behaviour, while saving 16 memory cells.

B A S

000

001

010

011

100

101

110

111 T

Sum = 0

Carry out = 1 Carry in = 1

or or

1 0

Figure 5.32 One digit adding circuit using an addressing circuit

Combining these two approaches gives a circuit of the form shown in Figure 5.33.

A logic circuit to generate a selection signal 0 or 1 at each position of the table is
defined. This amounts to a logical and of the addressing bit values when they are 1,
and not the bit value when they are 0. Figure 5.33 shows these functions using Java
Boolean expressions to illustrate the function suitable for each address value.

159

000

001

010

011

100

101

110

111

B A

Sum = 0
Carry
out = 1

Carry in = 1

or or

(! A
)&

(! B
)&

(! C
)

(! A
)&

(! B
)&

C

(! A
)&

B
&

(! C
)

(! A
)&

B
&

C

A
&

(! B
)&

(! C
)

A
&

(! B
)&

C

A
&

B
&

(! C
)

A
&

B
&

C

1 0

Figure 5.33 One digit adding circuit using an addressing circuit

Truth Tables, Decision Tables, Karnaugh Maps

The overall function for the carry out in the Figure 5.33 can be written as the Java
logic expression

A&B&C | A&B&(!C) | A&(!B)&C | (!A)&B&C

This expression and therefore these logic circuits can be further reduced and one
way of doing this is to use a relative of the truth table and decision table, the
Karnaugh map.

The main difference in this new tabular representation is the ordering of the
addresses to the function lookup table. A number made up from input variable-
values still addresses each location in the table. However instead of arranging these
in numerical order in the new table they are ordered so that the differences between
neighbouring indexes occurs in only one corresponding digit position for each
number. Instead of the numerical sequence 000, 001, 010, 011, 100, 101, 110, 111 for
example the sequence 000, 001, 011, 010, 110, 111, 101, 100 would be used.

This is called Grey code ordering. However, not all the possible one-digit-different
adjacencies are found in a simple list. To get all the one digit different adjacencies
these eight values have to be arranged as the co-ordinates of the vertices of a unit
cube, shown in Figure 5.34, a spatial pattern which will be used for various purposes
in later chapters. Four variables would give 16 codes and these can also be arranged
in this way as co-ordinates of a four dimensional hyper-cube again shown in Figure
5.34.

& & & & & & & &

Truth Tables, Decision Tables, Karnaugh Maps

160 5 Display System and Hardware Programming Primitives

x

z
y

(0, 0, 0)

(1, 0, 0)

(1, 0, 1)

(0, 0, 1)

(1, 1, 0)

(1, 1, 1)

(0, 1, 0)

(0, 1, 1)

(x,y,z)

(0, 0, 0, 1)

(1, 0, 0, 1)

(1, 0, 1), 1

(0, 0, 1, 1)
(1, 1, 0, 1)

(1, 1, 1, 1)

(0, 1, 0, 1)

(0, 1, 1, 1)

(0, 0, 0, 0)

(1, 0, 0, 0)

(1, 0, 1, 0)

(0, 0, 1, 0)

(1, 1, 0, 0)

(1, 1, 1, 0)

(0, 1, 0, 0)

(0, 1, 1, 0)

x

z
y w

(x,y,z,w)

Figure 5.34 Grey codes as co-ordinates of a cube and hyper-cube

The Karnaugh map provides an alternative tabular way of arranging the entries in

a function look up table so that the addresses of neighbouring cells in the table have
this grey code property.

This approach allows an algebraic simplification of the combined logic expression
for the addresses which give the 1 entries in the table, to be obtained graphically.
Take the “carryout” function given above. Each addressing function making up this
total expression identifies a possible output value of 1. These are or-ed together to
give the overall result. Algebraically two and phrases representing addresses with
one digit difference can be combined into one simpler phrase:

111 or 110 = 11* A&B&C | A&B&(!C) = A&B&(C |(!C)) = A&B

A

C
 B

(0, 0, 0)

(1, 0, 0)

(1, 0, 1)

(0, 0, 1)

(1, 1, 0)

(1, 1, 1)

(0, 1, 0)

(0, 1, 1)

(x,y,z)

00 01 11 10

1

0

C
A B

A.B.C + A.B.C = A.B.(C + C) = A.B

Figure 5.35 Adjacency links for the three variable Karnaugh map of ABC

161

00

01

11

10

C D

A B

00

01

11

10

(0, 0, 0, 1)

(1, 0, 0, 1)

(1, 0, 1), 1

(0, 0, 1, 1)

(1, 1, 0, 1)

(1, 1, 1, 1)

(0, 1, 0, 1)

(0, 1, 1, 1)

(0, 0, 0, 0)

(1, 0, 0, 0)

(1, 0, 1, 0)

(0, 0, 1, 0)

(1, 1, 0, 0)

(1, 1, 1, 0)

(0, 1, 0, 0)

(0, 1, 1, 0)

B

D
 C

A
 (A,B,C,D)

Figure 5.36 Adjacency links for the four variable Karnaugh map of ABCD

In the case of three variables the cube was three-dimensional and each vertex had
three neighbours. In the case of four variables there were twice the number of
vertices and each had four neighbours. If there are n variables then there will be
n.2n/2 links. The Karnaugh maps in Figures 5.35 and 5.36 show how these adjacency
links are located using the grey code indexes to rows and columns of a table. The
factoring and cancellation operation on addressing functions can be carried out using
this tabular layout of the Karnaugh map to identify a reduced set of lookup table
address values from which to compose the final signal, by linking together adjacent
cells that contain 1s, in the following way:

1

1 1

1 0

0

0

0 1

0 0

0

1 0

1

00 01 11 10

1

0

C
A B

A.B.

C.B C.A

Carry Out

00 01 11 10

1

0

C
A B

! A.B.! C A.! B.! C

A.B.C ! A.! B.C

Sum

1

Figure 5.37 Karnaugh maps for an adding circuit

Carry Out Sum

A
B
C

Truth Tables, Decision Tables, Karnaugh Maps

162 5 Display System and Hardware Programming Primitives

Selection Circuits

The tree structured addressing circuit routes a selection signal through to a set of
memory cells. It also can be used to select which memory circuit is switched onto
output wires. Selecting a signal from a set of signals on several wires to pass to a
single wire is an alternative approach to obtaining a single output from a block of
memory. A two-way selector is shown in Figure 5.38, and a logic gate
implementation is given in Figure 5.39. Selection circuits can be built up in much the
same way as the addressing tree. The selection signal T can be extended to multiple
bits, which again can be treated as an address for the selected line.

A B T S

0 0 0 0 A

0 0 1 0 B

1 1 0 1 A
S

T

A

B
MUX

 1 1 1

1 B

Figure 5.38 A basic selection cell

A B T

S
A& (!T) | B&T

0 0 0 0 A

0 0 1 0 B

1 1 0 1 A

S

T

A

B

and

and

not

or

 1 1 1

1 B

Figure 5.39 A basic selection cell implemented using gates

Sequential Processing

There are limits to the look up table approach for evaluating many functions. The
sorting task discussed in Chapter 2 highlights the limitations. Many tasks can be
handled more effectively by a sequence of simpler tasks carried out in steps. The
sorting process consisted of sequentially selecting and removing the largest value
from a list until the list was empty. In a similar way the adder, shown in Figure 5.30,
divides the adding task down to a sequence of bit position operations where the carry
input, for each bit position, is the carry output from the operation to the right. In this
case the whole task is limited by the time it takes for the sequence of carry
calculations to ripple through the whole circuit. An alternative approach to this task
is, like the sorting process, to build up the answer in time interval steps. This requires
a single bit-position adding-circuit with a memory cell to hold the carry bit from one

163

step to the next. This allows the two numbers being added together to be processed
serially by the circuit shown in Figure 5.40.

One Bit
Adder

A B Carry Bit

Figure 5.40 Sequential adding circuit

This circuit is an example of “sequential” circuits, which use feedback to

implement a step-by-step evaluation of functions.

Memory

Logic
Functions

External Inputs External Outputs

Next State
Current
State

clock

Figure 5.41 Generic sequential circuit

Display Processor Development

The development of the display systems using raster data evolved in the same way
that the line displays had before them, to include more complex display functions
delegated to the display system to take the processing load off the host computer.

.

TV
Monitor

INTERFACE

HOST
COMPUTER FRAMESTORE

DISPLAY
CONTROLLER

 Figure 5.42 Schematic raster display system

Display Processor Development

164 5 Display System and Hardware Programming Primitives

The key elements are shown in Figure 5.42. The frame store unit is a large block
of memory capable of holding the image. In some systems the frame store is an
independent block of memory, in others it is part of the main memory of the
computer system. There is a variety of ways in which the memory can be structured.
As memory has become cheaper and available in larger volumes so more versatile
and powerful raster display systems have emerged.

Frame Store Architectures

Figure 5.43 Single bit plane black and white

The simplest raster display system is that shown in Figure 5.43 a single bit plane

capable of holding one bit per pixel: representing an array of black and white points
on a regular grid.

Figure 5.44 Multiple bit plane grey scale

Where the resolution of the display is high enough, this is a replacement for the

line or vector display. However, certainly in its early days the resolution was far from

165

sufficient to do this well. The visible steps in lines represented by points on a grid,
where the lines are nearly vertical or horizontal introduced the term jaggies to denote
this kind of undesirable, display-system artefact.

Introducing more bit-planes i.e. more bits for each pixel location and a digital to
analogue converter, and allowing the beam intensity to be varied: gave the ability to
display greyscale images. This allowed the anti-aliasing algorithms which model the
way lines are displayed in standard camera captured TV images, to be implemented.

Figure 5.45 Multiple bit plane lookup table grey scale

However, even this was not a total solution. Once numbers were used to represent

different levels of grey, it was discovered that the perceived grey scale of the display
produced from a linear sequence of numbers was not itself linear. A (gamma)
correction function was needed to map the linear digital values to a linear visually
perceived greyscale on the screen. This was possible using an intermediate lookup
table mapping the input value as the address to the appropriate output value to give
the required greyscale in the display in the way shown in Figure 5.45.

Once memory was cheap enough to have multiple bit planes they could also be
grouped to give red, green and blue values for each pixel position in the way shown
in figure 5.46. The simplest mode of colour display was to have a single bit per
colour channel. This gave eight colours to work with on screen. Again the boundaries
were pushed forward as memory was made more accessible, and each colour channel
could be represented by a range of the primary colours in a system in the way shown
in Figure 5.47.

Frame Store Architectures

166 5 Display System and Hardware Programming Primitives

Figure 5.46 RGB bit planes eight colours

Figure 5.47 A basic RGB display system

The lookup table was found to provide a new service in this context. The simple

combination of the primary colours was found to give a very uneven distribution in
the perceived colour space. So again a lookup table translation to provide a better
spread of colours as the input numbers were varied could be provided. This scheme
also allowed the lookup table to have many more bits for each colour, refining the
accuracy of the colour specification.

 167

Figure 5.48 Four bit addressing of RGB lookup tables

Figure 5.49 Independently addressed RGB lookup tables

This introduced the idea of a colour pallet where the number of bit planes gives

the number of colours that can be defined, but the colours themselves can be

Frame Store Architectures

168 5 Display System and Hardware Programming Primitives

separately specified in the lookup table. This provided the analogue of the artist’s
working pre-mixed set of colours, pre-prepared on his pallet ready for painting. In
Figure 5.48 16 colours can be defined, where each colour is made up from a mixture
of red green and blue primaries, each specified with eight bits giving a linear range of
256 values for each of the three colours.

Figure 5.50 Independent RGB lookup tables with an overlay bit plane

With these components many variations become possible, for example the eye is

far less sensitive to blue than it is to red and green so fewer bits in the look up tables
need be provided to define the blue component of a pixel’s colour. Multiple images
could be placed in the same memory block and mixed at the pixel level. Overlays
containing text and annotations could be provided by extra circuitry of the form
shown in Figure 5.50.

As memory became cheap enough to support a geometric model of a scene, a
depth buffer was added to the basic frame store containing image data. By including
the depth of surfaces making up a scene at the pixel level, rather like a terrain model
used in cartography a series of scene composition and display operations became
much simpler to implement. In particular the depth buffer algorithm evolved from the
painters algorithm to remove the difficulties generated by objects inadvertently being
made to overlap in interactive work. Similarly, extended pixel data defining the
transparency of a surface allowed more sophisticated display operations based on
existing manual collage and overlay techniques to be developed.

169

TV Cameras and Image Processing

At the same time that it became practical to store TV images in a digital form, the
technology of the TV camera also evolved in a similar direction. Initially images were
captured as analogue electronic signals, and these had to be passed through analogue
to digital conversion units before they could be stored in frame-store based display
systems. However the conversion operation to a digital format has now been built into
new TV cameras so their output is provided directly in a digital form. These advances
make it easier for synthesised and captured images to be merged within the same
system. In particular it makes a series of “image-processing” operations that need to
be applied to captured-images simpler. Operations that can also be carried out on data
held in a display processor’s image memory. The specialisation to handle display
operations of this kind along with the flexible allocation of memory to depth buffers,
alpha buffers and multiple image buffers, expands the role of the display controller
from a slave refresh process to a fully autonomous computing system in its own right.

Display Processor Control Unit

In practice there are many ways of constructing a frame store, depending on how the
pixel values are mapped into memory packages. One of the problems with early
memory based frame stores apart from the volume of memory needed was the speed
of access. Even as low a resolution as 250 by 250 pixels requires 625,000 values to
be read each refresh cycle. If this is 1/25th of a second this requires a read time of:

pixelper seconds nano 640
25025025
000,000,000,1

=
××

Where memory access was still mille-seconds this would not support a
realistically useful system.

Serial Output

Parallel Loaded Shift Registers

Framestore Memory Banks

Figure 5.51 Frame store data output

However, the serial-order in which data needs to be supplied to the TV monitor to

match the scanning sequence of the electron beam makes it possible to speed up the
delivery to the monitor. If adjacent pixel values are stored in separate banks of

Display Processor Control Unit

170 5 Display System and Hardware Programming Primitives

memory they can be addressed and accessed in parallel. This allows several adjacent
pixel values to be read in one memory cycle into a fast shift register, which can then
supply the individual values at the required refresh rate. In Figure 5.51 the output is
four times the limit set by the memory units.

This structure however, limited the freedom to enter data into the frame store
memory whenever and wherever a display program might wish to. If the speed of the
output from the memory perfectly matched the TV monitors input needs, then there
would appear to be no time for data entry into the frame store. Fortunately the
standard TV has gaps in its refresh cycle when the electron beam is switched off.
This occurs when each line is complete and the beam flies back to start the next line
and at the end of each field of the frame when the beam flies back from the bottom of
the screen to the top to start again.

Li
ne

 p
ai

nt
in

g
pe

rio
ds

Line flyback

Field flyback

Figure 5.52 TV display: field-timing diagram

A diagram to illustrate the use of time can be set up in the way shown in Figure
5.52. The scan line refresh cycles in each image frame refresh cycle are shown scaled
down the y-axis, and the number of pixel refresh periods in each line cycle is scaled
along the x-axis. The pale green area then shows the time actively used to display an
image, and the orange area the fly back time left to write new values into the display
memory.

Updating a display within this restricted time-window can be a messy process, and
is generally inadequate to support animated moving images. Luckily the serial TV
scan pattern can be further exploited, to improve the situation. Where there is an
interleaved display, each field can be stored in separate blocks of memory, so
allowing one to be written while the other is being displayed. With non-interleaved
memory the same result can be obtained using two memory blocks alternately
reading into one and displaying the other. However, dividing the memory into blocks
to service horizontal bands across the display can reduce the memory requirements
for an equivalent system. Again one band can be outputting data for display while its
neighbour is receiving new inputs. The only restriction this imposes is on which
section of the image can be refreshed at any moment in time. Lines vertically
scanning the image need to be partitioned appropriately. However, when panel

X time: pixel painting

Y time

171

displays are employed the over all scanning sequence can be broken up in different
ways. The multi-TV wall display can be implemented in principle at any scale as
parallel processing tile arrays.

As integrated circuit technology advanced and memory chips became larger and
larger and faster and faster then some of these initial frame store, design difficulties
disappeared. However, some of them became more difficult to resolve because the
subdivided structure of the frame store became more difficult to implement
efficiently using the larger units. The partitioning into input blocks and output blocks
to make input-output simpler to handle became more difficult. However, the expense
and size of a fully double-buffered system became less prohibitive. The rise of the
personal computer led to a much larger market for display systems, this in turn
justified specialised memory for refresh display devices. A major development was
to take the structure shown in Figure 5.51 and place it on a dual port memory
integrated circuit, which allowed virtually free address based input to memory while
maintaining the high serial flow of data out needed to refresh the TV system.

TV
Monitor

LUT Framestore DAC

Output

Input

X, Y Address
Registers

Table Read

Table
Load

Bit Plane
Select

CONTROL UNIT

Pixel
Data

Editing
Registers

Figure 5.53 Schematic display processor structure

Developments in IC technology led to a similar evolution in display processors.

Managing the growing complex range of alternative configurations fell to the display
control unit. Initially this was built as a custom logic circuit. However as more and
more flexibility became necessary, so the controller became a programmable system
in its own right.

It is possible to configure the components shown in Figure 5.53 to carry out a
variety of display operations, depending on the way data is routed from element to
element. Commands sent from the host computer to select a particular operation
would need to set the appropriate switches in the network to implement the desired
function. A simple way to implement this is to make the command code an address to
a lookup table holding the different switch setting for the various configurations.

Display Processor Control Unit

172 5 Display System and Hardware Programming Primitives

Figure 5.54 Commands as lookup table addresses for switch settings

With this arrangement it is clear that the design of the switch network is the factor

that determines how flexible the overall system can be made. Linking every element
to every other element in the circuit will provide maximum flexibility. Complete
networks corresponding to the “connection-machine” architecture can be represented
by graphs of “simplexes” in the way shown in Figure 5.54. A system of n nodes can
be set up with y = n.(n-1)/2 links and the same number of switches y. If all
configurations were required then there would be 2y possibilities. This value gets
large very quickly, and like the sorting problem, only makes lookup table selection
viable for small values of n.

Figure 5.55 Simplex graphs: complete linkage networks

However, there are several ways in which the number of possibilities is reduced.

Firstly the number of switch settings, which provide useful configurations, will
usually be a fraction of all the possible settings. Secondly the number of switching
arrangements can be further reduced by careful use of common lines of
communication such as busses: and then selectively switching elements on and off
them. Thirdly replacing parallel one-shot operations by serial sequences of operations
can greatly reduce the number of necessary components, and consequently the
switching complexity. However this does incur a time cost.

In practical systems the number of configurations will still be smaller than the
number of possible settings for the switches needed to implement them. This makes a
lookup table an effective approach. Also by changing the contents of the lookup
table, the same command codes can be made to activate different operations. This

S

V3 V0 V2 V1 V7 V4 V6 V5

A
3

A
0

A
2

A
1

0000

0001

0010

0011

T

T1 T0 T2
0 0 1

T3
0

SWITCH SETTINGS TO CONFIGURE THE SYSTEM

COMMAND CODE T

AS A LOOK UP
TABLE ADDRESS

0100

0 0 0 1

173

introduces the lowest level of programming and a small extension to this approach
allows sequential operations to be set into motion from a single instruction.

Display controllers made from dedicated circuits could be set up as “finite state
machines” to execute serial operations. There are two forms for these mechanisms:
Mealy machines and Moore machines shown in Figure 5.56. They both depend on
feedback: making their action depend on current state variables stored in memory.
The current state and new inputs determine the next state. The Moore machine makes
the output depend on just the current state, whereas the Mealy machine makes the
output depend on the current state and the current inputs to the system.

Memory
Output
Logic

Functions
Inputs

Outputs Next State
Logic

Functions

MEALY FINITE STATE MACHINE

Memory
Output
Logic

Functions
Inputs

Outputs
Next State

Logic
Functions

MOORE FINITE STATE MACHINE

Figure 5.56 Finite state machines

Both these systems can be implemented using a lookup table, in the way outlined

in Figure 5.57. The state is determined by switch settings but the state is represented
by the address of the settings in the lookup table. The feedback consists of the
address of the next state, switch settings for the machine.

Next State
Memory

Output Data
Memory

Address

Address
Tree .

Outputs

Inputs

MICRO PROGRAMABLE FINITE STATE MACHINE

Figure 5.57 Finite state machine using look up tables

Output
Logic

Functions

Output
Logic

Functions

Next State
Logic

Functions

Next State
Logic

Functions

Display Processor Control Unit

174 5 Display System and Hardware Programming Primitives

However to make this system implement a set of different sequential operations
requires the feedback to also provide a selection signal to allow a new external
address to be entered to replace the feedback address. Take as an example eight main
external commands requiring 3bits to select them and an overall set of 32 switch
settings requiring 5 bits to select them. If the three low order bits are used to select
the external command addresses, and the top two bits in these cases are set to zero
then the first switch setting for each of these commands will lie in the top eight rows
of the lookup table in Figure 5.58 labelled A to H.

Figure 5.58 Micro-program to execute eight instructions

Internal External Selector

00000 A
00001 B
00010 C
00011 D
00100 E
00101 F
00110 G
00111 H
01000 A
01001 A
01010 D
01011 D
01100 D
01101 D
01110 D
01111 G
10000 G
10001 G
10010 G
10011 G
10100 G
10101 G
10110 G
10111 G
11000 H
11001 H
11010 H
11011 H
11100 H
11101 H
11110 H
11111 H

Switch settings to
configure the system
for each command

External address inputs Feedback internal address inputs

Address Register

175

In Figure 5.58 the commands labelled A, D, G and H all require a series of steps
to execute them but the commands labelled B, C, E and F only require one step.
What is interesting about the arrangement shown in Figure 5.58 is that though each
of the first steps of the eight commands are located in adjacent locations at the top of
the lookup table, in the case of A, D, G and H the subsequent steps are separated and
are in contiguous blocks in the remainder of the lookup table. This is clearly the
result of using a five-bit address to access the internal states but only the low order
three-bits of the address to identify the starting state of the eight externally defined
commands. If the external commands were defined by a five bit address then they
could start anywhere, what is more they could then be arranged so all the steps for
each command were in blocks of adjacent addresses in the lookup table. However the
codes for the external commands would no longer be neighbouring numbers.

What is implemented in Figure 5.58 is a linked list structure linking the series of
switch settings that a command needs to implement it. This gives total flexibility to
locate each switching-set in any address location. However it is an unnecessarily
powerful technique for this application. If the start addresses were placed in a counter
register then all that would be needed to access a series of contiguous addresses
would be to increment the counter between each step. The only feedback would be
the single bit identifying when the end of a series of commands had been reached and
a new external address needed to be entered into the counter-register to locate the
next command.

Figure 5.59 Micro-program to execute instructions G and H using a counter

Counter Register

10000 G
10001 G
10010 G
10011 G
10100 G
10101 G
10110 G
10111 H
11000 H
11001 H
11010 H
11011 H
11100 H
11101 H
11110 H
11111 H

Switch settings to configure the system
for each command External address inputs

Display Processor Control Unit

176 5 Display System and Hardware Programming Primitives

The linked list approach is useful when the steps needed to find space in the
lookup table do not determine the address for a command but where the address is set
externally. This occurred when a family of computers of different speeds and power
were given the same machine code, so programs could run on all of the computer
family though with different levels of performance. An example of this is given by
the multiply operation. In the fast top of the range system special hardware could
implement this operation in one step. However on simpler machines it could be
implemented using a series of shift and add commands.

If an addition is implemented as a hardware function, and a shift left operation
moving all the bits in a register one place to the left, is also implemented at that level.
Because the shift operation is equivalent to multiply by two, a series of shift and add
operations can implement binary multiplication in a series of steps, in the way that
conventional long multiplication for decimal arithmetic is carried out by hand.

Machine Language Programming

INPUT

ARITHMETIC UNIT
A

OUTPUT

CONTROL UNIT B MEMORY D

CONTROL BUS

DATA
BUS

COMMANDS DATA

PROGRAM
COUNTER

C

Figure 5.60 A schematic computing system

Externally defined programs could be executed in the scheme shown in Figure
5.59, however there would be a great deal of duplication if serial operations such as
multiplication, implemented using shift and add, needed to be repeated within a
program. The microprogramming unit in Figure 5.59 can be used in a control unit for
a more general computing system in the way shown in Figure 5.60, by placing the
external program in the control unit’s memory also accessed by a counter, and having
commands in the program that can change the address in this counter when the flow
of control needs to be rearranged.

Allowing the commands stored in the control unit, shown in Figure 5.60, to be
placed into the main memory D, gives the general stored program computer
discussed in the next chapter.

6
Computer Hardware
and Low Level
Machine Language
Programming

The Stored Program Computer

In the previous chapter the “primitive” hardware facilities needed to display images
were introduced. The main form of current display hardware consists of a surface
divided up into a fine mesh of grid points where the colour and brightness of each
point is controlled by a number stored in a matched array of memory cells in the
computer system. Computer graphic displays are generated by writing programs to
enter the appropriate values into these data arrays in memory.

In this section a “minimal” computer is presented to illustrate the nature of machine
language programming, and the way it activates the electronic building blocks, which
make up the computer system. The aim is to present machine language programming,
in as simple a manner as possible and to provide a visualisation to help understand the
dynamic behaviour of a computer system and the programs running it. Real systems
follow the same principles, though they are usually more complex in order to give
greater speed, flexibility or overall performance. However a simplified presentation
should go a long way to clarifying the constraints that are imposed on computer
graphics by the programming process, at the same time, hopefully, demystifying some
of the “black magic” aspects of the subject.

A primitive, schematic, computing system was shown in Figure 5.60. A program
in the “control-unit” contains a list of machine language commands, which are
sequentially applied to the system. Each command sets the switches in the system
routing data to or from memory, to or from output and input units, or directs data to
or from the arithmetic unit. The sequence of commands is a computer program,
which can be changed depending on the task. The commands are stored as blocks of
binary digits which when they are entered into an “instruction register” set switches
in the overall computing system to execute the commands they represent. However,
A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_6, © Springer-Verlag London Limited 2008

178 6 Computer Hardware and Low Level Machine Language Programming

the data that such a program is designed to operate on, also has to be stored in fixed
sized blocks of binary digits in the main memory of the system. It is therefore a small
step to make this system more flexible by storing the program in the same location as
the data in the computer’s main memory. Potentially this allows the instructions to be
processed as data and therefore modified under program control. This gives the
stored-program computer-architecture, attributed to Von Neumann, shown
diagrammatically in Figure 6.1 that is the subject of the rest of this chapter. This
more flexible system operates on two levels. The first level is a cycle repeatedly
fetching and executing program-instruction from memory, while the second level
handles the actions defined by the program itself.

INPUT

ARITHMETIC UNIT

 A

OUTPUT

CONTROL UNIT B

MEMORY D

CONTROL BUS

DATA

BUS

CURRENT COMMAND

DATA

PROGRAM COUNTER
 ADDRESS

Figure 6.1 A store program computer system

In the final system discussed in this section the blocks, or “words” of memory,
will be 16 bits long. If this bit pattern is interpreted as a decimal number it can hold
integers approximately in the range of –32,000 to +32,000. However if it is
interpreted as a character it will hold one Unicode, Java character code, or two ASCII
eight-bit character codes packed together. If it is interpreted as a command what is
done will depends on the structure of the electronics in the computer’s control unit
registers.

Machine Language Programming

Machine language programming depends on the instruction set provided by a
particular computer. At its most basic level it consists of entering a series of binary
number codes into the machines memory and then setting the system to access these
values as a sequence of instruction codes. In this chapter Java will be used to
simulate a series of simplified machines to illustrate important aspects of this task.

Machine Language Programming 179

The idea of using numbers to represent instructions is first illustrated by building a
system that uses decimal command codes. This is then extended to handle
hexadecimal codes as these directly match the binary values used in the hardware for
machine programming: each hexadecimal character corresponding to four binary
digits.

Conceptually these simulator programs can be constructed in two or three parts
depending on how the task is viewed. Firstly there is the program that simulates the
behaviour of the machine, secondly there is the display generating program that
illustrates the way it is operating and acts as an interface to the system user, and the
third section is a control program that sets up and links these first two units together.
In order to develop the simulators incrementally the implementation that is discussed
below is initially evolved as one program. However, it can be refactored to use Java’s
“graphic-model” approach so its component parts become separate “threads” loosely
coupled so actions in one are correctly reflected in the behaviour of the others.
Building these simulators allows the application of some of the graphics facilities
provided in the Java support libraries to be explored: in particular the window system
used to display the computer system in Figure 6.3.

A fairly natural starting point for building a computer simulator is to write a
program to model the behaviour of the target system. A graphic model to provide the
appropriate visualisation of the system in action can then be added to improve the
program’s user interface. The system shown in Figure 6.1 is implemented in Figure
6.3 as a decimal coded machine where the instruction set for the system consists of
ten command codes: each command being made up from a single decimal digit
representing its action followed by a four decimal digit memory location address, on
which the action is to be applied. This allows 10000 memory locations to be
addressed, and numerical values in the range –99999 to 99999 to be used as data in
calculations.

Decimal Instruction set

0 Read a new value into the addressed memory location
1 Output a value from the addressed memory location
2 Load the Arithmetic Register from the addressed memory location
3 Add the addressed value to the Arithmetic Register
4 Subtract the addressed value from the Arithmetic Register
5 Multiply the Arithmetic Register by the addressed value
6 Divide the Arithmetic Register by the addressed value
7 Store the Arithmetic Register in the addressed memory location
8 Jump to the instruction in the addressed memory location
9 Jump to the addressed location if the Arithmetic Register is negative

Most of the ten commands are direct and can be assembled into simple sequences.
However to make intelligent programs it is necessary to provide conditional
operations that depend on relationships found in the data. This flexibility is provided
by the last command in this set of operations, which changes the program counter
only when the value in the arithmetic register is negative. This allows tests to be set

180 6 Computer Hardware and Low Level Machine Language Programming

up as arithmetic calculations the outcome of which can then be used to select the next
program code-sequence to execute. The two “jump” commands permit the program
counter to be loaded with a new address to change the sequence otherwise obtained
by the program counter automatically incrementing after each instruction.

A program to implement this computer’s behaviour can be set up as follows:

 import java.awt.*; import javax.swing.*; import javax.swing.table.*;
 import javax.swing.event.*;import java.awt.image.*; import java.awt.event.*;
 import java.util.*; import java.text.*; import java.lang.*;
public class MicroComputer{

static int programCounter = 0,address = 0;
static int command = 0,instruction = 0,accumulator = 0;
static boolean finished = false;
static int[] memory = new int[10000];
static TextWindow IO = new TextWindow(20,70,300,300);

MicroComputer (){ }
public static void main(String[] args){

memory[0]=1;
while(!finished){

instruction = fetchInstruction(programCounter);
programCounter++;
command = instruction / 10000;
address = instruction % 10000;
if(command>9)finished=true;
else executeInstruction(instruction,command,address);

}
}
static int fetchInstruction(int address){

return memory[address];
}
static void executeInstruction(int instruction,int command,int addr){

switch(command){
case 0: memory[addr]=getInput(); break; // read
case 1: putOutput(memory[addr]); break; // write
case 2: accumulator=memory[addr]; break; // load
case 3: accumulator= accumulator+memory[addr]; break; // add
case 4: accumulator= accumulator-memory[addr]; break; // subtract
case 5: accumulator= accumulator*memory[addr]; break; // multiply
case 6: accumulator= accumulator/memory[addr]; break; // divide
case 7: memory[addr]=accumulator; break; // store the accumulator
case 8: programCounter = addr; break; // unconditional jump
case 9: if (accumulator<0) programCounter = addr; break; // jump if…
default: finished = true;

}
}

Machine Language Programming 181

The “main” procedure executes an infinite loop. Within this loop it fetches the
contents of the memory cell addressed by the program counter, which it then splits
into a command code and an address. As long as the command code is in the range 0
to 9, the program counter is incremented and the instruction executed, otherwise the
loop is exited. Where the command is a jump the contents of the program counter is
overwritten directly by the instruction’s address field. The fetchInstruction() method
is a simple memory access operation. Whereas the executeInstruction() method uses
the operation code in a switch statement to select the case which implements the
action it represents on the data in the addressed memory location, accompanying it.

Figure 6.2 Test input and output

Most actions consist of moving
data between memory locations
and the various registers in the
control and arithmetic units.
However data input and output
need facilities for the program to
interact with the user. Figure 6.2
shows a simple input and output
window to allow a decimal coded
program to be entered into the
simulator and the result output.
Since all the operations in
programs written for this system
are defined as operations on data
in addressed memory locations --
including the input and output
commands. This means that
programs have to be entered into
the computer’s memory before
they can be run.

The minimum facility needed to support this task is provided by pre-setting the

first memory location to 00001: the command to read a new value to the second
memory location 0001. If the program counter is initialised to address this value in
location 0000 then the first operation will be to read the new value into location
0001. If this first value is a command to read a value into location 0002, directly
followed by the jump command 80000, a self-loading process results. Once 80000
has been read into location 0002, the program counter increments from 0001 to 0002,
accessing it as a command and executes it as a jump instruction, returning to location
0000, and the read command 00001. This gives a loop, which will read in and
execute the following-on sequence of instructions shown in Figure 6.2: reading in
two numbers 45 and 25 adding them together, and finally outputting the result: 70.

The methods used in this simulation to input and output values to a TextWindow
are putOutput() and getInput(). Because these methods only work with character-
string inputs and outputs, a method to convert such a digit string into the internal
representation of a number also has to be provided:

182 6 Computer Hardware and Low Level Machine Language Programming

static void putOutput(int value){ IO.writeString("ouput: "+value+"\n");}
static int getInput(){

output.writeString("input: ");
String str = IO.readString();IO.readLine();
return number(str);

}
static int number(String str){

int num=0;
for(int i=0;i<str.length();i++){

int digit = (int)str.charAt(i)-(int)'0';
num = num*10+digit;

}return num;
}

}

Building a Micro Processor Simulator in Java

Figure 6.3 Decimal microcomputer simulator

Although this program simulates the way the target computer works and produces
the right answers, it does not present the user with any indication how it does so. The
simplest way to do this is to link a graphic model of the computer systems to the
simulator. Setting up a program that runs a computer model of the hardware system
and a coupled computer graphic model will allow its behaviour to be seen in a step
by step manner. This allows the user to follow what is going on as a sequence of
instructions is executed in a program. The “main” procedure needs to set up the

183

graphic model, the operational computer model and initialise the system variables
such as the contents of the program counter and the instruction and arithmetic
registers as well as the memory. As a computer’s program-instructions are executed
they also have to generate the appropriate changes in the graphic display to represent
the actions taking place in the physical hardware of the system.

Once the basic computer model is working it can be linked to a display of the
form shown in Figure 6.3. In Figure 6.3 the control unit consists of two registers, the
first called the instruction register in which the current command word is stored. This
register, labelled the B-register, would be coupled to the circuitry that sets the
switches to implement the command. A second register is associated with it, holding
the address in memory of the next instruction from the program that is being
executed. This register is called the program counter or the C-register. In this scheme,
this conveniently allows the arithmetic unit to be labelled the A-register, and the
Memory or data storage registers to be labelled the D registers.

Constructing a graphic model of the computer system in the way shown in Figure
6.3 depends on using objects from the Java libraries, in particular the AWT and the
Swing libraries. These provide display objects such as windows and frames that act as
graphic containers for other image building elements. In the TextWindow used in
Figure 6.2 this context is provided by a JFrame from the Swing classes to which has
been added a TextArea object to handle the input and output of text. In Figure 6.3 the
display is also built up within a JFrame. Each of the working elements is generated
in an JInternalFrame container object that is added to the main JFrame.

Each of the registers is modelled by a JinternalFrame containing a Textfield to
display its contents. The clock button is a JinternalFrame to which has been added a
Jbutton object.

This graphic model can then be used in the way shown in Figures 6.4-6 to display
the step-by-step execution of the following program to add two numbers together.

Order Command coded decimal
0: Read A rds 3 0-0003
1: A 25
2: Read B rds 4 0-0004
3: B 45
4: Load A lds 3 2-0003
5: Add B add 4 3-0004
6: Store C str 5 7-0005
7: Write C wrt 5 1-0005

The first step is to enter the self-loading-loop instructions into the computer’s
memory. Clicking the mouse pointer on the red clock-button triggers the execution
and display of each fetch and execute step in running the program in the way shown
in the following sequence of screen shots.

Building a Micro Processor Simulator in Java

184 6 Computer Hardware and Low Level Machine Language Programming

Figure 6.4a Obtain the next instruction from memory location 0

Figure 6.4b Execute instruction:read next input to location 1

Figure 6.4c Obtain the next istruction from location 1

185

Figure 6.4d Execute instruction: read next input to location 2

Figure 6.4e Obtain the next istruction from location 2

Figure 6.4f Execute instruction: reset program counter back to 0

Building a Micro Processor Simulator in Java

186 6 Computer Hardware and Low Level Machine Language Programming

Figure 6.5a Obtain the next istruction from location 0

Figure 6.5b Execute instruction: read next input to location 1

Figure 6.5c Obtain the next istruction from location 1

187

Figure 6.5d Execute instruction: enter data 45 into memory

Figure 6.5e Obtain the next istruction from location 2

Figure 6.5f Execute instruction: reset program counter back to 0

Building a Micro Processor Simulator in Java

188 6 Computer Hardware and Low Level Machine Language Programming

Figure 6.6a Obtain the next istruction from location 1

Figure 6.6b Execute instruction: enter data 25 into memory

Figure 6.7a Executing the program from Figure 6.3: load the accumulator

189

Figure 6.7b Executing the program from Figure 6.3: add to the accumulator

Figure 6.7c Executing the program from Figure 6.3: store the accumulator

Figure 6.7d Executing the program from Figure 6.3: output the answer

Building a Micro Processor Simulator in Java

190 6 Computer Hardware and Low Level Machine Language Programming

This visualisation sequence is given at length to illustrate the way the simulator
program can be used to show the switch settings that implement each command, and
the way that the data is routed through the various units of the computer system in
order to execute the whole program.

The system in Figure 5.60 was simplified by having the program code separated
from the data it operates on. This made the way a program is executed easier to
describe. However the system gains in generality and flexibility if the program code
is stored in memory as data. This is possible because commands are represented by
numerical codes. This makes the task of repeating command sequences merely a
matter of revisiting the same command codes in memory and potentially allows
program instructions to be treated as data and modified as a program is being run.

Hexadecimal Operation Codes

The basic way a minimal computer system might be designed to work is illustrated
above using decimal number codes. However, electronic components operate on
binary coded data and instructions. The simulator can be brought closer to a real
system by exchanging the decimal number system by the hexadecimal number
system. Where numbers have to be worked with as bit patterns, it is easier to work
with a hexadecimal representation of the number, because each four bits of the 16
bits can be presented as one hexadecimal digit {0-9, A-F}, consequently the 16 bits
will match four hexadecimal characters. The equivalent decimal representation of a
binary number obscures the structure of the binary data and hence the way the
number can be partitioned into fields that represent an instruction code. The decimal
version of the number however remains much easier to work with when discussing
arithmetic operations.

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
A:
B:
C:
D:
E:
F:

nop
rds
wrt
wrh
wrc
jmp
jng
jez
stc
lds
str
add
sub
mul
div
mod

0: A null command, used as a continue statement for labels
1: Read a number into memory D[i]
2: Write a value out in decimal format from memory D[i]
3: Write value out in hexadecimal format from memory D[i]
4: Write a character out from memory D[i]
5: Load the program counter: register C, with address i.
6: If register A is negative load register C with address i.
7: If register A is zero load register C with address i.
8: Store register C back into memory unit D[i]
9: Load Arithmetic Unit register A from memory D[i]
A: Store Arithmetic Unit register A back to memory D[i]
B: Add value from memory D[i] to register A
C: Subtract memory value D[i] from register A
D: Multiply register A by value from memory D[i]
E: Divide register A by value from memory D[i]
F: Reminder of register A divided by memory D[i]

In the simplified systems presented in this section, instructions consist of a command

code followed by a single memory address. Each command therefore represents an
action related to a specified memory cell. If the first hexadecimal digit is used to

191

code the command then the remaining three digits can be used to represent the
address. This gives sixteen possible commands and allows 4096 cells or words to be
addressed in the memory. An instruction set for a simulator system can be set up as
follows, where D[i] is the memory word addressed by the instruction f(i).
unit again consists of a single register called the instruction register in which the
current command word is stored. This register, again labelled the B-register, is
coupled to the circuitry that sets the switches to implement the command. A second
register is associated with it, which holds the address in memory of the next
instruction to be executed. This register is called the program counter or the C-
register. This allows the arithmetic unit to be labelled the A-register, and the Memory
or data storage registers again to be labelled the D registers.

Most of these commands are direct and can be arranged in simple sequences.
However, again to make intelligent programs it is necessary to provide conditional
operations, which depend on relationships found in the data. In this extended set of
operations this flexibility is provided by two commands which change the program
counter either if the value in the arithmetic register is negative, or if it is zero. This
allows tests to be set up as arithmetic operations, the outcome of which can be used
to select the next program code sequence to be executed.

public class MicroComputer{

static int pc = 0, address = 0, command = 0, instruction = 0;
static int accumulator = 0;
static boolean finished = false;
static int[] memory = new int[4096];
static InputWindow input = new InputWindow(20,370,300,70);
static OutputWindow output = new OutputWindow(20,70,300,300);
MicroComputer (){}
public static void main(String[] args){

memory[0] =4097; memory[2] = 20480;
int instruction = fetchInstruction(pc);
while((instruction<16*16*16*16)&&(!finished)) {

instruction = memory[pc];
address= instruction%4096;
pc = executeInstruction(instruction);
address = pc;

}
output.writeString("program completed \n\n");

}
static int fetchInstruction(int address){ return memory[address];}
static int executeInstruction(int instruction){

command = instruction/4096; address = instruction%4096;
switch(command){

case 0: if(address>0){
 output.writeString("to finish enter y \n");
 if(input.readString().equals("y"))finished = true;}
 break; // nop

Hexadecimal Operation Codes

 The control

192 6 Computer Hardware and Low Level Machine Language Programming

case 1: memory[address]=getInput();break; // rds
case 2: putOutput(memory[address]);break; // wrt
case 3: case 4: break; // wrh wrc not implemented
case 5: pc = address;return pc; // ldc
case 6: if(accumulator<0){ pc=address;}
 else pc= pc+1;return pc; // lnc
case 7: if(accumulator==0){pc=address;}
 else{pc=pc+1;}return pc; // lec
case 8: memory[address]= pc;break; // stc
case 9: accumulator = memory[address];break; // lds
case 10: memory[address]= accumulator;break; // str
case 11: accumulator= accumulator+memory[address];break; // add
case 12: accumulator= accumulator-memory[address];break; // sub
case 13: accumulator= accumulator*memory[address];break; // mul
case 14: accumulator= accumulator/memory[address];break; // div
case 15: accumulator= accumulator%memory[address];break; // mod
default: output.writeString("error end \n");finished=true;

}pc=pc+1; return pc;
}
static void putOutput(int value){

output.writeString(
"output decimal: "+value+ " hexadecimal: "+hexString(value,4)+"\n");

}
static int getInput(){

output.writeString("input: ");
String str = input.readString(); output.writeString(str+" \n");
return hexNumber(str,4);

}
static int hexNumber(String program,int len){

int val=0;
for(int j=0;j<len;j++){

char ch = program.charAt(j);
if((ch>='0')&&(ch<='9')){val = val*16+ (int)ch - (int)'0';}
else if((ch>='A')&&(ch<='F')){val = val*16+ 10+(int)ch - (int)'A';}

}return val;
}
static String hexString(int val,int len){

String str ="";
if(val<0)return "****";
for(int j=0;j<len;j++){

int digit = val%16;
val = val/16;
if((digit>=0)&&(digit<=9)){str = ((char)(digit+((int)'0')))+str;}
else if((digit>=10)&&(digit<=15))

{str = ((char)(digit-10+((int)'A')))+str;}
}return str;

}

193

static int number(String str){
int num=0;
for(int i=0;i<str.length();i++){

int digit = (int)str.charAt(i)-(int)'0';
num = num*10+digit;

}return num;
}

}

The “jump” commands permit the program counter to be loaded with a new address.
This allow repeated sequences of code to be set up as sub-programs, or subroutines. A
program can jump to and return from these blocks of code where ever necessary.

Figure 6.8 Test hexadecimal program

The state of the overall machine can
be defined as the contents of the memory
and the setting of the arithmetic register,
and the program counter. However, if the
memory contains a program, its state at
any point in its operation can be defined
merely by the values of the arithmetic
register and the program counter. If two
programs are stored in memory at the
same time, it is possible to change from
one program to the other merely by
switching the arithmetic register value
and the program counter value for each
program. This context switching allows
independent program threads to be
interleaved, to make more efficient use
of the system, if, for example, one
program thread is waiting for input data.

The classes InputWindow and OutputWindow set up the windows to enter and
output data. These two classes extend the facilities provided by the JFrame class
provided by the Java Swing library. This class provides the window objects, which
allow output and the input obtained from the keyboard to be displayed on the screen.
The system facilities that support these actions are separate program threads that run
independently of the simulator program, sharing the computer facilities with the
simulator program in an interleaved way under the control of the Java language
environment. The only links that need to be set up between these programs occur
when the input and output data is transferred between them. This is achieved by an
“event” driven communication scheme.

The objects that handle input and output text data are obtained from the TextField
and TextArea classes. However these objects are Container objects that have to be

Hexadecimal Operation Codes

194 6 Computer Hardware and Low Level Machine Language Programming

added to the JFrames. The TextField provides methods for working with a simple
line of text, whereas the TextArea is more complex and supports multiple lines of text
in a document format. In particular they provide the bridge to the system routines that
manage text inputs from the keyboard through event-generator and event listener
procedures. An ActionListener for the TextField is set up to receive events generated
when a carriage return character is input at the keyboard. When an ActionListener
object is added to a TextField object it is registered with the keyboard system
methods, so that they can notify the listener when the appropriate event – the carriage
return -- occurs.

The list of listeners which the system holds registered for an event are all notified
when the event occurs by calling the procedure, in each listener set up to handle the
event. This is achieved by writing a method with the standard name
ActionPerformed() to to carry out the action required in its local context . In the code
given below: the action taken on receiving such an event notification, is to get the
text string from the system after each carriage return, and copy it to a String variable
available to the rest of the simulator program. A TextArea provides similar event-
linked communication with the Java system, but is more complex to use.

For this reason the input has been channelled through a TextField, but this means
that every time new text is read into the simulator through the readString() method of
the InputWindow it needs to be output to the TextArea in the OutputWindow by the
getInput() method of the simulator program, to keep track of an overall input
sequence in the way shown in Figure 6.8.

class OutputWindow extends JFrame{

public JTextArea ta = null;

OutputWindow(int col, int row,int width, int height){
super(" Output Window");
this.ta = new JTextArea();
JScrollPane jsp = new JScrollPane(ta);
jsp.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
this.getContentPane().add(jsp);
this.setSize(width,height);
this.ta.setBackground(Color.white);
this.ta.setEditable(false);
addWindowListener(

new WindowAdapter (){
public void windowClosing(WindowEvent e){ System.exit(0);}

}
);
this.setLocation(col,row);
this.setVisible(true);
}
public void writeString(String str) { this.ta.append(str);}

}

 195

class InputWindow extends JFrame{

public JTextField tf = null;
private String text = null;
private boolean noInput = true;
InputWindow(int col, int row,int width, int height){

super(" Input Window");
this.tf = new JTextField();
this.tf.setBackground(Color.white);
this.getContentPane().add(tf);
this.tf.addActionListener(

new ActionListener(){
public void actionPerformed(ActionEvent e){

text = tf.getText();
tf.setText("");
noInput= false;

}
}

);
this.setSize(width,height);
addWindowListener(

new WindowAdapter (){
public void windowClosing(WindowEvent e){ System.exit(0);}

}
);
this.setLocation(col,row);
this.setVisible(true);

}
public String readString(){

noInput = true; this.tf.setBackground(Color.yellow);
while (noInput){Dummy.dummy();}
this.tf.setBackground(Color.white);
return text;

}
}

class Dummy{

public Dummy(){ }
static void dummy(){for(int i=0; i<8; i++){}}

}

Because the simulator program and the system keyboard programs run
independently of each other, the readString() method, when it is called, could
transfer what ever the last input string was, that previously had been entered into the
system, back to the simulator program,. When the readString() method is called what
is wanted is usually a response to an input request. To ensure what is received is
produced in the right order, as soon as readString() is called it sets a Boolean variable
noInput to be true and then while it is true executes a “busy-wait” loop until the next

Hexadecimal Operation Codes

196 6 Computer Hardware and Low Level Machine Language Programming

text input is received. As soon as the ActionPerformed() procedure receives a new
text String it sets noInput false so allowing the readString() method to escape the
busy-loop and return the new text-string.

The call to the dummy() method in the Dummy class is a programming fix found
necessary to allow the Java system to recover control during the busy-wait loop. This
enables the system to interleave the necessary keyboard and other methods that are
being run as separate program threads, concurrently with the simulator program
thread. Otherwise the system would stay locked in the simulator’s infinite busy-loop,
if the appropriate external action of these other methods were not permitted to
happen. There are more sophisticated facilities in Java for managing the task of
waiting for an event, but this is a simple, minimal way, that works in this context to
achieve the required behaviour.

Running A Simple Hexadecimal Program

Figure 6.9 Hexadecimal microcomputer simulator

The hexadecimal system can be set up to run in the same way that the decimal
machine was set up to run. If the 0 address in memory is initialised to rds 1, the next
place left empty and the address position 2 initialised with jmp 0, then an infinite
fetch execute loop is defined. This can be set going by initialising the program
counter to address the first location in memory, address 0. This will allow the
program code shown in the table given below to be entered serially into the system
with the required data values in the appropriate location to be executed correctly; and
then allow the system to return safely to read in the next program. A program to add

197

two numbers together, in this system will consist of the machine code to execute the
sequence of operations given in the following table.

A program to add two numbers together

Command coded decimal hex Binary Machine Code
0: Read A rds 3 1 – 3 1- 003 0001- 0000 0000 0011
1: A 25 19 0000 0000 0001 1001
2: Read B rds 4 1 – 4 1- 004 0001- 0000 0000 0100
3: B 45 2D 0000 0000 0010 1101
4: Load A lds 3 9 – 3 9- 003 1001- 0000 0000 0011
5: Add B add 4 11– 4 B- 004 1011- 0000 0000 0100
6: Store C str 5 10– 5 A- 005 1010- 0000 0000 0101
7: Write C wrt 5 2 – 5 2 - 005 0010- 0000 0000 0101

In the initial column the program is defined using variable names for the values. In

the second column these have been converted into address locations in memory, and
the commands have been converted into the codes obtained from the table of
commands given earlier. In the third column these commands have been translated
into decimal numbers for the command field of a machine code instruction and the
address field of the instruction. Converting these numbers to their hexadecimal
format gives the code in the fourth column, and this can then be converted directly to
its binary format shown in the final column.

Figure 6.10 Output from a program to add two numbers: 25 and 45

Running A Simple Hexadecimal Program

198 6 Computer Hardware and Low Level Machine Language Programming

Loading a Program

The problem with the approach given above is that only one line of the program is in
the system at one time and once it has been executed it is lost. This prevents the reuse
of code for example in repeat loops. What is needed is a way of entering the previous
program into a position in memory and then changing the program counter to address
this code and execute it.

A program to add two numbers together

command coded decimal hexa-
decimal binary

0: Read A rds 6 1 – 6 1- 006 0001- 0000 0000 0110

1: Read B rds 7 1 – 7 1- 007 0001- 0000 0000 0111

2: Load A lds 6 9 – 6 9- 006 1001- 0000 0000 0110

3: Add B add 7 11– 7 B- 007 1011- 0000 0000 0111

4: Store C str 8 10– 8 A- 008 1010- 0000 0000 1000

5: Write C wrt 8 2 – 8 2 - 008 0010- 0000 0000 1000

If the code given in the table above is located in address locations 0 to 5 and the
program counter is initialised to 0, then five fetch-execute cycles would read in two
numbers, add them together and output the answer. When the program counter gets
to 5 the program will be complete, however there is nothing to stop the system
incrementing the address for the next instruction to memory location 6, the contents
of which would then be read as though it were an instruction. This would result in
data being executed as program code probably with disastrous results. There needs to
be a way to stop once a program has finished running, or at least a way to set up and
run another program.

Also manually placing program code directly into memory in this way would
require special hardware to do it, and would be a slow and tedious task. Some way of
automating the process is desirable. In fact almost nothing new is needed to achieve
this. All that is required is the short, program loading loop already demonstrated for
the decimal machine, to be used in a slightly different way.

This can be achieved within the basic infinite fetch-execute-loop of the running
machine by interleaving each main program command with a loading command to
place it at some required location in memory. The only extension necessary is to end
the overall input sequence with a jump command. This must pass control to the
program wherever it has been placed in memory once it has been completely loaded.
Also an extra command must be placed before this, at the end of the actual program
code sequence, to jump back to the reading loop at location 0, in the way shown in
the table given below.

199

A self loading program to add two numbers together

Read 7
Read A

rds 7
rds 4

1 – 7
1 – 4

1007
1004

Read 8
Read B

rds 8
rds 5

1 – 8
1 – 5

1008
1005

Read 9
Load A

rds 9
lds 4

1 – 9
9 – 4

1009
9004

Read 10
Add B

rds 10
add 5

1 – 10
11 – 5

100A
B005

Read 11
Store C

rds 11
str 6

1 –11
10 – 6

100B
A006

Read 12
Write C

rds 12
wrt 6

1 – 12
2 – 6

100C
2006

Read 13
Jump 0

rds 13
jmp 0

1 – 13
1 – 0

100D
5000

Jump 7

jmp 7 5 – 7 5007

Figure 6.11 A self loading program to add two numbers ready for input

Loading a Program

200 6 Computer Hardware and Low Level Machine Language Programming

Figure 6.12 Input first value

Figures 6.11 to 6.15 illustrate the self loading of a simple program to add two
numbers together and write out the answer.

Figure 6.13 Adding two numbers

201

Figure 6.14 Output from a program to add two numbers: 25 and 45

Decimal 25 or hexadecimal 19 is added to decimal 45 or hexadecimal 2D to give
an output decimal value of 70.

Figure 6.15 Ready for the next program

Loading a Program

202 6 Computer Hardware and Low Level Machine Language Programming

The system which has been developed to this point still has serious limitations. It
is not clear at first sight, for example, how an array of numbers can be entered into
neighbouring memory addresses, or how the collection can be processed if the array
is of varying size. If each value has to be identified by a single explicit address, in a
program, the same limitations would seem to apply to those faced in chapter 2 using
simple names, until the array construct and for loop were introduced.

A Program to Load and Run Other Programs

Location Labels Program Comment
1003 “Repeat” 101B Read to “Start”
1004 101C Read “Length”
1005 901D Load “Read0p”
1006 B01B Add “Start”
1007 A00A Store “ReadOp”
1008 B01C Add “Length”
1009 A01E Store “ReadEndOp”
100A “ReadOp” 0000 Read next command
100B 900A Load “ReadOp”
100C B01F Add “One”
100D A00A Store “ReadOp”
100E C01E Subtract “ReadEndOp”
100F 7011 If Zero Jump to “End”
1010 500A Jump to “ReadOp”
1011 “End” 9020 Load “Store0p”
1012 B01B Add “Start”
1013 B01C Add “Length”
1014 A016 Store “StoreEndOp”
1015 9021 Load “JumptoRepeat”
1016 “StoreEndOp” 0000 Store at “Code End”
1017 9022 Load “JumpOp”
1018 B01B Add “Start”
1019 A01A Store “JumptoStartOp”
101A “JumptoStartOp” 0000
101B “Start” 0000
101C “Length” 0000
101D “ReadOp” 1000
101E “ReadEndOp” 1000
101F “One” 0001
1020 “StoreOp” A000
1021 “JumptoRepat” 5003

 1022 “JumpOp” 5000
5033

Figure 6.16 Loading program

Fortunately there is a way round this difficulty. The solution results from the fact

that each instruction is a numeric code that can be treated as an arithmetic value.
This means it can be entered into the arithmetic unit and modified, for example by
adding one to it so incrementing the address section of the command. This makes it

203

Figure 6.17 Loading a program as an

array of contiguous
commands

possible to take a command from a program sequence, modify it, and then store it
back in its operational place. If the code is constructed as a loop then the same
command can be applied to consecutive memory locations by incrementing its
address in this way as part of the loop-code. It is also possible to set a limit value to
such a modified command so that if subtracting the limit value from it at the end of
each cycle results in zero, an appropriate jump command can exit the loop and pass
control to following commands. The way this can be used to write a program to load
a new program into a predetermined memory space is shown above in Figure 6.16
and is illustrated in use by the simulation system shown in Figures 6.17 and 6.18.

As before this program (in the yellow column) has to be loaded using the
primitive loader and a sequence of locating read-commands (in the blue column).
However once the main program is in memory it will take over the task of loading
subsequent programs into memory. All that needs to be added to each new program
is its start address and its length. The new program will then be read into the required
space and be executed on control being passed to it. A return jump-command must be
added at the end of each new program to return control to the loader when the newly
entered program has run, ready for the next program. Figure 6.17 shows the loading

Loading
program

Loaded
program

A Program to Load and Run Other Programs

204 6 Computer Hardware and Low Level Machine Language Programming

program correctly located in memory and a short program that it has entered into the
space starting at hex address 25. This program runs to give the output shown in
Figure 6.18 before returning ready to enter the next program.

Figure 6.18 Running the loaded program

Processing Arrays

Sequentially processing numbers in an array, within a loop, requires a long sequence
of commands to reset the addresses of the code within the loop to allow it to be
repeatedly executed in the desired way. Take as an example the problem of locating
and outputting the largest value in an array of numbers. In Java the code would be a
simple loop followed by a write statement:

The inner statements in this loop can be implemented in machine code by a short

instruction sequence. However each command on an array value in this sequence has
to have its address modified before the next cycle of the loop can be executed.

int temp=0;
int [] array = new int[]{23,45,2, 12,99}; // init
for(int i=0; i<array.length; i++){ // setop

if(array[i-1]>array[i]){ // test
temp= array[i-1]; // swap
array[i-1]= array[i]; // swap
array[i]=temp; // swap

}
}
write(array[array.length-1]); //out

205

Location Labels Program Comment
2
3 "9031", Load array “start address” init
4 "A035", Store in “current” init
5 "B034", Add “one” init
6 "A036", Store in “next” init
7 "B032", Add “length-1” init
8 "B020", Add “loadcurrentOP” init
9 "A037", Store “endtest” init
A “cycle” "901C", Load “loadnextOP” setop
B "B036", Add “next” setop
C "A01C", Store “loadnextOP” setop
D "A022", Store “loadnextOP2” setop
E "C037", Subtract “endtest” test
F "702A", Jump if equal to zero to “end” test
10 "9025", Load “storenextOP” setop
11 "B036", Add “next” setop
12 "A025", Store “storenextOP” setop
13 "9020", Load “loadcurrentOP” setop
14 "B035", Add “current” setop
15 "A020", Store “loadcurrentOP” setop
16 "901D", Load “subtractcurrentOP” setop
17 "B035", Add “current” setop
18 "A01D ", Store “subtractcurrentOP” setop
19 "9023", Load “storecurrentOP” setop
1A "B035", Add “current” setop
1B "A023", Store in “storecurrentOP” setop
1C “loadnextOP” "9000", Load “next” test
1D “subtractcurrentOP” "C000", Subtract “current” test
1E "6020", Jump if negative to “loadcurrentOP” test
1F "5026", Jump to “resetincrements” test
20 “loadcurrentOP” "9000", Load “current” swap
21 "A033", Store in “temp” swap
22 “loadnextOP2” "9000", Load “next” swap
23 “storecurrentOP” "A000", Store in “current” swap
24 "9033", Load “temp” swap
25 “storenextOP” "A000", Store in “next” swap
26 “resetincrements” "9034", Load “one” rep
27 "A035", Store in “current” rep
28 "A036", Store in “next” rep
29 "500A", Jump to “cycle” rep
2A “end” "902E", Load “writeOP” out
2B "B032", Add “length-1” out
2C "B031", Add “start address” out
2D "A02E", Store “writeOP” out
2E “writeOP” "2000", Write Largest Value in the Array out
2F "5000", Jump to Loader stop
30 “0000”, Null command
31 “start address” "0038", var
32 “length-1” "0004", var
33 “temp” "0000", var
34 “one” "0001", var
35 “current” "0000", var
36 “next” "0000", var
37 “endtest” "0000", var

Figure 6.19 Program to select the largest value in an array

Processing Arrays

206 6 Computer Hardware and Low Level Machine Language Programming

38 "0005", data
39 "0001", data
40 "0009", data
41 "0004", data
42 "0008" data

Figure 6.20 Test data array

Selecting the largest value in an array can
be programmed using the same strategy used
to implement the loading program. Each
array operation is set up with a base address
of 0. These operation codes are then
modified by adding on an address-offset to
give the address to which they are to be
applied. This group of commands loading the
initial command, adding on the offset and
then storing the result back into the program
sequence where it applies, allows the code to
be initialised to target the first element in an
array, and then by changing the offset being
added to the previous operation code, can be
used to increment the addresses to apply to
the neighbouring sequence of locations in the
array. Figure 6.19 shows a bubble sorting
algorithm used to sweep the largest value in
an array to the highest index position. The
inner loop is identified by the swap labels in
the right hand column. The operations
needed to modify these instruction to handle
successive locations in the array, are shown
labelled setop. Though the inner loop
appears relatively simple the overhead to
apply it to an array is clearly very large. Even
the output statement for the last element in
the array, is made up from five commands.

The importance of array based operations
is one reason why better ways of executing
these kinds of algorithms evolved. One
approach is to provide hardware support for a
base-displacement addressing operation. The
program shown in the micro-processor
simulator memory in Figure 6.21 can be
considerably reduced using this kind of
extension to the addressing circuitry in the
computer system’s hardware.

Figure 6.21 Loaded program

207

Figure 6.22 Input array and final array

The output from the program in Figure 6.21 is shown in Figure 6.22 along with the
memory showing the initial data array and the memory showing the reordered array.

Extending the Java Micro Processor Simulator

If the address used to access memory is calculated by adding together a base address
held in one register and the address held in an instruction address field then the
program given in Figure 6.19 can be rewritten in a different way. The extension to
the simulator to support this is shown in Figure 6.23. However, this change in the
hardware requires an extension to the instruction set needed to run the system.

Once further registers are added to the system the number of instructions to
control the alternative settings of the system which might be needed can became
larger than the sixteen which are supported by one hexadecimal character. This could
involve changing the 16 bit word size that is the basis of this simulator system’s
architecture. However, the objective in this chapter is not to explore the many design
options which might be used for computer processors but to illustrate the key ideas
underlying the way that computer systems have evolved, employing a minimum
number of changes to the initial simulator system. To this end two steps have been
taken, the first is to include a mode or state variable for the simulator system. This
can be used to extend the addressable microcode range of commands. For example

Extending the Java Micro Processor Simulator

208 6 Computer Hardware and Low Level Machine Language Programming

one bit potentially gives 32 alternative instructions if needed. The second step is to
make the registers accessible using memory addresses. This is called memory
mapping. In this first example the addresses of the extended set of registers are
located at the high end of the memory. The program counter is accessed as memory
location FFF, and the associated base address register is located at position FFE. This
allows the existing instruction-set to operate on these registers without creating new
instructions for each register. The state variable (0,1) selects the register set used to
provide the next address.

Figure 6.23 Read in two numbers and subtract the second from the first

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
A:
B:
C:
D:
E:
F:

nop
rds
wrt
lvl
sta
jmp
jng
jez
lda
lds
str
add
sub
mul
div
mod

0: A null command, used as a continue statement for labels
1: Read a hexadecimal format number into memory D[i+j]
2: Write a value out in decimal format from memory D[i+j]
3: Set Base Registers: k=0 absolute, k=1 relative addressing
4: Store Arithmetic Unit register A in absolute location D[i]
5: Load the program counter: register C, with address i.
6: If register A is negative load register C with address i.
7: If register A is zero load register C with address i.
8: Load Arithmetic Unit register A from absolute location D[i]
9: Load Arithmetic Unit register A from memory D[i+j]
A: Store Arithmetic Unit register A back to memory D[i+j]
B: Add memory value D[i+j] to register A
C: Subtract memory value D[i+j] from register A
D: Multiply register A by value from memory D[i+j]
E: Divide register A by value from memory D[i+j]
F: Remainder of register A divided by memory value D[i+j]

1
2

3

4

5

6

7

8

9

A
H

J

C

G

F

B D

E

209

Figure 6.24 Output the result of subtracting one number from another

Table 6.1 Micro-code switch settings for the extended simulator

private static int [][] swS = new int[][]{ // command switch settings

 // 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J // switch labels
/*nop 0*/ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, //0: no operation
/*rds 1*/ {0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1 }, //1:read a number
/*wrt 2*/ {0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1 }, //2:write a decimal number
/*lvl 3*/ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, //3:set state register
/*sta 4*/ {0,0,0,0,0,0,1,1,0,0,0,1,0,0,1,0,0,0,0 }, //4:store acc absolute
/*jmp 5*/ {0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,1 }, //5:direct jump
/*jng 6*/ {0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1 }, //6:if acc negative jump
/*jez 7*/ {0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1 }, //7:if acc zero jump
/*lda 8*/ {1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0 }, //8:load acc absolute
/*lds 9*/ {1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0 }, //9:load acc relative
/*str A*/ {0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,1,0,0,0 }, //A:store acc relative
/*add B*/ {1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0 }, //B:add to acc relative
/*sub C*/ {1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0 }, //C:subtract acc relative
/*mul D*/ {1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0 }, //D:multiply the acc relative
/*div E*/ {1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0 }, //E:divide the acc relative
/*mod F*/ {1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0 }, //F:modulo the acc relative

 // 0 1 2 3 4 5 6 7 8 9 A B C D E F G H J // switch labels
/*fch 10*/ {0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,1,0,0,0 }, //*:fetch-mode relative
/*fch 11*/ {0,0,0,1,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0 } //*:fetch-mode absolute
 };

0

1
2

3

4

5

6

7

8

9

A
H

J

C

G

F

B D

E

Extending the Java Micro Processor Simulator

210 6 Computer Hardware and Low Level Machine Language Programming

The array shown in table 6.1 defines the switch settings used to connect the
registers in the simulator to implement the different instructions. All the operations
on data are implemented using relative addresses calculated by adding a base address
and an offset address (the address contained within each command), with the
exception of two commands to load and store the accumulator using the offset
address as an absolute value. This allows the accumulator to act as a way of
transferring values to and from the registers. Two settings are possible for the fetch
cycle. Initially just the relative fetch sequence is used, allowing the setting of the base
register to zero to provide an absolute addressing mode.

Figure 6.25 Selecting the largest value from an array

The program shown in Figure 6.19, can still be executed in this extended system
in the way shown in Figure 6.25. However the same algorithm can be rewritten to
take advantage of the new registers in the following way: If the address of the
working location in the array is held and modified in the base address register but
offsets from these values, used to compare neighbouring values in the array, are held
in the program instructions, then the program can be considerably reduced in length
in the way shown in Figure 6.26, with the output illustrated in Figure 6.27.

Program Libraries

Providing these extension to the addressing hardware makes the related task of
relocating a program a simpler exercise. Changing the location of the program
requires a base-address register to be used in the fetch cycle. Setting up the new
value in this base-address register immediately changes the next address being
operated on. This will need the program counter to be modified at the same time

211

Input Program

Program after Running .

3 "9019", Load Start
4 "A01C", Store Index
5 Loop: "4FF8", Set BaseR
6 "9000", Load Index
7 "C001", Subtr Index+1
8 "600F", If –ve ->Incr
9 "9001", Load Index+1
A "401B", Store Temp
B "9000", Load Index
C "A001", Store Index+1
D "801B", Load Temp
E "A000", Store Index
F Incr: "801D", Load Zero
10 "4FF8", Set BaseR
11 "901C", Load Index
12 "B01E", Add One
13 "A01C", Store Index
14 "C01A", Subtr Length
15 "C019", Subtr Start
16 "701F", If 0 -> Output
17 "901C", Load Index
18 "5005", Jump Loop
19 Start: "0025",
1A Length: "0005",
1B Temp: "0000",
1C Index: "0000",
1D Zero: "0000",
1E One: "0001",
1F Output: “901C” Load index
20 “4FF8” Set BaseR
21 “2000” Write index
22 “801D” Load zero
23 “4FF8” Set BaseR
24 “7000” If 0 ->restart
25 "0007", Array
26 "0009", Array
27 "0000", Array
28 "0002", Array
29 "0004", Array
2A "0003" Array

Figure 6.26 Select the array’s largest value using base displacement addressing

if chaos is to be avoided. One way of achieving this switch to new addressing values
is to have a duplicate pair of registers and while one is being used, allow the other set
to be reset with new values. If the switch to the new values is done in one command
then the modified instruction set given above can be made to work using code loaded
anywhere into memory -- merely by changing its base address value.

Program Libraries

212 6 Computer Hardware and Low Level Machine Language Programming

Figure 6.27 Selecting an array’s largest value using base displacement addressing

Relocating Programs

Figure 6.28 Relocating a program: written to operate from address 000
 but being run from address 003 without code changes

213

Figure 6.29 Relocating a program: written to operate from address 000 but
being run from address 003 without code changes

Figure 6.30 Relocating a program to select the largest value in an array: written to operate

starting from address 000, but being run from address 003

Relocating Programs

214 6 Computer Hardware and Low Level Machine Language Programming

The development of computing systems from specialist laboratory equipment to a
general purpose facility, created many new demands. Not all the people who would
benefit from using these computers had the specialist knowledge to program them.
These people needed support to prepare programs; or help to use programs already
written by more specialist programmers. This led to the construction of program
libraries, from which prewritten programs and sub-programs could to be loaded into
the computer system to support a wider range of computer users. Early developments
were program libraries to support input output operations and also to provide
standard mathematical functions.

By writing these library programs in a standard form: for example to operate from
address 000, base-address registers allowed them to be relocated and linked together
with very little overhead and re-coding in a way similar to running the program
illustrated in Figures 6.28 to 6.30.

In early laboratory systems a programmer would book a machine for his sole use
for a given time period in which he would prepare and enter programs into the
system run them and collect any printout produced. The development of libraries and
the evolution of the loading programs to manage the more complex task of linking
existing programs into new programs, led to the development of supportive,
“executive” programs that in time evolved into operating systems. These systems in
turn made the computing facilities accessible to a larger community of people.

The need for the operating system grew as the complexity of computer systems
grew and the demands for the services they provided grew. Also as this “service”
developed the operating system developed a management and protective function to
prevent the actions of one system user damaging the work of another. Early computer
systems were large and expensive pieces of hardware, so as their services became
more commercialised, it was natural that their use should to be charged to their users
in some way. This meant that a much more efficient way of using a system’s
processing power had to be provided.

In particular the time taken to enter programs and data wasted valuable processing
time if systems with the simple architecture of the form discussed above were
employed. Electronic central processing units worked many orders of magnitude
faster then a programmer could feed such a system with programs and data. The
solution to maintaining an efficient flow of work through the central processing unit
was the same as that employed in manufacturing production lines: add in parallel
units in the stream to bolster up the performance of any unit that was creating a
bottleneck in the flow.

Parallel IO Processors,

In order to increase input and output meant preparing programs and data in parallel,
off line, onto cards or paper tape, and then reading them in at a faster speed serially
into the computer processing unit. This in turn was speeded up by transferring the
programs and data onto magnetic tape, which could then be read in at an even faster
rate. This process was further improved in efficiency by reading more than one
program into memory at once, parallel to the working of the central processing unit.

215

Where programs were self contained this meant that the central processing unit could
be kept continuously active, moving to the next program when the current one ended.

However where a program needed to read input, or write output data, this could
still involved slow interactions with a magnetic tape or disk unit. A further
improvement became possible where, this input-output task’s access to memory for
data transfer was completely delegated to separate system IO units,. The central
processing unit could be switched from the program, waiting for Input-Output to take
place, to the next program in memory that was ready to run. This context switching
for a simple basic machine, if all the programs were stored in memory: merely
consisted of saving the program counter, arithmetic register and possibly the
instruction register contents for the current program and replacing them with those of
the new program.

This hierarchy of input output facilities depended on a hierarchy of data storage
facilities. From this evolved a hierarchical file storage system allowing the operating
system to request the automatic transfer of data from slow back up storage to faster
more readily accessible devices as they were needed, again in the interest of flexible
efficiency. The transfer of data and program code to and from the central processor
and its high speed memory as it was needed led to the concept of virtual memory. An
address space very much larger than that supported by the computer’s main memory
could be provided as a programming convenience to the user, and again a form of
base displacement addressing hardware could be used to implement it.

In early systems the operating system needed specific commands to set up and
activate the hierarchy of storage units. These were typically controlled by a program
written in what was called a Job Control Language, which set up the context in which
a new program would be run. Where programs were too large for a system’s
addressable memory they had to contain instructions to the operating system, to swap
in program code in “overlays” from slower memory in order to keep the program
running. However, if a programmer wrote a program as though the address space was
as large as was needed, then the operating system could be set up either to translate
these virtual addresses into an actual address in memory containing the relevant
commands, or into instructions to read the commands in from backup memory into
main memory before applying them. Where this swapping process was made in
standard sized blocks called pages the overall scheme was called a “paged virtual-
memory” system. Again such a system could be implemented using a form of base
displacement registers.

Context Switching and the Interrupt

In order to support these developments operating systems had to evolve to supervise
and manage the interactions between the various cooperating units in these growing
systems. An early development, which made this cooperation easier to handle was
the interrupt. As an example when an output unit had completed its current task it
would notify the main system that it was finished by an electronic signal called an
interrupt. This signal would inform the executive or operating system program that it
was free to pass control back to the program that had been previously halted while its
data was being passed to the output unit.

Context Switching and the Interrupt

216 6 Computer Hardware and Low Level Machine Language Programming

Simple supervisor program to switch from one program to another in a loop

3 "4FF7", save accumulator
4 "802C", load zero
5 "4FFE", set absolute IRbase 0
6 "9027", load current process
7 "D02A", multiply by five
8 "B02B", add begin address
9 "4FFE", set absolute IRbase 0
A "8FF7", load stored accumulator value
B "A000", save 0 relative
C "8FFF", load IR base 1
D "A001", save 1 relative
E "8FFB", load IR 1
F "A002", save 2 relative
10 "8FFD", load PC base 1
11 "A003", save 3 relative
12 "8FF9", load PC 1
13 "A004", save 4 relative
14 "802C", load zero
15 "4FFE", set absolute IRbase 0
16 "9027", load current process
17 "B028", add one
18 "F029", mod number of processes
19 "A027", save current process
1A "D02A", multiply by five
1B "B02B", add begin address
1C "4FFE", set absolute IRbase 0
1D "9001", load relative 1
1E "4FFF", save IR base 1
1F "9002", load relative 2
20 "4FFB", save IR 1
21 "9003", load relative 3
22 "4FFD", save PC base 1
23 "9004", load relative 4
24 "4FF9", save PC 1
25 "9000", load accumulator
26 "3003", change state
27 current process "0000",
28 one "0001",
29 number of processes "0003",
2A five "0005",
2B begin "002D",
2C zero "0000",

Figure 6.31 Executive program to switch from one program to the next

Control program
addresses

Setup base
address for
current process

Store register
contents for
current process

Control program
addresses

Setup base
address for next
process

Reset register
contents for next
process

start

217

Three concurrent programs and their saved register contents

2D accumulator value “0000",
2E I R base address value "003C",
2F Instruction register value "0000",
30 P C base address value "003C",
31 Program counter value "0000",
32 accumulator value "0000",
33 I R base address value "0040",
34 Instruction register value "0000",
35 P C base address value "0040",
36 Program counter value "0000",
37 accumulator value "0000",
38 I R base address value "0044",
39 Instruction register value "0000",
3A P C base address value "0044",
3B Program counter value "0000",
3C 0 "9003", Load 3
3D 1 "2003", Write 3
3E 2 "5000", Jump to 0
3F 3 "0005", hex 5, decimal 5
40 0 "9003", Load 3
41 1 "2003", Write 3
42 2 "5000", Jump to 0
43 3 "0050", hex 50, decimal 80
44 0 "9003", Load 3
45 1 "2003", Write 3
46 2 "5000", Jump to 0
47 3 "0250", hex 250, decimal 592

Figure 6.32 Three separate processes running concurrently

The two states of the simulator system employed in the example given in Figure

6.29 to run a relocated program can also be set up to support a supervisor state, and a
program running state. In this initial example the two separate addressing steps
needed for fetching and executing commands are changed together with the change
of state from 0-1. However there are also applications where these two addressing
modes may need independent base-address switching.

Two programming levels with two addressing modes gives an overall set of four
register configurations. If the level variable is extended from one bit to two bits then
four different switching arrangements can be combined with memory mapped access
to a set of four base-displacement register pairs. A schematic circuit to implement
this arrangement is given in Figure 6.33. Based on this arrangement the supervisor
program given in Figure 6.31 can switch from process to process for the programs
given in Figure 6.32.

process 0:

Process 1:

process 2:

process 2:
saved
registers

Process 1:
saved
registers

process 0:
saved
registers

Context Switching and the Interrupt

218 6 Computer Hardware and Low Level Machine Language Programming

Figure 6.33 Schematic circuit for address mapped registers

However, if for any reason the user program should switch registers for accessing
data in the execute cycle, then this arrangement is incomplete. Storing the state of the
program for context switching has to include the configuration of the register
switching as well as the contents of the accumulator register if the program is to be
restored to run from the point it was stopped. An alternative arrangement is always to
have the controlling address values in the same registers so if an interrupt occurs then
the returned configuration after storing the register values will always be the same.
This can be achieved by the schematic circuit layout shown in Figure 6.34.

A

B

data bus

add

s

s

s

s

s

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W s

4088: PC1

4089: PC2

4094:BaseIR1

4095:BaseIR2

address state

fetch execute cycle

4092:BasePC1

4093:BasePC2

4091: IR2

4090: IR1

219

Figure 6.34 Alternative schematic circuit for address mapped registers

Changing base register values and program counter values is achieved by

physically swapping the contents of the address registers before the fetch operation.
The output A gives the new address for accessing memory, However the contents of
the instruction register also contains the command code and this has to be separated
out as output B. An advantage of this arrangement is that only one register needs to
be set up as the instruction register linked to the circuits that set the switches to
configure the computer’s behaviour. Similarly there is only one program counter
addressing circuit to link to the memory units.

s

s

s

data
bus

A

B

add

4094:BaseIR1

4095:BaseIR2

4092:BasePC1

4093:BasePC2

R/W 4088: PC1

R/W 4089: PC2

R/W 4090: IR1

R/W 4091: IR2

X

Y

R/W

R/W

R/W

R/W

s

s

s

s

s

s

s

address state

Context Switching and the Interrupt

220 6 Computer Hardware and Low Level Machine Language Programming

In the simulation shown in Figure 6.35 the reset button provides a random
interrupt to the supervisor program which then saves the register values for the
currently running program, loads the registers for the next program from its list of
waiting programs and then changes state to the program running state to allow the
newly setup program to continue processing. Figure 6.35 shows the result of running
the program shown in Figure 6.32 where each change in the value of the output is
triggered by an interrupt 80 J592, 592 J5 and 5 J80.

Figure 6.35: Random interrupts from the reset button change the state of the system from

program level to supervisor level allowing the operating system program to
transfer control from one process to another

It is clear that there are a variety of possibilities here to change the hardware and

the related instruction set. The scheme which has evolved in this chapter has been
developed so that while keeping to the original sixteen commands is still able to
demonstrate the way that the the key programming operations encountered in Java
can be supported at the hardware level of a computer system.

Processes and Threads

The example of context switching illustrates the mechanism underlying a way a
system can be set up to run concurrent processes and in the case of the Java language
system, manage concurrently running program threads.

Interrupts at the hardware level occured at any moment being “asynchronous”
rather than tied to the clock cycle time of the computer system, and consequently

221

created difficulties by splitting processes at points that subsequently made them run
incorrectly and often resulted in system crashes. The solution was to create “critical
regions” in program sequences that could not be electronically interrupted until they
were complete. Ways of handling such interrupts robustly and correctly became
essential when processes needed to communicate with each other through shared
common data. These problems can be found analysed in greater depth in books on
operating systems. The problem is simplified in these examples by only reacting to
the interrupt during the fetch cycle of the simulated machine and blocking out the
effect of new interrupts while in the supervisor mode.

Breaking down an operation into a collection of independent parallel tasks and
implementing them as processes written as independent programs each designed to
carry out its own specific task made complex systems much easier to build and
maintain. The code for each task was simpler to write and much clearer to read by
other programmers. As long as the communication between processes was possible to
implement in a safe and efficient way the result was a more flexible and powerful
system.

In Java threads are programs that are run as independent concurrent processes
within the language system. The communication between them is based on events,
which are equivalent to software generated interrupts. They have already been
introduced briefly in earlier chapters when the input of information from the
keyboard and from the mouse was discussed. When the mouse button is pressed it
generates an event which triggers the system to send the coordinate of its location to
all threads that have entered their names onto a list requesting notification of this
event. The way this is done is that the control system calls all the actionPerformed
procedures in these threads and these application written procedures use the data
from the mouse in whatever way is appropriate for the application thread concerned.

The technique employed when requesting new input to the simulator program, is
based on a primitive “busy-wait” or “poling” technique that predates the use of
interrupts. It was used because it is simple and obvious what it is doing, but it
illustrates the advantage of the interrupt system. Instead of the simulator program
thread having to keep asking whether any new data has been received the program
thread could have been put into a wait state. The Java system keeps a list of processes
in this wait state, that are ready to run when tasks they are waiting for have
completed, and then reenters them into a ready to run list as soon as these tasks notify
the control system by an interrupt or an event that they are complete. This saves the
programs the unnecessary run-time needed by the poling approach.

Time Sharing and Interactive Systems

The ability to run independent processes in this way depended on giving all active
programs a share of the available processor time. If a program did not request IO and
was a long program it could lock out other processes for the whole of its running
time. In order to share processing time more fairly a system evolved where after a
predefined time interval a system clock would issue an interrupt. This by returning
control to the operating system would allow a switch to other programs to be made
that were waiting to run. This mechanism called time slicing made it possible for a
collection of users to think they were running their programs in parallel because of

Time Sharing and Interactive Systems

222 6 Computer Hardware and Low Level Machine Language Programming

the speed difference between their rate of work and that of the central processing
unit. This led to the development of interactive time sharing systems on the back of
the multitasking systems that were set up to run multiple programs efficiently.

Networks Communication and Distributed Systems

As hardware developed, integrated circuits reducing the size of components by orders
of magnitude with corresponding increases in speed, the size and the cost of
computer systems reduced until the personal computer became a practical product.
This development linked with the evolution of computer-computer communication
led to the Internet and more recently the World Wide Web. This development has
greatly increased the importance of the graphics user interface as the bridge between
the user and a much larger distributed network of computer systems.

System and Language Hierachy

The complexity of the operating systems clearly had to grow to manage these system
developments. All that has been possible in this chapter is to illustrate with a
simplified schematic system the nature of the main underlying processes involved.
Operating systems have evolved in layers. A hierarchical structure was the only way
the complexity could be handled in a robust way. Another important development
necessary to manage the complexity, which also grew in an hierarchical layered way
is the structure of the programming languages used to program these systems.

The machine language illustrated in this chapter for any practical programming
task is both voluminous and error prone. In the next chapter, the way in which more
user friendly programming schemes have developed is illustrated. However to
maintain a consistency in the presentation and a plausible bridge between the layers,
these developments are based on the schematic hardware systems simulated in this
chapter.

Portable Software and Virtual Machines

A large variety of machine architectures have been developed and range from the so
called CISC: Complex Instruction Set Computer systems to the RISC: or Reduced
Instruction Set Computer systems. In order to avoid having to program each machine
with different code for the same application, a programming language that could be
translated into the machine code for each of the different hardware platforms was
needed. Programs needed to be portable.

14*(3+6)/2.33

1 2

4 5

7 8

0 (

3 +

6 -

9 *

) /

=

7
Intermediate, Assembler
Language Programming
Macro Expansions, and
Expression Translation

Introduction

Writing a program directly in the form of the binary or numerical instruction codes
discussed in chapter 6, is difficult and error prone for anything but very simple
programs. Generally a programmer would develop a new program using psuedo code
representing the meaning of each instruction, which makes it easier to keep track of
the behaviour of an evolving program. Even if this psuedo code directly matches the
machine code, it introduces a valuable new flexibility that makes the programmer’s
task a great deal easier. This results from using variable names instead of value
addresses, and where necessary line labels for jump commands before true memory
locations have been established. Once a program has been set out in this way it is a
relatively automatic process converting it into machine code, even where the task has
to be carried out manually.

Early on, the convenience of writing a program in this way, in a text form, led to
attempts to use it for entering the program into a computer system and then using the
computer system itself to carry out its translation into machine code. This meant the
program had to be entered into the machine system as a sequence of character codes.
These then had to be grouped together into variable names, digit strings as numbers,
and the names used for operation codes, before they could be translated into the
corresponding machine code. One payoff for entering programs in this way was that
the location of a program could be automatically selected or adjusted by the
translation program. It provided an alternative for relocating a program when only a
simple hardware-addressing scheme was available. Machine code using absolute
addressing could only run from one location in memory making it difficult to share

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_7, © Springer-Verlag London Limited 2008

224 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

prewritten machine programs. Once code could be automatically relocated it made it
possible to build libraries of procedures that programmers could add to their own
programs and could be located in memory wherever the new program demanded.

Assembly Language Translation
An assembly language for the computers simulated in chapter 6 can be formally
defined in the following way. Instructions take on one of two alternative structures:

<Operation Code> <Variable Name> ‘;’
<Label> ‘:’ <Operation Code> <Variable Name> ‘ ;’

for example:

Assembly Program Decimal Machine Code

start : rds varA ;

rds varB ;
lds varA ;
add varB;
str varC ;
wrt varC ;
jmp start ;

12 00019
13 00020
14 20019
15 30020
16 70021
17 10021
18 80012
19 *****
20 *****

If each instruction line is read into the translation program as a String, then the

whole program can be entered into an array of Strings in the following way:

IO.writeString("Please enter the source program: \n");
String str = IO.readLine();
while (!str.equals("stop")){program[i++]= str+" "; str = IO.readLine();}
int programLength = i;

Each string in this array then has to be partitioned into substrings holding labels,

operation names and variable names. If each substring is assumed to have the same
structure: a name made from alphabetic and numeric characters, but starting with an
alphabetic character, it can be extracted into a separate new string str by the code:

for(int j=0; j < programLength;j++){
int k=0, n=0; str="";
char ch = program[j].charAt(k++);
while(ch ==' '){ch = program[j].charAt(k++);}; // SPACES
if((ch>='a')&&(ch<='z')){

while(((ch>='a')&&(ch<='z'))|| ((ch>='0')&&(ch<='9'))){
str= str+ch;
ch = program[j].charAt(k++);

}

Assembly Language Translation 225

Where j selects the line of code program[j], k selects the next character in the
String holding this line of code, and str holds the String to which an extracted name
is transferred. When processing a new instruction string, space characters separate
names but they need to be removed. Once the names have been extracted they can be
stored in a new array String[] programElements, set up to separate the labels,
operation codes and variable names as individual strings:

String [][] programElements = new String[100][3];

This allows each of these elements to be processed in different ways.

Figure 7.1 Assembly Code Translation

When the first name is removed it is
not possible to know whether it is a
label or an operation code until a colon
is found in the instruction string. When
a colon is encountered then the first
name can be placed in
programElements[n][0] as a label, and
the next name encountered placed in
programElements[n][1] as an operation
code. If no colon is found then the first
name is entered as an operation code,
and a null String is entered into
programElements[n][0] as the label.
The final name located is then entered
into programElements[n][2] as a
variable name. This allows the labels,
operation codes and variable names to
be processed in columns: labels first,
operation codes second and variable
names last.

As labels names are identified they
can be placed in a name table. This is
arranged so that names are not
duplicated – the same name must
always refer to the same object. Where
the name is a label-name its object can
be the line index of its input program
string, but ultimately will be the
memory address of its machine code
equivalent. As a label is entered into the
name table it can be checked that it is
not duplicated and the line index [j], its
associated object, placed in an array

of integer addresses corresponding to the array of names in the table. These values
can then be used later as the addresses to replace the labels used as variables in jump
commands. To ensure names are not duplicated a table of names is set up so that only
one occurrence of each name as a string is recorded and all duplicates are referenced

226 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

back to to the original entry. A simple version of a StringTable class can be set up to
support this name table function in the following way.

class StringTable{

private String[] table = new String[100];
public int[] val= new int[100]; private int size = 0;

StringTable(){ }
StringTable(String[] str){size=str.length; table=str;}
public int locate(String str){

for(int i=0; i<size; i++){if(str.equals(table[i]))return i;} return -1;}
public int add(String str){

int index = locate(str);
if(index== -1){index = size; table[index]= str; size=size+1;} return index;

}
public String getElement(int i){

 if((i>=0)&&(i<size))return table[i]; else return "";}
public boolean contain(String str){

int k= locate(str);
if (k<0)return false; else return true;

}
public int getSize(){ return size;}
public void setTable(String[] tbl){ table = tbl;size= tbl.length;}

}

In this program translation example, a separate table for the operation-code names,
ordered so the index of each code name corresponds to its machine code, is set up at
the beginning of the translation program. Once the potential operation codes placed
in programElements in the second column, are confirmed to be correct, by locating
them in this operation-code table, the indices of their positions in this table provide
the numerical command codes for their equivalent machine code instructions.

By processing the third column of programElements last, the variable names, not
used as labels, can be added to the name table after the labels. These names refer to
data storage spaces. If spaces are allocated for these variables at the end of the
program, the addresses that refer to them can be generated and entered into their
undefined value-array spaces (not already set: as the label locations will be), merely
by counting on from the last line of the machineProgram code generated from the
second column of the programElements array. Once the value array in the name table
has been completed the third column of programElements containing variable and
label names can be used to look-up the address that each name must be replaced by,
and which can then be added to the machine code address field, to complete the
machine program in the way shown in Figure 7.1.

import java.awt.*; import javax.swing.*; import javax.swing.text.*;
import javax.swing.table.*; import javax.swing.event.*; import java.awt.image.*;
import java.awt.event.*; import java.util.*; import java.text.*; import java.lang.*;
public class Assembler{

Assembly Language Translation 227

static TextWindow jInput= null; static TextWindow jOutput = null;
static boolean notFinished = true;
static int i = 0, stringIndex =0, recordIndex =0, index =0, labelCount = 0;
static String str = "", inputString ="";
static int[] record = new int[500];
static TextWindow IO = new TextWindow(20,170,800,600,"Assembler");

public static void main(String[] args){

StringTable names = new StringTable(), commands = new StringTable();
commands.setTable(
 new String[]{"rds","wrt","lds","add","sub","mul","div","str","jmp","jng"});
String [] program = new String [100];
int [] machineProgram = new int[100];
String [][] programElements = new String[100][3];
for(int i=0; i<100;i++) machineProgram[i]= -1;
int i=0; int m=0;
IO.writeString("Please enter the source program: \n");
String str = IO.readLine();
while (!str.equals("stop")){

program[i++]= str+" "; str = IO.readLine();} // READ IN THE NEXT PROGRAM
int programLength = i;

for(int j=0; j < programLength;j++){

int k=0, n=0; str="";
char ch = program[j].charAt(k++);
while(ch ==' '){ch = program[j].charAt(k++);}; // SPACES
if((ch>='a')&&(ch<='z'))

while(((ch>='a')&&(ch<='z'))|| ((ch>='0')&&(ch<='9'))){
str= str+ch;
ch = program[j].charAt(k++);

}
while(ch==' '){ch = program[j].charAt(k++);}; // SPACES
if(ch==':'){

ch = program[j].charAt(k++);
programElements[j][0]= str; // LABELS
while(ch==' '){ch = program[j].charAt(k++);}; // SPACES
str = "";
while((ch >= 'a')&&(ch <= 'z')){

str= str+ch; ch = program[j].charAt(k++);}
}
programElements[j][1] = str; // OP CODES
str="";
while(ch==' '){ch = program[j].charAt(k++);}; // SPACES
while((ch>='a')&&(ch<='z')){

str= str+ch; ch = program[j].charAt(k++);}
programElements[j][2]=str; // VARIABLES

}

228 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

int n=0; // GENERATING MACHINE CODE
for(int j=0;j < programLength;j++) // LABELS

if(programElements[j][0] != null){
n = names.add(programElements[j][0]); names.val[n]= -(j+1);

}
int numberOfLabels=names.getSize();
m=0;
for(int j=0;j<programLength;j++){ // OPERATION CODES

if((m=commands.locate(programElements[j][1]))>=0){
machineProgram[j]= m*10000;}

}
for(int j=0;j<programLength;j++){ // VARIABLES

n = names.add(programElements[j][2]);
if (names.val[n]>= 0)names.val[n]= programLength+n-numberOfLabels;
else names.val[n]= -names.val[n]-1;
machineProgram[j]= machineProgram[j]+ names.val[n];

}
IO.writeLine(); IO.writeString("output program : \n"); // OUTPUT MACHINE CODE
for(int j=0;j<programLength;j++){

if(j<10)IO.writeString("00"+j+": ");
else if(j<100)IO.writeString("0"+j+": ");
else IO.writeString(j+": ");
if (machineProgram[j]<0) {IO.writeString("00000"); machineProgram[j]=0;}
else if(machineProgram[j]<10)IO.writeString("0000");
else if(machineProgram[j]<100)IO.writeString("000");
else if(machineProgram[j]<1000)IO.writeString("00");
else if(machineProgram[j]<10000)IO.writeString("0");
IO.writeString(machineProgram[j] + " : "+ program[j]+"\n");

}
int jj = programLength;
for(int j=numberOfLabels;j<names.getSize();j++){ // OUTPUT VARIABLE SPACES

if(jj<10)IO.writeString("00"+jj+": ");
else if(jj<100)IO.writeString("0"+jj+": ");
else IO.writeString(jj+": ");
jj++;
IO.writeString("variable "+ names.getElement(j)+"\n");

}
}

}

The program that translated the assembly program shown in Figure 7.1 is given
above. However, the resulting machine code is set up to operate in the memory space
starting from address location 0000. This has to be relocated to a final working
position. In the case of this system of commands the relocation can be done, simply
by adding the new start address value to all the address fields of the program’s
instructions. Clearly the data spaces set aside for variables must be left unmodified,
which is important if literals are to be added to the assembly code.

Assembly Language Translation 229

This translation program can be extended to generate hexadecimal code, but also
to compose sequences of machine code from single new assembly commands. A
simple example of this, that is very convenient in the case of this basic computer
simulator, is to allow numerical values to be built into program codes as literals so
they do not need to be read into the system as the value of variables. This can be
done by extending the code definition in the following way.

<Operation Code> <Variable Name> ‘;’
<Label> ‘:’ <Operation Code> <Variable Name> ‘;’

<Operation Code> ‘ “ ’ <Integer Number> ‘ ” ’ ‘;’
<Label> ‘:’ <Operation Code> ‘ “ ’ <Integer Number> ‘ ” ’ ‘;’

This allows statements like add “25”; to be included in a program. In order to

support this extension, the resulting analysis of the input strings must create an entry
in the name table to create a variable space for the associated integer value and allow
repetitions of the same value to reference the same memory space.

Figure 7.2 Hexadecimal program containing literals numbers

A more complex example of an extension that can be made to the assembly

language is a command to load a program to a predetermined memory location.

“load” <address> ‘;’

If an explicit load command is provided in the assembly language then it has to be
expanded as a sequence of commands. This process is called macro expansion, where
the single line of code such as load “24” is replaced by a sequence of machine codes

hexadecimal
machine code

variable spaces

literal spaces

230 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

to implement the operation. However it is possible to use the first version of the
assembler to translate a loader written in assembly code to obtain the machine code
to add to subsequent programs to produce self-loading units from a new bootstrapped
assembly language translation system.

Figure 7.3 A loading program

A loading program written in assembly
code is given in Figure 7.3. This consists of a
read command “start: rds w;” to repeatedly
place a given number of program
instructions into neighbouring positions in
memory and then transfer control to them. In
order to do this the value w has to be set to
the start address for the new program. This
command then has to be loaded as data into
the arithmetic unit and incremented by one
before being replaced in its original location
to provide the repetition needed to read the
main program statements into neighbouring
memory locations. The value of x has to be
set to the “start” address, added to the length
of the program then added to the read code
to give the test to terminate this reading loop.
This occurs when subtracting x from the read
command, in the accumulator, no longer
gives a negative value. The assembler
translation program has to be extended to
add this loading code with the appropriately
modified command to precede the translated
machine program. The machine code for the
loader given in Figure 7.3 still has to be
modified both to load itself, and then to load
the follow on target-program code.

static void writeLoader(int codeLength,int[] exeCode){
 int[] loaderCode = new int[]{
 4099, 4107, // 1003, 100B, -- 4107, rds 11;
 4100, 1, // 1004, 0001, -- 1, 1;
 4101, 4107, // 1005, 100B, -- 4107, rds 11;
 4102, 36869, // 1006, 9005, -- 36869, lds 5;
 4103, 45060, // 1007, B004, -- 45060, add 4;
 4104, 40965, // 1008, A005, -- 40965, str 5;
 4105, 49155, // 1009, C003, -- 49155, sub 3;
 4106, 24581, // 100A, 6005, -- 24581, jng 5;
 20485 }; // 5005
 loaderCode[1]= 4107+ codeLength; // SET UP THE PROGRAM LENGTH TEST
 for(int i=0;i<17; i++){

 exeCode[i]=loaderCode[i]; } // ADD THE LOADER TO THE NEW OUTPUT CODE
}

Assembly Language Translation 231

A version of this loader setup to place the main program directly after itself in
memory is given above. By placing its data space for ‘x’ and “1” before the loading
code the final jump command can be removed to give an eight-line program that will
drop through to ‘w’ the start of the main program. This eight-line program has to
have input location commands added to enter it, and a jump to its start command,
also the main program has to finish with a jump back to the primitive loader.

Figure 7.4 Self-loading code

The final machine code given in Figure 7.4 will self load and run to give the

output shown in Figure 7.5. The program given in Figure 7.4 reads in two values and
subtracts the second from the first. If the result is negative the second value is added
back. Hexadecimal 67 is then added to the result.

program
length test

locating
commands

jump to
new loader

jump to
address 0

start of
main
program

program
data space

new loader
commands

232 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

Figure 7.5 Simulator output

This gives 7E in the example shown
in Figure 7.5, by adding 23 or
hexadecimal 17 to hexadecimal 67. In
decimal notation 23 is added to 103
giving decimal 126. The program to
translate the assembly program into
machine code that will self load and
run on the Micro-simulator program
developed in chapter 6, is given below.
Two separate window classes Input and
Output, replacing the TextWindow class
used in earlier programs, provide the
input and output to this program. The
Simulation class calls up a machine
program execution method and an
assembly code translation method from
the MicroComputer and Assembler
classes respectively given below.

import java.awt.*; import javax.swing.*; import javax.swing.text.*;
import javax.swing.table.*; import javax.swing.event.*; import java.awt.image.*;
import java.awt.event.*; import java.util.*; import java.text.*; import java.lang.*;
public class Simulation{

static String str = "";
static Input jInput = new Input(12,412,1000, 100,"INPUT");
static Output jOutput0 = new Output(12,512,1000, 100,"OUTPUT");
static Output jOutput2 = new Output(262,12,250, 400,"ASSEMBLY CODE");
static Output jOutput3 = new Output(512,12,250, 400,"MACHINE CODE");
static Output jOutput4 = new Output(762,12,250, 400,"SIMULATOR OUTPUT");

public static void main(String[] args){

int width = 300, height = 100; int [] machineProgram = null;
String[] program = null; String str = jInput.readString();
while(!str.equals("stop")){

 if(str.equals("assembly-program")){
jOutput2.writeString(str +"\n");
jOutput0.writeString("Please enter the assembly program: \n");
Assembler ass = new Assembler();
machineProgram = ass.program(
 null,0, jInput, jOutput0, jOutput2, jOutput3);
MicroComputer.execute(machineProgram,jOutput4,jInput);

}
str = jInput.readString();

}
}

}

Assembly Language Translation 233

class Assembler{
static Input jInput = null;
static Output jOutput0 = null;
static Output jOutput2 = null;
static Output jOutput3 = null;

public Assembler(){}

public int[] program(String[] program,int length,

Input jIn, Output jOut,Output jOut2, Output jOut3){
jInput = jIn; jOutput0 = jOut; jOutput2 = jOut2; jOutput3 = jOut3;
int programLength = 0; int[] exeCode=null;
boolean finished = false, errors = false;
StringTable names = new StringTable();
int [] machineProgram = new int[200];
for(int i=0; i< machineProgram.length;i++) machineProgram[i]= -1;

int i=0;
if(program == null){

program = new String[200];
String str="";
boolean test= true;
str = jInput.readString();
if(!str.equals("test")){

while (! str.equals("end")){ // enter a program from the keyboard
program[i] = str+" \n"; i++;
jOutput2.writeString(str+" \n");
str = jInput.readString();

}
}else{ i = testData(program)-1;} // enter a prewritten test program
programLength = i;

}else{ programLength = length-1;}
int codeLength=0;
if((codeLength = translate(programLength,machineProgram,program,names))>0){

exeCode = new int[codeLength+17];
writeLoader(codeLength,exeCode); // add on self loader
for(i= 0;i<codeLength;i++){
exeCode[i+17]=machineProgram[i];

}
for(i= 0;i<codeLength+17;i++){

jOutput3.writeString("\n");
jOutput3.writeString(i + ": ");
writeHex(exeCode[i], 4);

}
jOutput3.writeString("\n");

}
return exeCode; // return assembly code program

}

234 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

static int translate (int programLength,int[] machineProgram,
String[] program,StringTable names){

StringTable commands = new StringTable();
commands.setTable(new String[]

{"nop","rds","wrt","wrh","wrc","jmp","jng","jez","stc","lds",
"str","add","sub","mul","div","mod","end"});

String [][] programElements = new String[100][3];
jOutput0.writeString("assembler : "+ programLength +" \n");
for(int i=0; i< machineProgram.length;i++) machineProgram[i]= -1;
int i = 0; int m = 0;
char[] c = new char[1]; c[0]=' '; String[] strr = new String[1];
for(int j=0; j < programLength;j++){ // separate labels opcodes variables

int k=0, n=0;
k= name(program[j],k, strr, c);
if(c[0] ==':'){

programElements[j][0]= strr[0]; // LABELS
k= name(program[j],++k,strr,c);
programElements[j][1] = strr[0]; // OP CODE

}
else programElements[j][1] = strr[0]; // OP CODE
if((c[0]>='a')&&(c[0]<='z')){

k= name(program[j],k,strr,c);
programElements[j][2]= strr[0];

}else if(c[0]=='"'){ // HEX LITERALS
String str=""+c[0]; k++; c[0] = program[j].charAt(k++);
while(((c[0]>='0')&&(c[0]<='9'))||((c[0]>='A')&&(c[0]<='F'))){

str= str+c[0]; c[0] = program[j].charAt(k++);
}
if (c[0]!='"'){str="";} else{str=str+'"';k++;}
programElements[j][2]= str;

}else if(c[0]=='^'){ // DECIMAL LITERALS
String str=""+c[0]; k++; c[0] = program[j].charAt(k++);
while((c[0]>='0')&&(c[0]<='9')){

str= str+c[0]; c[0] = program[j].charAt(k++);
}
if (c[0]!='^'){str="";} else{str=str+'^';k++;}
programElements[j][2]= str;

}
}
int n=0; // process labels opcodes and variables to give machine code
for(int j=0; j < programLength; j++){ // LABELS

if(programElements[j][0] != null){
n = names.add(programElements[j][0]);
names.val[n]= -(j+1); // LABELS Flagged

}
}
int numberOfLabels = names.getSize();

Assembly Language Translation 235

m=0;
for(int j=0;j<programLength;j++){ // OPERATION CODES

if((m = commands.locate(programElements[j][1])) >= 0){
machineProgram[j]= m*16*16*16;

}
}
for(int j=0; j<programLength; j++){

if(machineProgram[j]<16*16*16*16){ // VARIABLES
int gg=0, vals=0; char ch= ' ';
n = names.add(programElements[j][2]);
if (names.val[n]>= 0) {

gg = programLength + n - numberOfLabels + 1;
machineProgram[j] = machineProgram[j] + gg;
int k=0;
if(programElements[j][2].length()>1)

if(programElements[j][2].charAt(k)=='"'){
k++; vals=0;
ch = programElements[j][2].charAt(k++);
while(((ch >='0')&&(ch<='9'))||((ch>='A')&&(ch>+'F'))){

if((ch >='0')&&(ch<='9'))
vals= vals*16 + ((int)ch-(int)'0');

if((ch>='A')&&(ch>+'F'))
vals= vals*16 + 10 +((int)ch-(int)'A');

ch = programElements[j][2].charAt(k++);
}

}else if(programElements[j][2].charAt(k)=='^'){
k++; vals=0;
ch = programElements[j][2].charAt(k++);
while((ch >='0')&&(ch<='9')){

if((ch >='0')&&(ch<='9'))
vals= vals*10 + ((int)ch-(int)'0');

ch = programElements[j][2].charAt(k++);
}

}
machineProgram[gg] = vals;

} else {
gg = - names.val[n]-1;
machineProgram[j] = machineProgram[j] + gg;

}
}

} jOutput3.writeString("output program : "+ programLength+"\n");
for(int j=0;j < programLength; j++){

writeHex(j,4); jOutput3.writeString(": ");
writeHex(machineProgram[j],4);
jOutput3.writeString(" : "+ program[j]);
machineProgram[j] = machineProgram[j]+11;

}

236 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

machineProgram[programLength]= 20480; // add jump to primitive loader
int jj = programLength+1;
for(int j = numberOfLabels;j < names.getSize(); j++){

writeHex(jj,4);
jOutput3.writeString(" ");
writeHex(machineProgram[jj],4);
jOutput3.writeString(" : variable "+ names.getElement(j)+"\n");
jj++;

}return jj;
}

static int name(String program, int k,String[] strr,char[] ch){

char c = program.charAt(k);
while(c==' '){c = program.charAt(++k);}
String str= ""; strr[0]=str;
if((c>='a')&&(c<='z')){

while(((c>='a')&&(c<='z'))||((c>='0')&&(c<='9'))){
str = str + c; k++; c = program.charAt(k);

}
}
strr[0]= str;
while(c==' '){c = program.charAt(++k);}
ch[0]=c;
return k;

}

static void writeLoader(int codeLength,int[] exeCode){
int[] loaderCode = new int[]{
4099,4107, // 1003, 100B, -- 4107, rds 11;
4100,1, // 1004, 0001, -- 1, 1;
4101,4107, // 1005, 100B, -- 4107, rds 11;
4102,36869, // 1006, 9005, -- 36869, lds 5;
4103,45060, // 1007, B004, -- 45060, add 4;
4104,40965, // 1008, A005, -- 40965, str 5;
4105,49155, // 1009, C003, -- 49155, sub 3;
4106,24581, // 100A, 6005, -- 24581, jng 5;
20485}; // 5005
loaderCode[1]= 4107+codeLength;
for(int i=0;i<17; i++){exeCode[i]=loaderCode[i];}

}

static int spaces(String program,int k,char[] ch){

ch[0] = program.charAt(k);
while(ch[0] ==' '){k++; ch[0] = program.charAt(k);};
return k; // SPACES

}
static void writeHex(int num, int size){

Assembly Language Translation 237

if(num>16*16*16*16-1)return; //{jOutput3.writeString("STOP");return;}
if(num<0){ jOutput0.writeString("write hex integer error \n");return;}
if(num<=0)for(int i=0;i < size;i++)jOutput3.writeString("0");
else{

int sz = size-1;
int digit[]= new int[size+1];
for(int i=0;i<=size;i++) digit[i]=0;
while(num>0){ digit[sz--] = num%16; num = num/16;}
for(int j=0;j<size; j++){

if(digit[j]<10)jOutput3.writeString(""+digit[j]);
else jOutput3.writeString(""+(char)((int)'A'+digit[j]-10));

}
}

}

static int testData(String[] program){ // test program
program[0] = " start: rds a;\n";
program[1] = " rds b;\n";
program[2] = " lds a;\n";
program[3] = " rep: sub b;\n";
program[4] = " jng exit;\n";
program[5] = " jmp rep;\n";
program[6] = " exit: add b;\n";
program[7] = " add \"67\";\n";
program[8] = " str c;\n";
program[9] = " wrt c;\n";
program[10] = " end;\n";
for(int i=0;i<11;i++){jOutput2.writeString(program[i]);}
return 11;

}
}

class MicroComputer{

static int pc = 0, address = 0, command = 0, instruction = 0;
static int accumulator = 0;
static boolean finished = false;
static int[] memory = new int[4096];
static Input input = null;
static Output output = null;

MicroComputer (){}

private static int codeindex = 0;private static int[] code;
public static void execute(int[] program,Output out,Input in){
 ….
} // replaces main in chapter 6

}

238 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

Wherever repeating patterns of code occur the programmer will tend to use a
shorthand psuedo code to represent it when analysing and designing a program. In
the case of this simple system an example of this can be found in the case of
statements such as a=b+c. The single-address machine-code requires this and similar
arithmetic operations to be expanded into the three commands lds x; add y; str z;
where a short hand of the sort add(x y z); gives a template that can be applied to each
of the binary arithmetic operations replacing add by, sub, mul or div as required. This
kind of short hand can be added to the assembly language and it can be translated
automatically by “macro” substitution before translation to machine code proper in
the way shown in Figure 7.6.

Figure 7.6 Macro substitution in the assembly translation process

The program to execute the macro expansion in the case of this example is given
below. Where a pattern of code is used repeatedly and is relatively short this inline
substitution for a shorthand command generally makes code easier to read and
simpler to write. However, where the substitute code is long an alternative treatment
can be more efficient.

Assembly Language Translation 239

public class MacroAssembler{
 static Input jInput = new Input (12,562,750, 100,"INPUT");
 static Output jOutput0= new Output(12,462,750, 100,"OUTPUT");
 static Output jOutput1= new Output(12,12,250,450,"MACROASSEMBLY CODE");
 static Output jOutput2= new Output(262,12,250, 450,"ASSEMBLY CODE");
 static Output jOutput3= new Output(512,12,250, 450,"MACHINE CODE");

public static void main(String[] args){
boolean finished = false, errors = false;
StringTable names = new StringTable();
String [] program = new String [100];
int [] machineProgram = new int[200];
for(int i=0; i<100;i++)machineProgram[i]= -1;
jOutput0.writeString("Please enter the source program: \n");
boolean test= true; int i=0;
String str = jInput.readString();
if(!str.equals("test")){

while (! str.equals("stop")){
jOutput1.writeString(str); program[i++] = str;
str = jInput.readString();

}
}else{

 i = testData(program);
for(int j = 0; j < i; j++){ jOutput1.writeString(program[j]);}

}
int programLength = i;
if((program= macroExpansion(program,programLength))!=null)

if(translate(program.length,machineProgram,program,names)){}
}
static String[] macroExpansion(String[] program,int programLength){

String[] temp = new String[3*programLength];
int k=0; String str="";String stt="";boolean macro=false;
for(int i=0;i<programLength;i++){

str = program[i];
macro=false;
stt=""; char ch;
for(int j=0; j<str.length();j++){

ch=str.charAt(j); if(ch =='(')macro=true; stt=stt+ch;
}
if(macro){

String[] variables = new String[4];
int kkk =0; String st="";
ch = stt.charAt(kkk++);
while(ch ==' '){ch = stt.charAt(kkk++);}; // SPACES
while((ch >='a')&&(ch<='z')){st= st+ch; ch = stt.charAt(kkk++);}
variables[0]=st;
while(ch==' '){ch = stt.charAt(kkk++);}; // SPACES
if(ch=='('){

240 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

ch = stt.charAt(kkk++);
for(int kk = 1; kk < 4; kk++){

while(ch==' '){ch = stt.charAt(kkk++);}; // SPACES
st = "";
while((ch >= 'a')&&(ch <= 'z')){

st= st+ch; ch = stt.charAt(kkk++);
}
variables[kk]= st;

}
} else { jOutput0.writeString("error \n");return null;}
temp[k++]= " lds "+variables[1]+";\n";
temp[k++]= " "+variables[0]+" "+ variables[2]+";\n";
temp[k++]= " str "+ variables[3]+";\n";

}else temp[k++]= stt;
}
String[] prog = new String[k];
for(int i=0;i<k;i++){

prog[i]=temp[i];
jOutput2.writeString(prog[i]);

}
return prog;

}
static int testData(String[] program){ // macro test program

program[0] = " start: rds a;\n";
program[1] = " rds b;\n";
program[2] = " rds d;\n";
program[3] = " rds e;\n";
program[4] = " add(a b c);\n";
program[5] = " add(d e f);\n";
program[6] = " mul(c f g);\n";
program[7] = " wrt g;\n";
program[8] = " jmp start;\n";
return 9;

}

… // remaining assembler procedures

}

The example of macro substitution given above replicates the block of code based
on a template, substituting strings from the input statement to appropriate positions in
the output statements: “#1 (#2 #3 #4);” is converted to “lds #2;”“ #1 #3;”“str #4;”.
An alternative approach to handling repeating patterns of code is to set up one
example of it and transfer control to it each time it is needed. This gives the sub-
program or subroutine call. However this transfer and return of control involves a
sequence of commands that imposes an overhead to the repeated code that is only
worthwhile if the code is longer than the overhead needed to transfer and return
control. Otherwise a form of macro or inline code substitution is more efficient.

Assembly Language Translation 241

The code to tranfer control to a subprogram can be set up as a macro expansion in
the following way for a subroutine call:

command n;
call subtract (a,b,c);

 command m;

subtract(x,y,z){
lds x; sub y; str z;
}

command n;
lds a; str x;lds b; str y;
lds ret1 ; str proc1;
jmp proc2;

ret1: jmp return;
return: lds z;str c;

command m;

proc1: jmp return
proc2: lds x;

 sub y;
 str z
 jmp proc1;

Figure 7.7 Subroutine(a,b){ return a − b;}

a − b – c

((a – b) – c)

read(a)
read(b)
read(c)

e = a – b
e = e – c
write (e)

242 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

The appropriate jump command, to return control to the calling program can be
constructed and loaded at the head of the subprogram before moving to the main
code of the subprogram, in the way shown above. This return jump-command can
then be returned to as soon as the subprogram completes its task. This basic transfer
of control also has to be extended to include code to transfer the values of the
variables that the subprogram is expected to operate on.

There are a variety of ways for making this information available to subprograms.
One possibility can be set up as follows: copy the values that are to be operated on
into a standard temporary location that is use by the subprogram for its parameters.
This allows different values to be passed to a subprogram from different calling
locations. Return values also have to be placed in similar standard but temporary
locations and these can then be copied back to the appropriate local variables when
control is returned to the calling program.

In practice program code can be built up from a collection of procedures in two
ways. The first is a simple sequential list of procedures. The second is a nested
structure or a block structured arrangement. A one level system on one hand or a
hierarchical layered system on the other. The simplest program is the sequential list
of procedure calls where the flow of control will simply pass from one procedure call
to the next walking down the list. However even when this program runs: these
procedures could pass control from one to another in a variety of more or less
complicated ways. The scheme illustrated in Figure 7.7 will support a layered or
hierarchical calling sequence, as long as the same routine is only called once in any
such sequence. Clearly if it is not then the data giving return addresses and parameter
values will be over written and the correct flow of control will be lost.

To allow program code to be revisited within a calling sequence this flow of
control information has to be protected. Using a stack data structure to hold the
necessary address data and parameter values can do this. Every time a program is
called then its data values are placed on the stack and when control is passed back to
the calling program then this data can be released or popped from the top of the
stack. In essence this allows flow of control to change from a tree structure linking
separate procedures, to a graph structure linking procedures that includes loops
revisiting the same procedure more than once. The classical example of a “recursive”
program that behaves in this way is a procedure to calculate the factorial value of a
number.

int factorial(int k) { if(k==0)return 1; else return k*factorial(k-1); }

To implement this program in assembly language or machine code, using the
simple microprocessor employed above, is difficult. However, the extended system
which uses base displacement addressing makes the task a little more tractable. If the
assembly language is extended by four macros to define the beginning and end code
for each procedure, such as: proc factorial(k); endproc factorial(); and command
sequences for transferring to and returning control from the procedure: call
factorial(x); and return(x); then the program given above can be expressed in
assembly code in the following way.

Assembly Language Translation 243

 proc main();
start: rds a;
 call factorial(a);
 str answer;
 wrt answer;
 jmp start;
 endproc main();
 proc factorial(x);
 lds x;
 jez one;
 sub "1";
 str y;
 call factorial(y);
 mul x;
 return();
one lds "1";
 return();
 endproc factorial();

Figure 7.8 Factorial procedure

However, to expand the macros into a full assembly language program for the
extended simulator still raises another difficulty when translating it into machine
code. The problem is the way that constants are handled as variables in the system
that has been developed so far. In the new context this means that these values will
have to have new memory space allocated for them each time a program calls itself,
and also the constant values will have to be copied across as if they were parameters,
into the new space, which clearly involves an unnecessary overhead. It would be
convenient if such data could be held in the original program-code address-space.

At first sight this would seem to require all the arithmetic commands to be
duplicated to work on either program-space variables or data-space variables. Clearly
further extensions of the hardware are an option. However this opens up a complex
design area, which though it is important in its own right, is not critical to the main
theme of this chapter. The desire is to keep to the original sixteen-instruction set, and
the sixteen bit word size for this schematic machine, since the objective is to
illustrate the processing stages for a high-level language program: say in Java, to a
physical hardware system capable of executing it. Graphics requires specialised
hardware and since computer graphics is concerned with the language based control
of this hardware, illustrating a way the bridge between these two modes of
communication, -- language and graphics -- can be implemented, is an important
issue in this book.

The task is to present this bridge in as clear and accessible way as possible.
Though recursive procedures may be possible to implement using the original simple
simulator scheme the resulting code becomes so long and tortuous that its ability to
illustrate the desired capability tends to be lost! As it stands the programs shown in
Figures 7.7 and 6.31 are already becoming fairly opaque, and need the reader to play

244 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

computer with them to be convinced that they work. Running the simulator will step
through the code and show how each step operates, but anything longer than these
examples ceases to serve its explanatory purpose!

A working solution to this particular problem that keeps the programs short
enough to work with can be achieved by implementing the unused command “lvl 0”
to change the mode of addressing used in the command that immediately follows it in
a code sequence. In the hardware circuit diagram in Figure 6.34, this can be done by
changing the selection signal Y for one fetch-execute cycle: to add the PCbase
register value rather than the IRbase register value to the relative address from the IR
register.

The new assembly language statements that need to be expanded as macros can be
executed using the following substitutions.

jack: lds "1"; jack: lvl #0#; lds “1”; lds "1"; lvl #0#; lds “1”;

String str = program[i]; Boolean macro=false,constant=false;
String stt=""; char ch=str.charAt(0);
for(int j=0; j<str.length();j++,ch=str.charAt(j)){

if(ch =='(')macro=true;
if(ch =='\"')constant=true;
stt=stt+ch;

}
if (constant){

String strr="", sttr=""; int j=0;
ch=str.charAt(j);
while(ch == ' '){ch=str.charAt(j++);}
if((ch >= 'a')&&(ch <= 'z'))

while((ch >= 'a')&&(ch <= 'z')||(ch >= '0')&&(ch <= '9')){
 strr=strr+ch; ch=str.charAt(j++); }

while(ch == ' '){ch=str.charAt(j++);}
if(ch == ':'){j++;

while((ch=str.charAt(j++))!= ';'){sttr = sttr+ch;}
temp[k++]= strr+": lvl #0#;\n";
temp[k++]= sttr+";\n";

}else{
temp[k++]= " lvl #0#;\n";
temp[k++]= stt;

}
}

proc factorial(x); call factorial(y); return(); endproc factorial();

else if(macro){
String strr=""; int j=0;
ch=str.charAt(j);
while(ch == ' '){ch=str.charAt(j++);}
while((ch >= 'a')&&(ch <= 'z')){strr=strr+ch; ch=str.charAt(j++);}

Assembly Language Translation 245

if(strr.equals("proc")) {
String st=""; //get name of procedure
while(!((ch >= 'a')&&(ch <= 'z'))){ch=str.charAt(j++);}
while((ch >= 'a')&&(ch <= 'z')){ st=st+ch; ch=str.charAt(j++);}
ind = procNameTable.add(st); // place name in procNameTable
procNameTable.procAddress1[ind]= k+mprg;// start address of procedure
temp[k++]= " nop "+ " #0# "+ ";\n"; // number of local variables
temp[k++]= " lda "+ " #FF9# "+ ";\n"; // load register value
temp[k++]= " str "+ " #0# "+ ";\n";; // store in location 0
temp[k++]= " lda "+ " #FFB# "+ ";\n"; // load register value
temp[k++]= " str "+ " #1# "+ ";\n";; // store in location 1
temp[k++]= " lda "+ " #FFD# "+ ";\n"; // load register value
temp[k++]= " str "+ " #2# "+ ";\n";; // store in location 2
temp[k++]= " lda "+ " #FFF# "+ ";\n"; // load register value
temp[k++]= " str "+ " #3# "+ ";\n";; // store in location 3

}

else if(strr.equals("endproc")) {

temp[k++]= "endproc:nop "+ " #0# "+ ";\n";//
temp[k++]= " lds "+ "#0#"+ ";\n"; // load old program address
temp[k++]= " sta "+ " #FF9# "+ ";\n"; // place in pc base reg
temp[k++]= " lds "+ "#1#"+ ";\n"; // load old program base address
temp[k++]= " sta "+ " #FFB# "+ ";\n"; // place in alt pc base reg
temp[k++]= " lds "+ "#2#"+ ";\n"; // load old IR address
temp[k++]= " sta "+ " #FFD# "+ ";\n"; // place in other IR reg
temp[k++]= " lds "+ "#3#"+ ";\n"; // load old IRbase address
temp[k++]= " sta "+ " #FFF# "+ ";\n"; // place in other IR base reg
temp[k++]= " lds "+ " return"+ ";\n";
temp[k++]= " lvl "+ " #3# "+ ";\n"; // switch all registers
procNameTable.procAddress2[ind]= k+mprg; // end address of procedure

}

else if(strr.equals("call")) {
String [] params = new String[10];
while(!((ch >= 'a')&&(ch <= 'z'))){ch=str.charAt(j++);}
String st=""; // get name of procedure
while((ch >= 'a')&&(ch <= 'z')){ st=st+ch; ch=str.charAt(j++);}
int ind2 = procNameTable.add(st); // place name in procNameTable
while(!((ch >= 'a')&&(ch <= 'z'))){ ch=str.charAt(j++);}
int count=0;;
while((ch != ')')&&(ch != ';')){ // get parameters

String stt1 = ""; //get parameter name
if((ch >= 'a')&&(ch <= 'z'))

while((ch >= 'a')&&(ch <= 'z')||(ch >= '0')&&(ch <= '9')){
 stt1=stt1+ch; ch=str.charAt(j++); }

params[count++]= stt1;
while((ch == ' ')||(ch == ',')){ ch=str.charAt(j++);};

}

246 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

temp[k++]= " lda "+ " #FFE# "+ ";\n"; // load base data address
temp[k++]= " lvl #0#;\n";
temp[k++]= " add "+ '#'+0+'#'+ ";\n";//add number of local variables
temp[k++]= " sta "+ " #FFF#"+ ";\n"; // store base data address
for(int ii=0 ; ii < count; ii++){ // code to pass parameters

temp[k++]= " lds "+ params[ii] + ";\n";
temp[k++]= " lvl "+ " #2# "+ ";\n";
temp[k++]= " str "+ '#'+(ii+4)+'#'+ ";\n";
temp[k++]= " lvl "+ " #2# "+ ";\n";

}
temp[k++]= " lvl #0#;\n";
temp[k++]= " lds "+ "\"0\""+ ";\n";
temp[k++]= " sta "+ " #FF9# "+ ";\n"; // place 0 in pc other reg
temp[k++]= " sta "+ " #FFB# "+ ";\n"; // place 0 in IR other reg
temp[k++]= " lda "+ '#'+ getHex(ind2+10,3) +'#'+ ";\n";
temp[k++]= " sta "+ " #FFD# "+ ";\n"//store new procedure address
temp[k++]= " lvl "+ " #3# "+ ";\n";

}
// switching all registers passes control to the new procedure
else if(strr.equals("return")) {

temp[k++]= " str "+ " return"+ ";\n";
temp[k++]= " jmp "+ " endproc "+ ";\n";

}

These expansions allow the factorial
program in Figure 7.8 to be converted into
the code shown in Figure 7.10. This runs
successfully on the extended simulator
shown in Figure 7.11. Figures 7.12 and 7.13
show the same scheme applied to a
procedure to add two numbers together. The
overhead required to handle recursive
procedure calls can be seen by comparing
these programs with Figure 7.7. However in
both these expanded programs the code is
relocatable merely by changing the base
address used for each procedure. In these
examples these addresses have been placed
in the initialisation code added onto the
beginning of the program shown in Figure
7.9 In a full system these values would have
to be set up by the program loading system.
If these procedures are held in a library then
this task becomes an important part of the
selection and placement of procedures.

Figure 7.9 Program initialisation code

loading
code

procedure
addresses

procedure
code

Assembly Language Translation 247

Figure 7.10 Factorial program showing expanded macros

248 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

public int[] prg(String[] program, int proglength){

machineProgram = new int[2000]; procNameTable = new NameTable();
for(int i=0; i<2000;i++) machineProgram[i]= -1;
if (program==null){

program = new String [1000]; prog = new String[2000];
 // enter source code into program[]

}
mprg=0; boolean proc = true; int begin=0, programLength=0, i=0, k=0;
while(i<proglength){

String str = program[i], strr=""; int j=0;
char ch=str.charAt(j++); while(ch == ' '){ch=str.charAt(j++);}
while((ch >= 'a')&&(ch <= 'z')){ strr=strr+ch; ch=str.charAt(j++);}
if(strr.equals("proc")) proc=true;
while((proc)){

begin = i; j=0; strr=""; str = program[i++];
ch = str.charAt(j++); while(ch == ' '){ch=str.charAt(j++);}
while((ch >= 'a')&&(ch <= 'z')){ strr=strr+ch; ch=str.charAt(j++);}
if(strr.equals("endproc")){proc=false;}

}
begin= programLength; programLength = i;
macroExpansion(program,begin,programLength);

}
mprg=procNameTable.getSize()+10;
for(int n=0; n<procNameTable.getSize(); n++){

int end = procNameTable.procAddress2[n];
StringTable names = new StringTable(), constants = new StringTable();
mprg = translate(start, end, prog, names, constants, procNameTable, n);

} for(int jj=0;jj<procNameTable.getSize();jj++)
machineProgram[jj+10]= procNameTable.procAddress1[jj];

machineProgram[0] = 0;
machineProgram[1] = mprg; //overall program length
machineProgram[2] = 8*4096+ 10; //lda 10;
machineProgram[3] = 4*4096+ 4093; //sta FFD;
machineProgram[4] = 8*4096; //lda 0;
machineProgram[5] = 4*4096+ 4089; //sta FF9;
machineProgram[6] = 8*4096+1; //lda 1;
machineProgram[7] = 4*4096+ 4095; //sta FFF;
machineProgram[8] = 3*4096+3; //lvl 3 ;
machineProgram[9] = 5*4096; //jmp 0;
for(int jk=0;jk<mprg;jk++){

writeHex(jk,4,jOutput4); jOutput4.writeString(": ");
writeHex(machineProgram[jk],4,jOutput4); jOutput4.writeString(";\n");

}
int [] mp = new int[mprg];
for(int jj=0;jj<mprg;jj++){ mp[jj]= machineProgram[jj];}
return mp;

}

Assembly Language Translation 249

Figure 7.11 Executing the recursive factorial procedure for: 3!, 7!

Figures 7.11 and 7.12 show two assembly language programs translated to
machine code and running on the extended hardware simulator.

Figure 7.12 Executing the addition procedure for Hex inputs: 2+3, 7+8, 45+23

250 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

Figure 7.13 Macroexpansions assembler
and machine code for an addition
procedure

Another operation that also requires information to be stacked in order to carry it

out is the evaluation of arithmetic expressions. However it is possible in this case to
rearrange the operations required to evaluate the expression into a linear sequence of
instructions that can be expressed directly in the assembly language commands
defined for the simple unextended microprocessor system.

251

Expressions and Formulae

The simple simulator developed in chapter 6 allows the user to automatically execute
sequences of arithmetic operations that a person using a simple desktop calculator
might employ to evaluate a more complex calculation. However many calculations
are expressed as formulae or expressions that do not immediately give the correct
sequence of operations needed to evaluate them. This is because expressions and
formulae are generally nested structures where the first calculation required is not
necessarily the first one encountered reading the expression in a standard left to right
order.

The arithmetic operations in an expression have to be reordered if they are to be
carried out sequentially. Also intermediate partial results need to be held while other
sections of an expression are evaluated. A model of the reordering process can be
provided by the much older task of reordering the carriages in a train using railway
sidings, where the process has to be done step by step: the carriages have to be kept
on the tracks and moved one by one.

 F E D C B A A B C D E F

F
E
D
C
B
A

Figure 7.14 Reversing a sequence using a “siding” or a first in last out stack

Evaluating Expressions

Given an expression of the form ()
() ()fedb

ac
−−

−
*

 the first step is to rewrite it replacing

the fraction notation to give () ()() ()fedbac −−− // or () () ()()fedbac −−− */ , where
every operator is a simple binary operator acting on the two elements to the left and
right of it. The next step is to reorder the operations so they can be carried out
sequentially. In the original presentation the subtraction operations would all have to
be carried out before the multiply or division operations. In this example the ordering
is defined by the use of brackets, however in the expression: cba *− the multiply
has to be carried out first because of the convention that multiply and division takes
precedence over subtract and add operations. If this were not the case the ordering
would also require brackets to obtain the required result for: ()cba *− .

Evaluating Expressions

252 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

 a + b * (c + d * e + f) – g ;

 a b * (c + d * e + f) − g ;

+

 a b (c + d * e − f) − g ;

*
+

Figure 7.15 Reordering an expression into reverse Polish order

Initialise:
Expression setup
in Queue A

A C

B

A C

B

A C

B

First operator
pushed directly
onto stack B

Variables passed
directly from queue
A to queue C

Next operator is
compared with top
operator on stack
B If of higher
precedence new
operator pushed
onto the top of
stack B

Variables passed
directly from queue
A to queue C

253

 a b c d * e− f) − g ;

+
(
*
+

 a b c d e − f) − g ;

*
+
(
*
+

 a b c d e * + f) − g ;

−
(
*
+

Figure 7.15 Reordering an expression into reverse Polish order

An operator pops all
higher or equal level
precedence operators
from the stack B
before being pushed
onto stack B

Variables passed
directly from queue
A to queue C

A
C

B

A C

B

Open brackets are
pushed directly onto
stack B. Following
operators stack on
top

Variables passed
directly from queue
A to queue C

A C

B

all operators following
an open bracket
stack on top or swap
with each other
depending on their
relative precedence

Variables passed
directly from queue
A to queue C

Evaluating Expressions

254 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

 a b c d e * + f − − g ;

*
+

 a b c d e * + f − * + g ;

−

 a b c d e * + f − * + g −

;

Figure 7.15 Reordering an expression into reverse Polish order

A close bracket causes
all operators to be
popped from stack B
until an open bracket is
found. Both matching
brackets are discarded

A C

B

A C

B

All operators with a
precedence greater
than or equal to −
popped from stack B
and then − is then
pushed onto B

Variables passed
directly from queue
A to queue C

All operators with a
precedence greater
than or equal to ;
popped from stack B
and then ; is pushed
onto B

A C

B

255

((a (b ((c (d e *) +) f −) *) +) g −)

Figure 7.16 Reordered expression

The final reordered expression in queue C can be represented in the way shown in
Figure 7.16 as a nested structure in which each operator is shown in a box preceded
by its pair of operands at the same level either as a variable or as a box containing a
sub operation. The advantage of this rearrangement is that this sequence of operands
and operators can be processed from the left using a stack to evaluate the expression
taking the operators in the order in which they are encountered moving sequentially
through the expression from the left.

The entries made to queue C could have been used directly to evaluate the
expression by treating C as a stack. It is easier to present the evaluation in two stages.
All the arithmetic operations in this example are binary operations, so as each
operand is reached traversing the expression from left to right it can be stacked on C.
However, as each operator is reached it can be applied to the two immediately
preceding, stacked operands, to give an intermediate result, which can then be
restacked back on to C. The sequence to evaluate the example given above can be
laid out as follows:

 a b c d e * + f − * + g −

a b c d e * + f − * + g −

a b c z + f − * + g −

a b y f − * + g −

a b x * + g −

 a w + g −

 s g −

 t

Figure 7.17 Evaluating an expression given in reverse Polish order

g − a + b * f − c + d e *

a b c d e

f

g

Evaluating Expressions

256 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

Figure 7.18 Expression processing

A calculator program to evaluate expressions in this way using two stacks can be
written in the following way:

import java.awt.*; import javax.swing.*; import javax.swing.text.*;
import javax.swing.table.*; import javax.swing.event.*; import java.awt.image.*;
import java.awt.event.*; import java.util.*; import java.text.*;import java.lang.*;
public class Calculator{

static String str = "";
static Input jInput = new Input(12,412,500, 100,"INPUT");
static Output jOutput0 = new Output(12,512,500, 100,"OUTPUT");
static Output jOutput1 = new Output(12,12,250, 400,"EXPRESSION");
static Output jOutput2 = new Output(262,12,250, 400,"ANSWERS");
public static void main(String[] args){

int width = 300, height = 100;
int [] machineProgram = null; String[] program = null;
String str = jInput.readString(); jOutput0.writeString(str + "\n");
while(!str.equals("stop")){

if(str.equals("Calculator")){
while(!str.equals("end")){

jOutput1.writeString("please enter the expression \n");
str = jInput.readString();
if(str.equals("end")) break;
str=str+" ;";
jOutput1.writeString(str+"\n");
AExpression expression = new AExpression(str);
int num = expression.evaluate(jInput,jOutput1,jOutput2);
jOutput2.writeString(

"result: "+expression.decString(num,4)+"\n");
}

}str = jInput.readString(); jOutput0.writeString(str+ "\n");
}

}
}

257

class AExpression{
private Output out = null; private Output output = null;private Input in = null;
public StringTable names = new StringTable();
public int codeCount = 0;
public String exprs = "";
static CharacterTable alphaSet = new CharacterTable(new char []
{'a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z','A','B',
'C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'});
static CharacterTable numericSet = new CharacterTable(new char []

{'0','1','2','3','4','5','6','7','8','9'});
static CharacterTable operatorSet = new CharacterTable(new char []

{'+','-','*','/','%',';'});
static StringStack nameStack = new StringStack();
static StringStack operatorStack = new StringStack();
static NumberStack valueStack = new NumberStack();
public AExpression(){}
public AExpression(String exprs) {this.exprs=exprs;}

public int evaluate(Input in, Output output1,Output output){

nameStack = new StringStack();
operatorStack = new StringStack();
valueStack = new NumberStack();
names = new StringTable();
this.setIO(in, output1,output);
String[] tokens = this.tokenize(exprs);
this.setValues();
String[] code = this.translate(tokens);
return valueStack.pop();

}

public void setValues(){

int size =names.getSize();
for(int i=0 ; i < size; i++){

String ss=""; int nm=0;
if((ss = names.getElement(i)).charAt(0)=='"'){

for(int j=1; j<ss.length()-1;j++){
int digit = (int)ss.charAt(j)-(int)'0';
nm = nm*10+digit;

}names.val[i]=nm;
}else{

output.writeString(
 "Please enter the value of "+names.getElement(i)+": ");
String num= in.readString(); output.writeString(num +"\n");
names.val[i]= number(num);

}
}

}

Evaluating Expressions

258 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

public String[] tokenize(String exprs){
String[] tokens = new String[200];
int i=0, j=0;
if(exprs.charAt(exprs.length()-1)!=';')exprs=exprs+';';
while(i<exprs.length()){

if (alphaSet.contain(exprs.charAt(i))){
String str = ""+ exprs.charAt(i++);
while((i<exprs.length())&&(alphaSet.contain(exprs.charAt(i))

||numericSet.contain(exprs.charAt(i))))
{str= str + exprs.charAt(i); i++;}

tokens[j++]= str; names.add(str);}
else if(numericSet.contain(exprs.charAt(i))){

String str= "\"";
while((i<exprs.length())&&(numericSet.contain(exprs.charAt(i))))

{str = str + exprs.charAt(i);i++;}
str=str+"\""; tokens[j++]= str; names.add(str);}

else if(operatorSet.contain(exprs.charAt(i))){
String str = "";
while((i<exprs.length())&&(operatorSet.contain(exprs.charAt(i))))

{str = str + exprs.charAt(i);i++;}
tokens[j++]= str;}

else if(exprs.charAt(i)=='('){tokens[j++]= "(";i++;}
else if(exprs.charAt(i)==')'){tokens[j++]= ")";i++;}
else if(exprs.charAt(i)==' ')while(exprs.charAt(i)==' '){i++;}
else if(exprs.charAt(i)=='\n'){i++;}
else {i++; out.writeString("unexpected character \n");}

}
String[] tokenArray = new String[j];
for(i=0;i<j;i++) tokenArray[i]=tokens[i];
return tokenArray;

}

public void executeOperator(int operatorIndex, String[] code){

if((operatorIndex>=0)&&(operatorIndex<=4)){
int a = valueStack.pop(), b = valueStack.pop();
switch(operatorIndex){ // '+','-','*','/',"%".';'

case 0: valueStack.push(b+a); break; // add
case 1: valueStack.push(b-a); break; // subtract
case 2: valueStack.push(b*a); break; // multiply
case 3: valueStack.push(b/a); break;/ // divide
case 4: valueStack.push(b%a); break; // modulo
default: // end of expression

}
}else if(operatorIndex==7){

int a=valueStack.pop();valueStack.push(-a); // unary minus
}

}

259

public String[] translate(String[] tokenArray){
StringTable operators = new StringTable(
new String []{"+","-","*","/","%",";","(","~"});
int[] precedence = new int[]{3,3,4,4,4,1,2,5};
String[] code = new String[100];
int topPrecedence=0, tPrecedence, operatorIndex; String operator, s;
for(int i=0;i<tokenArray.length;i++){

String t = tokenArray[i];
if(names.contain(t)){ // variable name

valueStack.push(names.val[names.locate(t)]);
}else if(t.equals("(")){ // open bracket

operatorStack.push("("); topPrecedence= 2;
}else if(operators.contain(t)){ // operator

operatorIndex = operators.locate(t);
tPrecedence = precedence[operatorIndex];
while(tPrecedence<=topPrecedence){

operator = operatorStack.pop();
operatorIndex = operators.locate(operator);
executeOperator(operatorIndex,code);
int index =operators.locate(operatorStack.peek());
if (index<0) topPrecedence=0;
else topPrecedence= precedence[index];

}operatorStack.push(t); topPrecedence = tPrecedence;
}else if(t.equals(")")){ //close bracket

while(!((s = operatorStack.pop()).equals("("))){
operatorIndex = operators.locate(s);
executeOperator(operatorIndex,code);

}int index =operators.locate(operatorStack.peek());
if (index<0)topPrecedence=0;
else topPrecedence= precedence[index];

}
} return code;

}

public void setIO(Input input,Output output,Output output1){

this.output = output; this.out = output1; this.in = input;}
public void setNames(StringTable nameTable) {this.names = nameTable;}
static String hexString(int val,int len){

String str ="";
if(val<0)return "****";
for(int j=0;j<len;j++){

int digit = val%16; val = val/16;
if((digit>=0)&&(digit<=9)){str = ((char)(digit+((int)'0')))+str;}
else if((digit>=10)&&(digit<=15))
 {str = ((char)(digit-10+((int)'A')))+str;}

}return str;
}

Evaluating Expressions

260 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

static String decString(int val,int len){ws
String str =""; int v=val;
if(val<0){val=-val;}
while(val>0){

int digit = val%10; val = val/10;
if((digit>=0)&&(digit<=9)){str = ((char)(digit+((int)'0')))+str;}

}
if(v<0){str="-"+str;}
return " "+str;

}
static int number(String str){

int num=0,n=1;
int k=0; while(str.charAt(k)==' '){k++;}
if(str.charAt(k)=='-'){n= -1; k++;}
for(int i=k;i<str.length();i++){

if(numericSet.contain(str.charAt(i))){
int digit = (int)str.charAt(i)-(int)'0';
num = num*10+digit;

}
}return num*n;

}
}

class NumberStack{

private int [] stack = new int[100];private int top = 0;
NumberStack(){}
public int pop(){ if (top == 0)return -9999; else {top--; return stack[top];}}
public int peek(){ if (top == 0)return -9999; else {return stack[top-1];}}
public void push(int ch) {stack[top] = ch; top++;}
public int getTopIndex() { return top;}

}
class CharacterStack{

private char [] stack = new char[100]; private int top = 0;
CharacterStack(){}
public char pop(){if (top <= 0)return (char)0; else {top--;return stack[top];}}
public char peek(){if (top == 0)return '\0'; else {return stack[top-1];}}
public void push(char ch) {stack[top]=ch; top++;}
public int getTop() { return top;}

}
class StringStack{

private String [] stack = new String[100]; private int top = 0;
StringStack(){}
public String pop() {if (top == 0)return ""; else {top--;return stack[top];}}
public String peek() {if (top == 0)return ""; else {return stack[top-1];}}
public void push(String str) { stack[top]= str; top++;}
public int getTop() {return top;}

}

261

class CharacterTable{
private char[] table = new char[100];
int[] val= new int[100];
private int size = 0;
CharacterTable(){}
CharacterTable(char[] str){ size = str.length; table = str; }
public int locate(char ch){

for(int i=0; i<size; i++){if(ch== table[i])return i;} return -1;}
public int add(char ch){

int index = locate(ch);
if(index == -1){index = size; table[index] = ch; size++;}
return index;

}
public char getElement(int i){

if((i>=0)&&(i<size))return table[i]; else return (char) 0;
}
public boolean contain(char ch){

int k= locate(ch);
if (k<0)return false; else return true;

}
public int getSize(){return size;}
public void setTable(char[] tbl){ table = tbl;size= tbl.length;}

}

class StringTable{
private String[] table = new String[100];
int[] val= new int[100];
private int size = 0;
StringTable(){}
StringTable(String[] str){size=str.length; table=str;}

public int locate(String str){

for(int i=0; i<size; i++){if(str.equals(table[i]))return i;} return -1;}
public int add(String str){

int index = locate(str);
if(index== -1){index = size; table[index]= str; size=size+1;}
return index;

}
public String getElement(int i){

if((i>=0)&&(i<size))return table[i];else return "";
}
public boolean contain(String str){

int k= locate(str);
if (k<0)return false; else return true;

}
public int getSize(){ return size;}
public void setTable(String[] tbl){ table = tbl;size= tbl.length;}

}

Evaluating Expressions

262 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

Figure 7.19 Finite state machine to process arithmetic expressions

There are two drawbacks to this program, the first is that it works correctly for a

correctly structured input expression, but may or may not handle an incorrectly
structured expression in a safe way. Wrong input may result in failure, however
sometimes apparently correct output may result from wrong input, a situation which
cannot be accepted. Where it fails then the user is aware of the problem however the
latter case could be dangerous because an apparently correct but wrong result might
be used in subsequent work. The second draw back is that arithmetic expressions
often contain unary minuses. The first step in tackling these problems is to layout the
possible sequences of operators, brackets, variable names and numbers that can occur
in correctly structured arithmetic expressions and convert them into a state transition
diagram of the form shown in Figure 7.19. This allows the tokenise procedure to be
modified to only accept the correct sequences of elements that this diagram permits,
and to identify when a minus sign is a unary not a binary operator. By changing the
token used to represent the unary minus and giving it a high precedence the rest of
the program will work correctly as before.

UNARY

BINARY

Unary

Operators

;

)
(

Operators

S

F

Operands:
Variables &

Literals

8

5 4

2 3

1

6
7

263

public String[] tokenize(String exprs){
CharacterTable operator = new CharacterTable(new char [] {'+','-','*','/','%'});
String[] tokens = new String[200]; int i=0, j=0;
if(exprs.charAt(exprs.length()-1)!=';')exprs=exprs+';';
boolean notFinished= true;
int state =1; char ch=';';
String str="";
while(notFinished){

switch(state){
case 0: output.writeString("input expression error\n");

state = 8; notFinished=false; break;
case 1:while((ch = exprs.charAt(i))==' '){i++;};

if (alphaSet.contain(ch)||numericSet.contain(ch))state = 6;
else if(ch== '-')state = 3; else state=0; break;

case 2: tokens[j++]= ""+ch; i++;
while((ch=exprs.charAt(i))==' '){i++;};
if(alphaSet.contain(ch) || numericSet.contain(ch))state=6;
else if(ch== '-')state = 3; else state =0; break;

case 3: tokens[j++]= "~";i++;
while((ch=exprs.charAt(i))==' '){i++;};
if (alphaSet.contain(ch)||numericSet.contain(ch))state = 6;
else if(ch=='(')state=4; else state=0; break;

case 4: tokens[j++]= "("; i++;
while((ch=exprs.charAt(i))==' '){i++;};
if (alphaSet.contain(ch)||numericSet.contain(ch))state = 6;
else if(ch=='-')state=3; else state=0; break;

case 5: tokens[j++]= ")";i++;
while((ch=exprs.charAt(i))==' '){i++;};
if(operator.contain(ch))state=2;
else if(ch==';')state=7; else state=0; break;

case 6: if (alphaSet.contain(ch)){ str=""+ch; i++;
while((alphaSet.contain((ch=exprs.charAt(i)))

||numericSet.contain(ch))) {str= str + ch; i++;}
tokens[j++]= str; names.add(str);

}else if(numericSet.contain(ch)){str= "\"";
while(numericSet.contain((ch=exprs.charAt(i))))

{str = str + ch; i++;}
str=str+"\""; tokens[j++]= str; names.add(str);

}while((ch=exprs.charAt(i))==' '){i++;};
if(ch==')') state=5; else if(ch==';')state=7;
else if(operator.contain(ch)) state=2; else state=0; break;

case 7: tokens[j++]= ";"; notFinished = false; state=8; break;
}

}String[] tokenArray = new String[j];
for(i=0;i<j;i++) { tokenArray[i]=tokens[i]; }
return tokenArray;

}

Evaluating Expressions

264 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

Figure 7.20 Including unary minus operators within arithmetic expressions

Translating Expressions into Assembly Language Programs.

What the calculator program does is to convert the nested operations of the input
expression into a sequence of simple binary or unary arithmetic operations on values
stored on the top of a stack. Binary operations can be implemented using three
assembly language commands

a+b lds a; add b; str c;

 And a unary minus becomes

−a lds “0”; sub a; str c;

However the order necessary to support a sequence of simple binary or unary
operations is based on using the stack. If the hardware provided stack based
addressing operations this would be easy to implement directly. However in this case
it is necessary to generate a stack-behaviour by composing names in the translation
program that simulate access to a stack. As operands are obtained from the original
expression they can be stored using a sequence of names s1, s2, … s.., constructed
from a counting variable index using the String concatenate operator in the following
way to simulate a stack:

“lds variable;” “str s” + index+”;”; index++;

As soon as binary operators are obtained, in reverse Polish order, each one can be

translated into a sequence of commands using the current value of the index variable,
which provides the required stack based behaviour in the following way:

“lds s” + (index-2)+”;” ; “add s” + (index-1)+”;” ; “str s” + (index-2)+”;” ;

The unary minus operator can be implemented as follows:

“lds \” 0 \” ;” “sub s” + (index-1)+”;”; “str s” + (index-1)+”;”;

265

Translating Expressions into Assembly Code

public String[] translate(String[] tokenArray){
StringTable operators = new StringTable(

new String []{"+","-","*","/","%",";","(","~"});
int[] precedence = new int[]{3,3,4,4,4,1,2,5};
StringStack nameStack = new StringStack();
StringStack operatorStack = new StringStack();
String[] code = new String[100];
int j=0, topPrecedence=0, tPrecedence, operatorIndex; String operator,s;
for(int i=0;i<tokenArray.length;i++){

String t = tokenArray[i];
if(names.contain(t)){ //operand

nameStack.push("s"+j);
code[codeCount++]=" "+"lds "+t+";\n";
code[codeCount++]=" "+"str "+"s"+j+";\n";
j++;

}else if(t.equals("(")){ //open bracket
operatorStack.push("(");
topPrecedence= 2;

}else if(operators.contain(t)){ //operator
operatorIndex = operators.locate(t);
tPrecedence = precedence[operatorIndex];
while(tPrecedence<=topPrecedence){

operator = operatorStack.pop();
operatorIndex = operators.locate(operator);
j = executeOperator(operatorIndex,j,code);
int index =operators.locate(operatorStack.peek());
if (index<0)topPrecedence=0;
else topPrecedence= precedence[index];

}
operatorStack.push(t);
topPrecedence = tPrecedence;

}else if(t.equals(")")){ //close bracket
while(!((s=operatorStack.pop()).equals("("))){

operatorIndex = operators.locate(s);
j = executeOperator(operatorIndex,j,code);

}
int index =operators.locate(operatorStack.peek());
if (index<0)topPrecedence=0;
else topPrecedence= precedence[index];

}
}
String[] assemblycode= new String[codeCount];
for(int i=0;i<codeCount;i++)assemblycode[i]=code[i];
return assemblycode;

}

Translating Expressions into Assembly Code

266 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

public int executeOperator(int operatorIndex,int j, String[] code){
if(operatorIndex==7){
code[codeCount++]=" "+"lds "+ "\"0\";\n";
code[codeCount++]=" "+"sub "+"s"+(j-1)+";\n";
code[codeCount++]=" "+"str "+"s"+(j-1)+";\n";
return j;
}
code[codeCount++]=" "+"lds "+"s"+(j-2)+";\n";
switch(operatorIndex){ // '+','-','*','/',"%".';'
case 0: code[codeCount++]=” ”+"add "+"s"+(j-1)+";\n";break; //add
case 1: code[codeCount++]=” ”+"sub "+"s"+(j-1)+";\n";break; // subtract
case 2: code[codeCount++]=” ”+"mul "+"s"+(j-1)+";\n";break; // multiply
case 3: code[codeCount++]=” ”+"div "+"s"+(j-1)+";\n";break; // divide
case 4: code[codeCount++]=” ”+"mod "+"s"+(j-1)+";\n"; break // modulo
default:return 0; // end of expression
}
code[codeCount++]=" "+"str "+"s"+(j-2)+";\n";
return j-1;

}

Figure 7.21 Translating an arithmetic expression into assembly code

Boolean Expression Processing

As soon as conditional operations are required it becomes necessary to use Boolean
expressions. The Boolean expression will have to be evaluated using the available

267

operations provided by the microcomputer system. In a conventional computer
processing-unit, logic operations will be provided as primitive hardware operations.
With this system all that is available is the set of arithmetic operations. However,
these are sufficient to support the use of Boolean expressions given the appropriate
translation to basic assembly language and machine code sequences. If false is
represented by 0 and true is represented by 1 then the “and” operation can be
provided by the standard arithmetic “multiply” operation. The “complement”
operation can be handled by subtracting values from 1, the “or” operation can be
implemented by adding the values and the exor by subtracting the values in the
following ways.

A 1−Α !A

0 1 1
1 0 0

lds “1”;
sub A;

X: …

A B A*B A&&B

0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

lds A;
mul B;

X: …

A B A+B A||B

0 0 0 0
0 1 1 1
1 0 1 1
1 1 2 1

lds A;
add B;
jez X;
lds “1”

X: …

A B A−B A ⊕ B

0 0 0 0
0 1 −1 1
1 0 1 1
1 1 0 0

lds A;
sub B;
jez X;
lds “1”

X: …

A B A−B A ⊗ B

0 0 0 1
0 1 −1 0
1 0 1 0
1 1 0 1

lds A;
sub B;
jez X;
lds “0”;
jmp Y;

X: lds “1”;
Y: nop;

Combination of these basic operations will support the full implementation of the

often more complex Boolean expressions used in conditional and while statement
tests, and they can be extended to include numerical comparison tests in the
following way:

Boolean Expression Processing

268 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

Numerical comparison tests using arithmetic operations

A B A − B A<B

5

4/5

1/0

0

4

5

-1

1

lds A;
sub B;
jng X;
lds “0”;
jmp Y;

X: lds “1”;
Y: nop;

A B B − A A<=B

5

4

-1

0

4

5/4

1/0

1

lds B;
sub A;
jng X;
lds “1”;
jmp Y;

X: lds “0”;
Y: nop;

A B A − B A>=B

5

4/5

1/0

1

4

5

-1

0

lds A;
sub B;
jng X;
lds “1”;
jmp Y;

X: lds “0”;
Y: nop;

A B B − A A>B

5

4

-1

1

4

5/4

1/0

0

lds B;
sub A;
jng X;
lds “0”;
jmp Y;

X: lds “1”;
Y: nop;

A B A − B A==B

5

5

0

1

4

3/5

1/-1

0

lds A;
sub B;
jez X;
lds “0”;
jmp Y;

X: lds “1”;
Y: nop;

A B A − B A !=B

5

5

0

0

4

3/5

1/-1

1

lds A;
sub B;
jez X;
lds “1”;
jmp Y;

X: lds “0”;
Y: nop;

269

public String[] translate(String[] tokenArray){
StringTable operators = new StringTable(new String []

{"||","&&","!","<",">","==","<=",">=","!=",";","("});
int[] precedence = new int[]{3,4,5,6,6,6,6,6,4,1,2};
StringStack nameStack = new StringStack();
StringStack operatorStack = new StringStack();
String[] code = new String[100];
int topPrecedence=0,tPrecedence, operatorIndex;
int[] j=new int[2]; j[0]=0; j[1]=0;
String operator,s;
for(int i=0;i<tokenArray.length;i++){

String t = tokenArray[i];
if(names.contain(t)){ //variable name

nameStack.push("s"+j);
code[codeCount++]=" "+"lds "+t+";\n";
code[codeCount++]=" "+"str "+"s"+j[0]+";\n";
j[0]++;

}else if(t.equals("(")){ //open bracket
operatorStack.push("(");
topPrecedence= 2;

}else if(operators.contain(t)){ //operator
operatorIndex = operators.locate(t);
tPrecedence = precedence[operatorIndex];
while(tPrecedence<=topPrecedence){

operator = operatorStack.pop();
operatorIndex = operators.locate(operator);
j = executeOperator(operatorIndex,j,code);
int index =operators.locate(operatorStack.peek());
if (index<0)topPrecedence=0;
else topPrecedence= precedence[index];

}
operatorStack.push(t);
topPrecedence = tPrecedence;

}else if(t.equals(")")){ //close bracket
while(!((s=operatorStack.pop()).equals("("))){

operatorIndex = operators.locate(s);
j = executeOperator(operatorIndex,j,code);

}
int index =operators.locate(operatorStack.peek());
if (index<0)topPrecedence=0;
else topPrecedence= precedence[index];

}
}
String[] assemblycode= new String[codeCount];
for(int i=0;i<codeCount;i++)assemblycode[i]=code[i];
return assemblycode;

}

Boolean Expression Processing

270 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

In Boolean expressions each of the variables A and B in these expansions will
have to be stacked variables constructed in the same way used for the arithmetic
expression: s0, s1, s2 etc. depending on their place in the expression and
consequently the position in which they are placed in the evaluation stack. The labels
X and Y also have to be modified to make each one unique within the larger program

The simpler version of the tokenise procedure is adequate for processing input
Boolean expressions because the unary operator ‘!’: not, does not need to be
distinquished from a binary operation represented by the same character, as in the
case of the arithmetic unary minus.

However, a change has to be made to the arithmetic expression translate
procedure by providing a counter for contructing label names, similar to the counter
used to create the stack-simulating names The two counters are passed to and from
the translate and executeOperator methods through the array parameter j[] holding
two values, where j[0] follows the top of the stack and j[1] gives the next free label
postscript. The main extension needed to implement these sequences of commands is
to replace the executeOperator procedure in the way illustrated below.

public void booleanop(
 int ca, int cb, String cc, String cd, String ce,String cf,int j[],String[] code){

int l1 = j[1]; j[1]++;
int l2 = j[1]; j[1]++;
code[codeCount++] = " "+"lds s"+ca+";\n"; //load first variable
code[codeCount++] = " "+cf+" s"+cb+";\n"; //apply second variable
code[codeCount++] = " "+cc + " x"+ l1 + ';' +"\n"; //jump
code[codeCount++] = " "+"lds "+ cd+";\n"; //result
code[codeCount++] = " "+"jmp " + "x"+ l2 + ';' +"\n"; //jump
code[codeCount++] = "x"+ l1 +": " + "lds " + ce +';' +"\n"; //result
code[codeCount++] ="x"+ l2 +": "+"str s"+(j[0]-2)+";\n"; //store the result

}

public int[] executeOperator(int operatorIndex, int j[], String[] code){
String f ='\"'+"0"+'\"',t ='\"'+"1"+'\"';
switch(operatorIndex){
case 0:booleanop(j[0]-1,j[0]-2,"jez",t,f,"add",j,code);j[0]--;break; //"||"
case 1:booleanop(j[0]-1,j[0]-2,"jez",t,f,"mul",j,code);j[0]--;break; //"&&"
case 2:j[0]++;booleanop(j[0]-2,j[0]-2,"jez",f,t,"add",j,code);j[0]--;break //”!”
case 3:booleanop(j[0]-2,j[0]-1,"jng",f,t,"sub",j,code);j[0]--;break; //"<"
case 4:booleanop(j[0]-1,j[0]-2,"jng",f,t,"sub",j,code);j[0]--;break; //">"
case 5:booleanop(j[0]-2,j[0]-1,"jez",f,t,"sub",j,code);j[0]--;break; //"=="
case 6:booleanop(j[0]-1,j[0]-2,"jng",t,f,"sub",j,code);j[0]--;break; //"<="
case 7:booleanop(j[0]-2,j[0]-1,"jng",t,f,"sub",j,code);j[0]--;break; //">="
case 8:booleanop(j[0]-1,j[0]-2,"jez",t,f,"sub",j,code);j[0]--;break; //"!="
}return j;

}

271

Figure 7.22 Translating a Boolean expression into assembly code

This approach works but loses the capacity to check that an expression is correctly
formed. Though it is still possible to check that the structure of a Boolean expression
is correct using a state transition system in the way developed for the arithmetic
expression, as soon as the relationship test between two arithmetic values is extended
from:

 ‘(‘<variable> <relational operator> <variable> ‘)’
to

‘(‘<arithmetic expression> <relational operator> < arithmetic expression > ‘)’

a more powerful and general technique for checking structure is required. One
approach to this task is explored in the next chapter.

Boolean Expression Processing

272 7 Intermediate, Assembler Programming Macro Expansions, Expression Translation

Assembly languages made programming early computers a much easier and less
error prone activity. The move to a more natural language way of writing programs
did not stop there, and the evolution of high level computer languages developed
apace as better ways to automatically translate them to machine code were
discovered.

The calculator program discussed in this chapter can be included in a class of
language processing programs called interpreters. The arithmetic expression is the
input language form that the calculator expects, and which it interprets directly,
evaluating or calculating the required answer from the given variable values. In
contrast the translation programs that convert the expression into equivalent
programs in a simpler language structure that are eventually executed by the
computer simulator, are called compilers. Notice in this case that the simulator is an
interpreter, but the final code could have been machine code for a hardware system.

The benefit of the hierarchical language system is that overall it provides a more
flexible versatile and compact computer system. General capability is captured at the
expense of local efficiencies. However the efficiency of a complex general-purpose
system depends on the statistics of its patterns of use. These can vary depending on
the principal applications. One of the outcomes from testing systems in operation is
that critical elements that are profitable to support in a dedicated way, for example at
the hardware or firmware level of systems, often turned out to be very different from
what was expected. Consequently they have to be identified by running profile tests
for use in each new context.

At the same time computer languages developed, many alternative designs of
computer hardware were also produced generally using different machine codes, and
even with the unifying possibilities offered by microcode to give families of
computers using the same machine language, alternatives multiplied. This
diversification gave assembly or intermediate level languages a new role.

The need for flexibility created a demand for portable computer languages that
could run on many platforms. If the high level language is translated to a common
intermediate language that is much simpler in structure, it is then a much smaller task
to write translators or interpreters for the simpler language to run on different
hardware platforms. Both Pascal and Java were designed to translate to a standard
intermediate code that could either be interpreted or translated to the native code of
the machine they were being run on.

This idea extends to making multiple languages run efficiently on many platforms
with minimum programming effort. If each high level language is translated into a
common intermediate language, then this is translated into the machine code for the
individual hardware platforms a great deal of duplication can be avoided in the
programming task.

I DO NOT
UNDERSTAND - YOUR

BALLOON HAS
SLIPPED

E

L
A
A N A

U

A S

G

S A

R A
N

G G D
A

R

M
M A

8
Higher Level
Languages –
Translation,
Interpretation
and Scripting

Introduction

The problem with the calculator and expression translator discussed in the last chapter
occurs when incorrectly structured expressions are entered into the system. What is
necessary is a way for checking that an expression has a correct structure before
attempting to execute or translate it.

<arithmetic expression> := <multiply phrase><add operator><arithmetic expression>
 | <multiply phrase> .

<multiply phrase> := <factor> <multiply operator> <multiply phrase> | <factor>.
<factor> := <variable> | <number> | <bracketed expression>.
<bracketed expression> := ‘(‘ <arithmetic expression> ‘)’.
<add operator> := “+” | “-”.
<multiply operator> := “*” | “/” | “%”.

The correct structure of a language statement is defined by the grammar of the

language. This can be expressed as a set of swapping rules of the form given above
for an arithmetic expression. The way to read these rules is, starting from the top left:
in order to have an arithmetic expression it is necessary either to find a multiply
phrase followed by an add operator – either plus or minus – followed by a structure
that itself conforms to that of an arithmetic expression; or merely to find a multiply
phrase. This definition however transfers the problem to recognising the structure of a
multiply phrase. The second rule gives the necessary definition to do this except that
again it leaves the factor undefined, but the next rule takes care of this! Descending
A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_8, © Springer-Verlag London Limited 2008

274 8 Higher Level Languages – Translation, Interpretation and Scripting

down through this hierarchy of definitions ultimately leads to entities like keywords
punctuation or variable names and numbers that can be directly located in the target
expression by character by character comparison tests. This approach allows a
program to be written that will automatically check that a new expression has a
correct structure. If an expression is entered as the String: inputString then processed
character by character using the character array index stringIndex to walk through the
expression, its structure can be checked using the following sequence of procedures
developed directly from the grammar rules.

<arithmetic expression> := <multiply phrase><add operator><arithmetic expression>

| <multiply phrase> .

public static boolean arithmeticExpression(){
int indexSave = stringIndex;
if(multiplyPhrase())

if(addOperator())
if(arithmeticExpression())return true;

stringIndex=indexSave;
if(multiplyPhrase())return true;
stringIndex=indexSave;
 return false;

}

<multiply phrase> := <factor> <multiply operator> <multiply phrase> | <factor>.

public static boolean multiplyPhrase(){
int indexSave = stringIndex;
if(factor())

if(multiplyOperator())
if(multiplyPhrase())return true;

stringIndex=indexSave;
if(factor())return true;
stringIndex=indexSave;
return false;

}

<factor> := <variable> | <number> | <bracketed expression>.

public static boolean factor(){
int indexSave = stringIndex;
if(variable())return true;
stringIndex=indexSave;
if(number())return true;
stringIndex=indexSave;
if(bracketedExpression())return true;
stringIndex=indexSave;
return false;

}

Introduction 275

<bracketed expression> := ‘(‘ <arithmetic expression> ‘)’.

public static boolean bracketedExpression(){
int indexSave = stringIndex;
if (nextNonSpaceCharacter()=='(')

if (arithmeticExpression())
if (nextNonSpaceCharacter()==')') return true;

stringIndex=indexSave;
return false;

}

<add operator> := ‘+’ | ‘-’.

public static boolean addOperator(){
int indexSave = stringIndex;
if (nextNonSpaceCharacter()=='+') return true;
stringIndex=indexSave;
if (nextNonSpaceCharacter()=='-') return true;
stringIndex=indexSave;
return false;

}

<multiply operator> := ‘*’ | ’/’ | % .

public static boolean multiplyOperator(){
int indexSave = stringIndex;
if (nextNonSpaceCharacter()=='*') return true;
stringIndex=indexSave;
if (nextNonSpaceCharacter()=='/') return true;
stringIndex=indexSave;
if (nextNonSpaceCharacter()=='%') return true;
stringIndex=indexSave;
return false;

}

<number> := NUMBER.

public static boolean number(){
String number = ""; char ch; int indexSave = stringIndex;
if(((ch = nextNonSpaceCharacter())>='0')&&(ch<='9')){

number = number + ch;
while(((ch = nextCharacter())>='0')&&(ch<='9'))number = number +ch;
stringIndex--;
return true;

}
stringIndex=indexSave;
return false;

}

276 8 Higher Level Languages – Translation, Interpretation and Scripting

<Variable> := NAME.

public static boolean variable(){
String name = ""; char ch; int indexSave = stringIndex;
if(((ch = nextNonSpaceCharacter())>='a')&&(ch<='z')){

name = name + ch;
while(((ch=nextCharacter())>='a')&&(ch<='z')||(ch>='0')&&(ch<='9'))

name=name +ch;
stringIndex--; return true;

}
stringIndex=indexSave; return false;

}

public static char nextCharacter(){

if(stringIndex==inputString.length())return (char)0;
char ch= inputString.charAt(stringIndex); stringIndex++;
return ch;

}

public static char nextNonSpaceCharacter() {
char ch = nextCharacter();
while((ch == ' ')||(ch =='\n')){ch = nextCharacter();}return ch;

}

This example shows how the grammar rules expressed in this way can be directly

converted into the program code that will check whether a language statement -- in
this case an expression entered as a character string -- has a correct structure. Each
grammar rule represents alternative swapping or subdivision steps for matching the
target language statement. Each subdivision consists of sub-elements all of which
must be found in the order given to satisfy the rule. The regularity of this arrangement
makes it easy to extend the language by adding correctly structured grammar rules,
and then converting these into corresponding program-recognition procedures.

Using a grammar to determine whether a string of characters can be accepted as a
valid statement or sentence in a given language can be loosely compared to the maze-
searching problem explored in chapter 4. The elements in the grammar rules can be
treated as maze cells in the way shown in Figure 8.1 where there are three types of
cell. The first are the terminal cells each coloured yellow. These contain characters,
character sequences or definitions of sequences -- such as the definition of a name or
a number -- that can be directly matched with characters in the input statement. The
second and third cell types are shown coloured pink and blue. Each blue cells on the
right hand side has a single entry point but can have multiple exit points each from a
labelled green square. The pink cells on the left hand side may have multiple entry
points and multiple exit points labelled in pink circles. A target string can be
processed to test whether its structure conforms to the grammar by establishing
whether there is a route through this grammar maze that allows the target string to be
matched by visits to the terminal cells controlled by the links in the grammar maze.

Introduction 277

Figure 8.1 Treating grammatical analysis as a maze-solving problem

 ;

C

EC B

FD C

D

NAME

NUMBER

A: Statement

B: Expression

C: MultiplyPhrase

F: MultiplyOperators

D: Factor

E: AddOperators

ENTER

EXIT

%

(

0

7

6

5

4

3

2

1

− +

* /

B

B)

278 8 Higher Level Languages – Translation, Interpretation and Scripting

If a successful match is found from any one of the exit routes from a pink cell then
indication of this success can be taken back to the previous green cell from which it
was entered. However, for a success to be taken back from a blue cell to a pink cell,
all the green cells within it, taken in order, have to have successfully found a route to
a terminal cell matching the input string. If any green cell is returned to with a failure
then this failure immediately has to be taken back to the pink cell from which its blue
cell was entered.

On failure the backtracking process has to recover the location in the input target
string appropriate for the cell being returned to. This is because partial matches may
be found following a successful sequence of green links from a blue cell, which have
to be discarded if a subsequent green link returns a failure. The previously successful
returns will have incorrectly advanced the current character in the input string, being
tested for matches. When a route from the start of this maze to its exit has been found
then matches for whole target string will have been found. The target string can then
be accepted as having a correct grammatical structure, defined by the path that was
taken in finding a match for it.

The way the grammar maze is laid out in Figure 8.1 places the cells on the left
where only one alternative link needs to return successfully for the cell itself to return
success. In contrast the cells on the right need to have all their links returning success
for them to be able to return success. The repetitive pattern that emerges makes it
possible to write a general recognition procedure that can be tailored to work with any
grammar structured in this way merely by presenting the grammar in the form of a
pair of tables.

The first table – the orTable – gives the list of alternatives for each rule:
corresponding to a list of the pink cells. The second table -- the andTable – lists the
expansions for each alternative sudivision of a rule, a list corresponding to the blue
cells, gives the necessary elements in the correct order that need to be identified to
satisfy each alternative. The positive integers in the orTable are indexes to rows in the
andTable, and similarly the positive integers in the andTable are indexes into the
orTable. The negative entries in either table reference procedures that directly match
input-string characters with keyword strings -- given in an array of Strings chs -- or
provide tests for name or number character sequences in the input string.

Applying the Maze Grammer

Processing starts by considering the first character in the input target string. Entry into
the maze is at the top into the left hand cell named statement. This has a single exit
point to a right hand cell containing two elements. Movement through the maze is
carried out by systematically following the arrows showing the links between cells
until a terminal cell is reached following which the path must be backtracked. If the
terminal cell contains a symbol that matches the current element in the target string
then the path to this cell is flagged as successful, allowing the next element in the
input string be set up for matching. Where there is no match then the current element
in the input string is kept in an attempt to find an alternative route to a terminal cell
that can match it. Alternative routes are found by systematically continuing to search
the space of the grammar-maze.

Introduction 279

public class Expression {

static Input jInput= null; static Output jOutput = null; static int i = 0;
static String str = ""; static int stringIndex =0;static String inputString ="";
static int[] record = new int[1000]; static int recordIndex=0, Index=0;
static String[] chs = new String[]

{"0","1","2","3","4",";","+","-","*","/","%","(",")",","};
static int[][] orTable= new int[][]{
 {0},
 {1,2},
 {3,4},
 {5,6,7},
 {-6, -7},
 {-8, -9, -10}
 };
static int[][] andTable= new int[][]{
 {1,-5},
 {2,4,1},
 {2},
 {3,5,2},
 {3},
 {-2},
 {-3},
 {-11,1, -12 }
 };

public static void main(String[] args){

int width = 800, height = 100;
jInput = new Input(12,612,400, 100," INPUT ");
jOutput = new Output(12,12,400, 600," OUTPUT ");
String str = jInput.readString();
while(!str.equals("stop")){

while((!str.equals("end"))&&(!str.equals("stop"))){
inputString = inputString + str;
jOutput.writeString(str +"\n");
str = jInput.readString();

}
recordIndex =0; stringIndex =0; record[recordIndex]=0;
char ch = nextNonSpaceCharacter();stringIndex--;
if(orTest(0)){

jOutput.writeString("\n success \n");
AExpression ex = new AExpression();
String[] code= ex.expressionEvaluation(jOutput,inputString);

}else jOutput.writeString("failed \n");
stringIndex = 0; recordIndex =0; inputString = "";
str = jInput.readString();

}
}

+ numbers
indexes to
andTable
entries

− numbers
selectors
for lexical
elements

+ numbers
indexes to
orTable
entries

operators
keywords &
separators

280 8 Higher Level Languages – Translation, Interpretation and Scripting

static boolean orTest(int i){
int[] m = orTable[i];
int indexSave = stringIndex; int recordSave = recordIndex;
for(int j=0; j<m.length;j++){

record[recordIndex] = m[j];
recordIndex++;
switch(m[j]){

case -1: return true;
case -2: if(name()) return true; break;
case -3: if(number()) return true; break; //integer
case -4: if(number()) return true; break; //real
default: if(m[j] < 0){if(Match(chs[-m[j]]))return true;

}else {if(andTest(m[j]))return true;}
}
stringIndex=indexSave; recordIndex=recordSave;

}return false;
}
static boolean andTest(int i){

int indexSave = stringIndex;
int[] n = andTable[i];
for(int j=0; j < n.length;j++){

switch(n[j]){
case -1: break;
case -2: if(name()) break; return false;
case -3: if(number()) break; return false; //integer
case -4: if(number()) break; return false; //real
default: if(n[j] < 0){if(Match(chs[-n[j]]))break; else return false; }

else {if(orTest(n[j]))break; else return false;}
}

}return true;
}
static boolean number(){

String number = ""; char ch;
if(((ch = nextNonSpaceCharacter())>='0')&&(ch <='9')){

record[recordIndex]= stringIndex-1;recordIndex++;
number = number + ch;
while(((ch = nextCharacter())>='0')&&(ch<='9'))

number = number +ch;
record[recordIndex]= stringIndex-1; recordIndex++;
return true;

} return false;
}
static char nextCharacter(){

if(stringIndex==inputString.length())return (char)0;
char ch= inputString.charAt(stringIndex); stringIndex++;
return ch;

}

Introduction 281

static char nextNonSpaceCharacter() {
char ch = nextCharacter();
while((ch == ' ')||(ch =='\n')){ch = nextCharacter();}return ch;

}
static boolean name(){

String nam = ""; char ch;
if((((ch = nextNonSpaceCharacter())>='a')&&(ch<='z'))

||((ch >='A')&&(ch<='Z'))) {
stringIndex--; record[recordIndex]= stringIndex;recordIndex++;
while((((ch= nextCharacter()) >='a')&&(ch<='z'))

||((ch >='A')&&(ch<='Z'))||((ch >='0')&&(ch<='9')))
 { nam = nam +ch;}

stringIndex--; record[recordIndex]= stringIndex;recordIndex++;
return true;

}return false;
}
static boolean Match(String st){

int i=0;char ch;
if(nextNonSpaceCharacter()== st.charAt(i)){

stringIndex--;
while((i < st.length())&&(st.charAt(i) == (ch=nextCharacter()))){ i++;}

}
if(i==st.length()){ return true;}
return false;

}

The input and output from this program is shown in Figure 8.2. The first
expression entered contains an error and the result is failure. The second gives a
corrected input and the result is recognised as correct and passed to the expression
translator outlined in chapter 7, which generates the translated version of the program
in assembly code.

In order to extend the language from simple expressions the first step is to extend
the grammar rules to allow the new statements to be recognised. Using the first
approach discussed above, will involve writing new procedures for each of the new
rules. Using the second approach merely extending the orTable, the andTable, and the
array of separators, keywords and operators will achieve the same goal. However,
once the extensions have been checked and recognised they will still have to be
interpreted or translated into assembly code. The equivalent to the calculator or
expression translator needs to be provided for the new statements.

What is important is that this step can also be carried out based on the grammar
rules used to define the new statements. In carrying out the recognition process the
structure of the input statements has implicitly been identified by the route taken
through the grammar maze. If this structure is recorded as the list of successful
alternative rules passed through, then this list can be used to support the execution or
translation stage that matches the calculator program’s evaluation of the arithmetic
expression. The next step is to illustrate the alternative way this can be done by
executing or translating an arithmetic expression based on its grammar rules.

282 8 Higher Level Languages – Translation, Interpretation and Scripting

public static void main(String[] args){
int width = 800, height = 100;
jInput = new Input(12,612,400, 100," INPUT ");
jOutput = new Output(12,12,400, 600," OUTPUT ");
String str = jInput.readString();
while(!str.equals("stop")){

while((!str.equals("end"))&&(!str.equals("stop"))){
inputString = inputString + str; jOutput.writeString(str +"\n");
str = jInput.readString();

}
recordIndex =0; stringIndex =0; record[recordIndex]=0;
char ch = nextNonSpaceCharacter();stringIndex--;
if(orTest(0)){

for(int k=0;k<recordIndex;k++){
if((k!=0)&&(k%15==0))jOutput.writeString("\n");
jOutput.writeString(record[k]+" ");

}
jOutput.writeString("\n success \n");
Index=0; MiniJCProgram();

}else jOutput.writeString("failed \n");
stringIndex = 0; recordIndex =0; inputString = "";
str = jInput.readString();

}
}

static void MiniJCProgram(){

Index=0;jOutput.writeString(" Program \n");
Statement();

}
static void Statement(){

jOutput.writeString(" Statement \n");
switch (record[Index]){

case 0: Index++; ArithmeticExpression(); Index++;
 jOutput.writeString(" "+chs[-record[Index]]+"\n"); break;

default: jOutput.writeString("error 1 index = "+Index+"\n");
}

}
static void ArithmeticExpression(){

jOutput.writeString(" ArithmeticExpression \n");
switch (record[Index]){

case 1: Index++; MultiplyPhrase();
Index++; AddOp();
Index++; ArithmeticExpression(); break;

case 2: Index++; MultiplyPhrase(); break;
default: jOutput.writeString("error 2 index = "+Index+"\n");

}
}

Introduction 283

static void MultiplyPhrase(){
jOutput.writeString(" MultiplyPhrase \n");
switch (record[Index]){

case 4: Index++; Factor();
Index++; MultiplyOp();
Index++; MultiplyPhrase(); break;

case 5: Index++; Factor(); break;
default: jOutput.writeString("error 3 index = "+Index+"\n");

}
}
static void Factor(){

jOutput.writeString(" Factor \n");
switch (record[Index]){

case 5: Index++; jOutput.writeString(" (\n");
ArithmeticExpression();
jOutput.writeString(")\n"); break;

case 6: Index++; name(); break;
case 7: Index++; number (); break;
default: jOutput.writeString("error 4 index = "+Index+"\n");

}
}
static void Name(){

jOutput.writeString(" NAME \n");
jOutput.writeString(" ");
for(int i=record[Index++];i<record[Index];i++)

jOutput.writeString(""+inputString.charAt(i));
jOutput.writeString("\n"); break;

}
static void AddOp(){

jOutput.writeString(" Add Operator \n");
jOutput.writeString(" ");
jOutput.writeString(chs[-record[Index]]+"\n");

}
static void MultiplyOp(){

jOutput.writeString(" Multiply Operator \n");
jOutput.writeString(" ");
jOutput.writeString(chs[-record[Index]]+"\n");

}
static void Number(){

jOutput.writeString(" NUMBER \n");
Index++;
 jOutput.writeString(" ");
for(int i=record[Index++];i<record[Index++];i++)

jOutput.writeString(""+inputString.charAt(i));
jOutput.writeString("\n"); break;

}
}

284 8 Higher Level Languages – Translation, Interpretation and Scripting

Figure 8.2 Translated expression

Figure 8.3 Recognition path

Introduction 285

In the output shown in Figure 8.3 the digit sequence following the expression gives
the indexes to the rows of the orTable that record the successful sequence of rules
found necessary to match the structure of the input expression. If as before a series of
procedures matching the grammar rules are written but in the way illustrated above,
then this record can be used to write out the structure found in the way also shown in
Figure 8.3 following the integer sequence. It is this framework of procedures, driven
by the record[] representing a particular expression structure, which can be set up to
interpret the expression or translate it.

If a valid sentence is identified by a valid route through the grammar maze
network, and each grammar rule defines the links between maze cells, then the
recognition task is a route-finding spatial search looking for a path from the start cell
to a finish cell that allows the target input statement to be matched. Where deadends
are reached in the maze system the search has to backtrack to look for alternative
options. In a general maze problem there may be a variety of routes to a finish cell. In
natural language parsing this can also be the case, and this is traditionally illustrated
by the two sentences:

Figure 8.4 Multiply phrases

Fruit flies like a banana.

Concord flies like an arrow.

Each of these statements can be incorrectly
read using the sructure that makes sense of the
other. In the first example “flies” is the subject
of the sentence whereas in the second “flies” is
the verb! The distinction in this case cannot be
made based on the structure of the strings
alone but has to depend on the meaning of the
words, and so stops being a purely formal
analysis. The construction of the maze or
search space can be arranged to prevent
multiple routes to valid language strings being
possible. This is done by the design of the
grammar rules. In the case of standard high
level computer languages the rules are
specifically set up to avoid this kind of
ambiguity. Once a path to a matching
statement has been found in this “language
space” then the route taken uniquely defines its
structure, and can then be used to interpret it or
translate it into an equivalent alternative
language statement or sequence of statements.

As an example consider evaluating the MultiplyPhrase a*b*c. The sequence of
procedure calls that match the analysis of this expression, are shown in Figure 8.4. If
each time a variable is located its value is passed back up to the calling procedure
then each multiplyPhrase will have either a single value passed back to it from the

286 8 Higher Level Languages – Translation, Interpretation and Scripting

rule defining it as a factor, or two values from the alternative rule defining it as a
factor followed by an operator followed by a multiplyPhrase. Applying the operator
to the two values returned to it will allow it to pass back the product of the two to its
calling procedure.

Figure 8.5 Recursive evaluation of a multiply phrase a*b*c

However, though this illustrates the principle involved, and it works in this direct

way for a multiply sequence, it imposes an ordering on the application of the
operators to the variables which is not appropriate for subtraction and division
operations. What these procedures have to do is to construct an operator tree, which
can then be traversed to give the correct order for the calculation.

 a: incorrect b: correct

 (a / (b * (c / d))) (((a / b) * c) / d)

Figure 8.6 Alternative operator trees

MultiplyPhrase <Factor> ‘*’ < MultiplyPhrase>

MultiplyPhrase <Factor> ‘*’ < MultiplyPhrase>

MultiplyPhrase <Factor>

6

Variable a

Variable c

Variable b 6

2

4

48

24

a

c

b

d

/

∗

/

a

c

b

d

/

∗

/

Introduction 287

<Arithmetic Expression> :: = <Multiply phrase>

<Factor> <Multiply operator> <Multiply phrase>

<Factor> <Multiply operator> <Multiply phrase>

<Factor> <Multiply operator> <Multiply phrase>

 <Factor>

Figure 8.7 Constructing an operator tree using backward recursion

c

b

a

/

∗

/

t

t

t

t
s

s

s

s

t

t

c

?

s

d

/

s

b

? c

* d

/

a

/

? b

c

* d

/

t

a

/

b

c

* d

/
s

s

t

s

d

? t

288 8 Higher Level Languages – Translation, Interpretation and Scripting

The recursive evaluation sequence shown in Figure 8.5 implements the incorrect
sequence defined by the operator tree shown in in Figure 8.6a. However, the same
recursive processing order can be used to produce the correct operator tree given in
Figure 8.6b, in the way shown in Figure 8.7.

A program to build this tree from the record generated by the recognition program
is given below.

static void MiniJCProgram(){
Index=0; jOutput.writeString(" Program \n");
Statement(); return;

}

static void Statement(){
switch (record[Index]){

case 0: Index++;
TreeNode s = new TreeNode();
TreeNode t = ArithmeticExpression(s);
if(t==null)s=s.right;
else if(t.left.left==null)t.left=t.left.right;
Index++;
s.infixTraverse(jOutput);
break;

default: jOutput.writeString("error 1 index = "+Index+"\n");
}return;

}

static TreeNode ArithmeticExpression(TreeNode s){

TreeNode t = new TreeNode();
int save = Index;
Index++;
TreeNode r = MultiplyPhrase(t);
if(r==null)t=t.right;
else if((r.left!=null)&&(r.left.left==null))r.left=r.left.right;
switch (record[save]){

case 1: Index++;
String op = chs[-record[Index]];
Index++;
TreeNode p = ArithmeticExpression(s);
TreeNode q = new TreeNode();
if(p==null){s.name=op;s.left=q;q.right=t;return s;}
else{ p.left.name=op; p.left.left=q; q.right=t; return p.left;}

case 2: s.right=t; return null;
default: jOutput.writeString("error 2 index = "+Index+"\n");

}
return null;

}

Introduction 289

static TreeNode MultiplyPhrase(TreeNode s){
TreeNode t = new TreeNode();
int save=Index; Index++;
TreeNode r = Factor(t);
if(r==null)t=t.right;
else if((r.left!=null)&&(r.left.left==null))r.left = r.left.right;
switch (record[save]){

case 3: Index++;
String op = chs[-record[Index]];
Index++;
TreeNode p = MultiplyPhrase(s);
TreeNode q = new TreeNode();
if(p==null){ s.name=op; s.left=q; q.right=t; return s;}
else{ p.left.name=op; p.left.left=q; q.right=t; return p.left;}

case 4: s.right=t; return null;
default: jOutput.writeString("error 3 index = "+Index+"\n");

}return null;
}
static TreeNode Factor(TreeNode s){

switch (record[Index]){
case 5: Index++;

s.name = Name();
 return s;

case 6: Index++;
 s.name = Number();
 return s;

case 7: Index++;
TreeNode r = ArithmeticExpression(s);
 return r;

default: jOutput.writeString("error 4 index = "+Index+"\n");
}return null;

}
static String Name(){

String str="";
for(int i=record[Index++];i<record[Index];i++)

str=str+inputString.charAt(i);}
return str;

}
static String Number(){

String str="";
for(int i=record[Index++];i<record[Index];i++)

str=str+inputString.charAt(i);
return str;

}

Recursing backwards creates a correct operator tree in the way shown in Figure
8.8. However a forward recursive approach gives the same result shown in Figure 8.9.

290 8 Higher Level Languages – Translation, Interpretation and Scripting

Figure 8.8 Backward recursion

Figure 8.9 Forward recursion

Introduction 291

<Arithmetic Expression> :: = <Multiply phrase>

<Factor> <Multiply operator> <Multiply phrase>

<Factor> <Multiply operator> <Multiply phrase>

<Factor> <Multiply operator> <Multiply phrase>

<Factor>

Figure 8.10 Constructing an operator tree using forward recursion

a ?

/

b

?

∗

/

a

d

c

b

a

/

∗

/

a

c

b

?

/

∗

/

s

a

c

b

d

/

∗

/

s == null

s != null

s != null

s != null

s

s

s

s

s

s

s

s

s

s

s

292 8 Higher Level Languages – Translation, Interpretation and Scripting

Forward recursion can be implemented by using the following modified procedures:

static void Statement(){
switch (record[Index]){

case 0: Index++;
TreeNode t = ArithmeticExpression(null);
t.infixTraverse(jOutput);
break;

default: jOutput.writeString("error 1 index = "+Index+"\n");
}return;

}
static TreeNode ArithmeticExpression(TreeNode s){

switch (record[Index]){
case 1: Index++;

TreeNode t= new TreeNode(); TreeNode r= MultiplyPhrase(null);
if(s!=null)s.right = r ;
Index++; t.name = AddOp();
if(s==null)t.left = r; else t.left = s;
Index++; return ArithmeticExpression(t);

case 2: Index++;
if(s==null)return MultiplyPhrase(null);
else{ s.right= MultiplyPhrase(null); return s;}

default: jOutput.writeString("error 2 index = "+Index+"\n");
}return null;

}
static TreeNode MultiplyPhrase(TreeNode s){

switch (record[Index]){
case 3: Index++;

TreeNode t= new TreeNode(); TreeNode r = Factor();
if(s!=null)s.right = r ;
Index++; t.name = MultiplyOp();
if(s==null)t.left = r; else t.left = s;
Index++; return MultiplyPhrase(t);

case 4: Index++;
if(s==null)return Factor(); else{ s.right= Factor(); return s;}

default: jOutput.writeString("error 2 index = "+Index+"\n");
}return null;

}
static TreeNode Factor(){

TreeNode s= new TreeNode();
switch (record[Index]){

case 5: Index++; s.name = Name();return s;
case 6: Index++; s.name = Number();return s;
case 7: Index++; TreeNode r = ArithmeticExpression(null); return r;
default: jOutput.writeString("error 4 index = "+Index+"\n");

} return null;
}

Introduction 293

Once the operator tree has been constructed a standard tree traversal algorithm will
give the reverse polish order that can be used to generate assembly code as before, or
to evaluate the expression. However the forward recursive procedure can be used
directly without having to generate the intermediate tree structure, both to evaluate
the expression and to translate it into assembly code in the following way.

static void MiniJCProgram(){
Index=0;jOutput.writeString(" Program \n"); Statement(); return;

}
static void Statement(){

switch (record[Index]){
case 0: Index++;

int t = ArithmeticExpression(0,0);
Index++;
jOutput.writeString(" result= "+t+"\n");
break;

default: jOutput.writeString("error 1 index = "+Index+"\n");
}return;

}
static int ArithmeticExpression(int m, int op1){

int save= record[Index],op2=0;
Index++; int n= MultiplyPhrase(1,0);
if(save==1){Index++; op2= -record[Index]; }
if(op1==6){n= m+n;}
if(op1==7){n= m-n;}
if(save==1){Index++; n= ArithmeticExpression(n,op2);}
return n;

}
static int MultiplyPhrase(int m, int op1){

int save= record[Index],op2=0;
Index++; int n= Factor();
if(save==3){Index++; op2 = -record[Index];}
if(op1==8){n=m*n;}
if(op1==9){n=m/n;}
if(op1==10){n=m%n;}
if(save==3){Index++; n= MultiplyPhrase(n,op2);}
return n;

}
static int Factor(){

int j=0;int i = Index;Index++;
switch (record[i]){

case 5: if((j=names.locate(Name()))>=0)return names.val[j]; break;
case 6: if((j=names.locate(Number()))>=0)return names.val[j]; break;
case 7: return ArithmeticExpression(0,0);
default: jOutput.writeString("error 4 index = "+Index+"\n");

}return 0;
}

294 8 Higher Level Languages – Translation, Interpretation and Scripting

Figure 8.11 Directly evaluating an expression to give a result

static void MiniJCProgram(){
Index=0; jOutput.writeString(" Program \n");
SetValues();
Statement(); return;

}
static int ArithmeticExpression(int m, int op1){

int save= record[Index],op2=0;
Index++; int n= MultiplyPhrase(1,0);
if(save==1){Index++; op2= AddOp();}
if(op1==6){

n= m+n;
code[codeIndex++] = "lds s"+(stackIndex-2)+"\n";
code[codeIndex++] = "add s"+(stackIndex-1)+"\n";
code[codeIndex++] = "str s"+(stackIndex-2)+"\n";
stackIndex--;

}
if(op1==7){

n= m-n;
code[codeIndex++] = "lds s"+(stackIndex-2)+"\n";
code[codeIndex++] = "sub s"+(stackIndex-1)+"\n";
code[codeIndex++] = "str s"+(stackIndex-2)+"\n";
stackIndex--;

}if(save==1){Index++; n= ArithmeticExpression(n,op2);}
return n;

}

Introduction 295

static void Statement(){
switch (record[Index]){

case 0: Index++;
int t = ArithmeticExpression(0,0); Index++;
jOutput.writeString(" result= "+t+"\n");
code[codeIndex++]="wrt s"+(stackIndex-1)+";\n";
for(int i=0;i<codeIndex;i++){ jOutput2.writeString(code[i]);}
break;

default: jOutput.writeString("error 1 index = "+Index+"\n");
}return;

}
static int MultiplyPhrase(int m, int op1){

int save= record[Index],op2=0; Index++; int n= Factor();
if(save==3){Index++;op2 = MultiplyOp();}
if(op1==8){

n=m*n;
code[codeIndex++] = "lds s"+(stackIndex-2)+"\n";
code[codeIndex++] = "mul s"+(stackIndex-1)+"\n";
code[codeIndex++] = "str s"+(stackIndex-2)+"\n";
stackIndex--;

}if(op1==9){
n=m/n;
code[codeIndex++] = "lds s"+(stackIndex-2)+"\n";
code[codeIndex++] = "div s"+(stackIndex-1)+"\n";
code[codeIndex++] = "str s"+(stackIndex-2)+"\n";
stackIndex--;

}if(op1==10){
n=m%n;
code[codeIndex++] = "lds s"+(stackIndex-2)+"\n";
code[codeIndex++] = "mod s"+(stackIndex-1)+"\n";
code[codeIndex++] = "str s"+(stackIndex-2)+"\n";
stackIndex--;

}if(save==3){Index++; n= MultiplyPhrase(n,op2);}
return n;

}
static String Name(){

String str="";
for(int i=record[Index++];i<record[Index];i++)

str=str+inputString.charAt(i);
return str;

}
static String Number(){

String str="";
for(int i=record[Index++];i<record[Index];i++)

str=str+inputString.charAt(i);
return ('\"'+str+'\"');

}

296 8 Higher Level Languages – Translation, Interpretation and Scripting

static int Factor(){
int j=0;String nm= "";
switch (record[Index]){

case 5: Index++;
if((j=names.locate(nm=Name()))>=0){
code[codeIndex++]= "lds "+nm+"\n";
code[codeIndex++]= "str s"+(stackIndex++)+"\n";
return names.val[j];

}
case 6: Index++;

if((j=names.locate(nm=Name()))>=0){
code[codeIndex++]= "lds "+nm+"\n";
code[codeIndex++]= "str s"+(stackIndex++)+"\n";
return names.val[j];

}
case 7: Index++;

int r = ArithmeticExpression(0,0);
return r;

default: jOutput.writeString("error 4 index = "+Index+"\n");
}return 0;

}
static void setValues(){

int size =names.getSize();
for(int i=0 ; i < size; i++){

String ss=""; int nm=0;
if((ss = names.getElement(i)).charAt(0)=='"'){

for(int j=1; j<ss.length()-1;j++){
int digit = (int)ss.charAt(j)-(int)'0';
nm = nm*10+digit;

}names.val[i]=nm;
}else{

code[codeIndex++] = "rds "+ss+"\n";
jOutput.writeString("Enter the value of "+names.getElement(i)+": ");
String num= jInput.readString();
jOutput.writeString(num +"\n");
names.val[i]= number(num);

}
}

}
static int AddOp() {return -record[Index];}
static int MultiplyOp() { return -record[Index];}

Extending these procedures to generate the assembly code, provides both

interpreter and translator functions in the way illustrated in Figure 8.12. This
demonstrates the two ways in which a specialised computer language can be set up
and processed to support application requirements not directly catered for by existing
general purpose, high level languages. Although most of the facilities that are needed
are provided by the Java language system, a dedicated system will add considerably

Introduction 297

to the clarity with which some of the topics in later chapters can be presented. Where
animation sequences need to be defined it is useful to develop a scripting language
that operates at a level above a general purpose language such as Java. In order to
support this it is worth extending the system to include the other basic structured
programming constructs.

Figure 8.12 Expression interpretation and translation

The goals for the remainder of this chapter are thus two fold. The first is to

implement a small high-level language: Mini-JC to act as a platform for later work.
The second is to use this exercise to present the key ideas that underpin the
hierarchical structure of larger software systems that facilitate or constrain the way
that modelling and display services can be provided.

298 8 Higher Level Languages – Translation, Interpretation and Scripting

Mini-JC: High Level to Assembly Language Translator

In this section, the target is to implement the minimum set of “structured program-
ming” language constructs needed to write general-purpose programs:

1. Statements and statement sequences.
2. Conditional or branch statements.
3. Repetition statements.
4. Subprogram calls and definitions.

Planning the Program Design

The first step is to define the rules of the language, in other words to define its grammar.

<program> := <procedure><program>|<procedure>
<programbody>:= <listofdefinitions><code>
<listofdefinitions>:=<typedefinition> “;” < listofdefinitions > | NULL
<procedure> := “void” “main” “(” “)” “{”<programbody> “}”

|<rtype><procname> <args> “{”<programbody> “}”
<typedefinition>:= <type><dimension> NAME
<type> := “char” | “int” |“boolean” | “double” | “geometric”
<variable> := NAME <matrixindex> | NAME
<code> := <statement><code> | NULL
<statement> := <assignment>“;” |<conditional> |<repeat> |<functioncall> “;”

|<return><exprs> “;”|<return> “;”
<assignment> := <variable> “=”<exprs>
<conditional> := “if” “(”<bexprs>“)” “{”<code>“}”<elsepart>
<elsepart> := “else” “{”<code> “}” | NULL
<repeat> := “while” “(”<bexprs> “)” “{”<code> “}”

|“do”“{”<code> “}”“while” “(”<bexprs>“)” “;”
<functioncall> := NAME “(”<parameterlist> “)”
<parameterlist>:= <exprs>”,”<parameterlist> |<exprs> | NULL
<bexprs> := <arithexprs><relop><arithexprs>
 |<andphrs><orops><exprs> | <andphrs>
<andphrs> := <bfactor><andops><andphrs> |<bfactor>
<bfactor> := <functioncall>|<boperand> | “!”<boperand>
<boperand> := “(”<bexprs>”)”|“true” | “false” |<variable>
<args> := “(” <argslist> “)”
<arithexprs> := <multphrs><addops><arithexprs> |<multphrs>
<multphrs> := <afactor><multops><multphrs> |<afactor>
<afactor> := <functioncall>|<aoperand> | “-”<aoperand>
<aoperand> := “(”<arithexprs> “)” |<variable> | INTEGER | REAL
<orops> := “||” | “+”
<andops> := “&&” | “.”
<exprs> := <aexprs> |<bexprs>
<relops> := “<” | “>” | “<=” | “>=” | “==” | “!=”
<addops> := “+” | “-”
<multops> := “*” | “/” | “%”
<argslist> := < typedefinition >”,”<argslist> |< typedefinition > | NULL
<matrixindex> := “[” <arithexprs “]”<matrixindex> | “[” <arithexprs> “]”
<dimension> := “[” INTEGER “]”<dimension> | NULL
<rtype> := <type> | “void”

299

This grammar definition can then be converted into the ortable, andtable and
String array chs[] needed to work with the table driven recogniser. The second step is
to build a program to test an input string to see if it conforms to these rules, and the
third is to use the identified grammatical structure to carry out the translation or
interpretation of the program.

static int [][] orTable = new int[][]{
{0,3}, //0 <program>
{1}, //1 <programbody>
{2,-1}, //2 l<istofdefinitions>
{5,4}, //3 <procedure>
{6}, //4 <typedefinition>
{-35,-36,-37,-38,-39}, //5 <type>
{7,-2}, //6 <variable>
{8,-1}, //7 <code>
{33,9,10,11,12,13}, //8 <statement>
{14}, //9 <assignment>
{16}, //10 <conditional>
{17,-1}, //11 <elsepart>
{18,19}, //12 <repeat>
{20}, //13 <functioncall>
{21,22,-1}, //14 <parameterlist>
{34,23,24}, //15 <bexprs>
{25,26}, //16 <andphrs>
{20,27,28}, //17 <bfactor>
{29,-33,-34,32}, //18 <boperand>
{49}, //19 <args>
{35,36}, //20 <arithexprs>
{37,38}, //21 <multphrs>
{20,39,40}, //22 <afactor>
{41,43,-3,-4}, //23 <aoperand>
{-29,-11}, //24 <orops>
{-30,-31}, //25 <andops>
{15,30}, //26 <exprs>
{-5,-6,-7,-8,-9,-10}, //27 <relops>
{-11,-12}, //28 <addops>
{-13,-14,-15}, //29 <multops>
{50,44,-1}, //30 <argslist>
{45,47}, //31 <matrixindex>
{46,-1}, //32 <dimension>
{48, -41}, //33 <rtype>

static int [][] andTable = new int[][]{
{3,0}, //0 <procedure><program>
{2,7}, //1 <listofdefinitions><code>
{4,-16, 2}, //2 <typedefinition>';'< listofdefinitions >
{3}, //3 <procedure>

Planning the Program Design

300 8 Higher Level Languages – Translation, Interpretation and Scripting

{33, -2, 19,-21,1,-22}, //4 <proc >
{-41, -44, -19,-20,-21,1,-22}, //5 <mainproc> “;”
{5, 32, -2}, //6 <type><dimension> NAME
{-2,31}, //7 <matrix variable>
{8,7}, //8 <statement>
{9,-16}, //9 <assignment>
{10}, //10 <conditional>
{12}, //11 <repeat>
{13,-16}, //12 <functioncall> “;”
{-40, -16}, //13 "return" “;”
{6, -17, 26}, //14 <variable> “=”<exprs>
{20}, //15 <arithexprs>
{-18,-19,15,-20, -21, 7,-22, 11}, //16 “if” “(”<bexprs>“)” “{”<code>“}”<elsepart>
{-23, -21, 7, -22}, //17 “else” “{”<code> “}”
{-25, -19, 15, -20, -21,7,-22}, //18 “while” “(”<bexprs> “)” “{”<code> “}”
{-24,-21,7,-22,-25,-19,15,-20,-16}, //19 “do” “{”<code> “}” “while” “(”<bexprs>“)” “;”
{-2,-19,14,-20}, //20 NAME “(”<parameterlist> “)”
{26, -26, 14}, //21 <exprs> “,”<parameterlist>
{26}, //22 <exprs>
{16, 24, 15}, //23 <andphrs><orops><exprs>
{16}, //24 <andphrs>
{17, 25, 16}, //25 <bfactor><andops><andphrs>
{17}, //26 <bfactor>
{18}, //27 <boperand>
{-32, 18}, //28 “!”<boperand>
{-19, 15, -20}, //29 “(”<bexprs> “)”
{15}, //30 <bexprs>
{13}, //31 <functioncall>
{6}, //32 <variable>
{-40, 26,-16}, //33 “return” <exprs> “;”
{20, 27, 20}, //34 <arithexprs><relop><arithexprs>
{21, 28, 20}, //35 <multphrs><addops><arithexprs>
{21}, //36 <multphrs>
{22, 29, 21}, //37 <afactor><multops><multphrs>
{22}, //38 <afactor>
{23}, //39 <aoperand>
{-12, 23}, //40 “-”<aoperand>
{-19, 20, -20}, //41 “(”<arithexprs> “)”
{13}, //42 <functioncall>
{6}, //43 <variable>
{4}, //44 < typedefinition >
{-27, 20, -28,31}, //45 “[” <arithexprs “]”<index>
{-27, -3, -28, 32}, //46 “[” INTEGER “]”<dimension>
{-27, 20, -28}, //47 “[” <arithexprs “]
{5}, //48 <type>
{-19, 30, -20}, //49 “(” <argslist> “)”
{4,-26,30}, }; //50 < typedefinition > “,”<argslist>

static String[] chs = new String []
{“0”,“NULL”,“NAME”,“INTEGER”,“REAL”,“<”,“>”,“<=”,“>=”,“==”,“!=”,“+”,“”,“*”,“/”,“%”,“;”,“=”,“if”,
“(”,“)”,“{”,“}”,“else”,“do”,“while”,“,”, “[”,“]”,“||”, “&&”,“.”,“!”,“true”,“false”,“char”,“int”,“boolean”,
“double”,“geometric”,“return”, “void”, "read", "write", “main” };

301

Figure 8.13 Program recognition stage

The next stage is to write the translation procedures that match the grammar structure.

static int[] record = new int[1000]; //record of output from the syntax tests
static int Index=0, codeIndex=0, stackIndex=0;
static NameTable array = new NameTable(); // to hold names and dimensions
static String Number(){

String str="";
for(int i=record[Index++]; i<record[Index]; i++)

str=str+inputString.charAt(i);
return ('\"'+str+'\"');

}

Planning the Program Design

302 8 Higher Level Languages – Translation, Interpretation and Scripting

static void program(){ //0 {0,3}, program
switch (record[Index]){

case 0: Index++; procedure(); Index++; program(); break;
case 3: Index++; procedure(); break;
default: jOutput.writeString("error program index \n");

}return;
}
static void programbody(){ // 1 {1}, programbody

stackIndex=0;
switch (record[Index]){

case 1: Index++; listofdefinitions(); Index++; code(); break;
default: jOutput.writeString("error programbody \n");

}return;
}
static void listofdefinitions(){ //2 {2,3,-1}, listofdefinitions

switch (record[Index]){
case 2: Index++; typedefinition(); Index++; listofdefinitions(); break;
case -1: break;
default: jOutput.writeString("error listofdefinitions \n");

}return;
}
static void procedure(){ //3 {5,4}, procedure

stackIndex=0;
switch (record[Index]){

case 4: String argstring = "";
Index++; rtype(); Index++; String str = Name();
code[codeIndex] = "proc "+ str + '(' ;
Index++; argstring= args(0,argstring);
code[codeIndex] = code[codeIndex++]+argstring+");\n" ;
Index++; programbody();
code[codeIndex++] = "endproc "+ str + "();\n"; break;

case 5: code[codeIndex++] = "proc main();\n";
Index++; programbody();
code[codeIndex++] = "end proc main();\n";break;

default: jOutput.writeString("error definitions\n");
}return;

}
static void code(){ //7 {8,-1}, code

switch (record[Index]){
case 8: Index++;statement();Index++;code();break;
case -1:break;
default: jOutput.writeString("error code index = "+Index+"\n");

}return;
}
static int type(){ return -(record[Index]);} //5 {-35,-36,-37,-38,-39}, type
static int relops(){ return -record[Index]; } //27 {-5,-6,-7,-8,-9,-10}, relops
static int addops(){ return -record[Index];} //28 {-11,-12}, addops

303

static String typedefinition(){ //4 {6}, typedefinition
String st="";int size=0; int[] dim = null;
switch (record[Index]){

case 6: Index++; int datatype=type();
Index++; dim=dimension(0); Index++; st= Name();
if(dim!=null){

int id = array.add(st); size= dim[0];
for(int k=1; k<dim.length; k++){ size= dim[k]*size;}
code[codeIndex++]= " array "+st+ "("+"\""+size+"\""+")"+"\n";
array.dims[id]= dim;
return st+"[]";

}break;
default: jOutput.writeString("error typedefinition index = "+Index+"\n");

}return st;
}
static void variable(){ //6 {7,-2}, variable

String str = "";
switch (record[Index]){

case 7: Index++; str=Name();
int id= array.add(str); Index++; matrixindex(0, array.dims[id]);
code[codeIndex++] = " "+ "str " +"s"+(stackIndex-1)+";\n";
code[codeIndex++] =
 " load "+ str +"(s"+(stackIndex-1)+", s"+(stackIndex-1)+");\n";
break;

case -2: Index++;str = Name();
code[codeIndex++] = " "+"lds "+str+"\n";
code[codeIndex++] = " "+"str s"+(stackIndex)+"\n";
stackIndex++; break;

default: jOutput.writeString("error variable\n");
}return;

}
static void statement(){ //8 {33,9,10,11,12,13}, statement

switch (record[Index]){
case 52:Index++;Index++; str = Name();

code[codeIndex++] = " "+"rds "+str+";\n";
stackIndex++;break;
case 33:Index++; exprs();

code[codeIndex++] = " str "+ " return"+ ";\n";
code[codeIndex++] = " jmp "+ " endproc "+ ";\n"; break;

case 9: Index++;assignment();break;
case 10:Index++;conditional();break;
case 11:Index++;repeat();break;
case 12:Index++;functioncall();break;
case 13:code[codeIndex++] = " jmp "+ " end "+ ";\n"; break;
default: jOutput.writeString("error statement \n");

}return;
}

Planning the Program Design

304 8 Higher Level Languages – Translation, Interpretation and Scripting

static void assignment(){ //9 {14}, assignment
String str="";
switch (record[Index]){

case 14:Index++;
switch (record[Index]){

case -2: Index++; str = Name();
Index++; exprs();
code[codeIndex++] = " "+"lds s"+(stackIndex-1)+";\n";
code[codeIndex++] = " "+"str "+str+";\n";
stackIndex--; return;

case 7:Index++; str = Name();
int id= array.add(str);
Index++; matrixindex(0, array.dims[id]);
code[codeIndex++] = " "+"str s"+(stackIndex-1)+";\n";
int saveStack=(stackIndex-1);
Index++; exprs();
code[codeIndex++] =
 " store "+ str +"(s"+(stackIndex-1)+", s"+saveStack+");\n";
stackIndex = saveStack; return;

default: jOutput.writeString("error assignment\n");
}

default: jOutput.writeString("error assignment\n");
}return;

}
static void conditional(){ //10 {16},conditional

switch (record[Index]){
case 16: Index++;bexprs(0);

int l1 = labelCount; labelCount++;
code[codeIndex++] = " "+"jez " + "x"+ l1 + ';' +"\n";
Index++; code();Index++;
if(record[Index]==17){

int l2=labelCount;labelCount++;
code[codeIndex++] = " "+"jmp " + "x"+ l2 + ';' +"\n";
code[codeIndex++] = "x"+l1+": "+ "nop" +';' +" \n";
Index++; code();;
code[codeIndex++] = "x"+ l2 +": "+ "nop" + ';' +"\n";

}else{ code[codeIndex++] = "x"+ l1 +": "+ "nop" + ';' +"\n";}
return;

default: jOutput.writeString("error conditional \n");
}return;

}
static int orops(){ //24 {-29,-11},orops

switch (record[Index]){
case -29: case -11: return 29;

default: jOutput.writeString("error orops\n");
}return 0;

}

305

static int andops(){ //25 {-30,-31}, andops
switch (record[Index]){

case -30:case -31:return 30;
default: jOutput.writeString("error andops\n");

}return 0;
}
static String parameterlist(String str){ //14 {21,22,-1}, parameterlist

int save = record[Index];
switch (record[Index]){

case 21: Index++; exprs(); Index++;
str= str+","+ parameterlist(str); return str;

case 22:Index++; exprs(); return " s"+(stackIndex-1)+" ";
case -1: return "";
default: jOutput.writeString("error parameterlist \n");

}return "";
}
static void repeat(){ //12 {18,19}, repeat

switch (record[Index]){
case 18:int l1 = labelCount; labelCount++;

code[codeIndex++] ="x"+ l1 +": " + "nop" + ';' +"\n";
Index++; bexprs(0);
int l2= labelCount; labelCount++;
code[codeIndex++] =" "+"jez " + "x"+ l2 + ';' +"\n";
Index++; code();
code[codeIndex++] =" "+"jmp " + "x"+ l1 + ';' +"\n";
code[codeIndex++] ="x"+ l2 +": " + "nop" + ';' +"\n"; break;

case 19: l1 = labelCount; labelCount++;
code[codeIndex++] ="x"+ l1 +": " + "nop" + ';' +"\n";
Index++;code(); Index++; bexprs(0);
l2= labelCount; labelCount++;
code[codeIndex++] =" "+"jez " + "x"+ l2 + ';' +"\n";
code[codeIndex++] =" "+"jmp " + "x"+ l1 + ';' +"\n";
code[codeIndex++] ="x"+ l2 +": " + "nop" + ';' +"\n"; break;

default: jOutput.writeString("error repeat \n");
}return;

}
static void booleanop(int ca, int cb, String cc, String cd, String ce,String cf){

int l1 = labelCount; labelCount++; int l2 = labelCount; labelCount++;
code[codeIndex++] = " "+"lds s"+ca+";\n"; //(stackIndex-2)
code[codeIndex++] = " "+cf+" s"+cb+";\n"; //(stackIndex-1)
code[codeIndex++] =" "+cc + "x"+ l1 + ';' +"\n"; //"jng"
code[codeIndex++] =" "+"lds "+ cd+";\n"; //bfalse
code[codeIndex++] =" "+"jmp " + "x"+ l2 + ';' +"\n";
code[codeIndex++] ="x"+ l1 +": " + "lds " + ce +';' +"\n"; // btrue
code[codeIndex++] ="x"+ l2 +": "+"str s"+(stackIndex-2)+";\n";
stackIndex--;

}

Planning the Program Design

306 8 Higher Level Languages – Translation, Interpretation and Scripting

static void functioncall(){ //13 {20}, functioncall
int count =0;String strpar="";String str ="";
switch (record[Index]){

case 20: Index++; str = Name();
Index++; strpar = parameterlist(strpar);
if(str.equals("read")){

code[codeIndex++] = " "+"rds s"+(stackIndex)+";\n";
stackIndex++;

}else if(str.equals("write")){
code[codeIndex++] = " "+"wrt "+strpar+";\n";

}else{ code[codeIndex++]= "call "+ str + '('+ strpar +");\n";}
break;

default: jOutput.writeString("error functioncall index = "+Index+"\n");
}return;

}
static void arithexprs(int op1){ //20 {35,36}, arithexprs

int save= record[Index],op2=0;
Index++; multphrs(0);
if(save==35){Index++; op2= AddOp(); }
if(op1==11)numericop("add");
if(op1==12)numericop("sub");
if(save==35){Index++; arithexprs(op2);}
return;

}
static void bfactor(){ //17 {20,27,28}, bfactor

switch (record[Index]){
case 20: functioncall();

code[codeIndex++] = " "+"str s"+(stackIndex++)+";\n"; break;
case 27:Index++;boperand();break;
case 28:Index++;boperand(); stackIndex++;

booleanop(stackIndex-2, stackIndex-2, "jez ", bfalse, btrue,"mul");
break;

default: jOutput.writeString("error bfactor\n");
}return;

}
static void afactor(){ //22 {20,39,40}, afactor

switch (record[Index]){
case 20: functioncall();

code[codeIndex++] = " "+"str s"+(stackIndex++)+";\n"; break;
case 39:Index++; aoperand();break;
case 40:Index++; aoperand();

code[codeIndex++] = " "+"lds "+'\"'+"0"+'\"'+";\n";
code[codeIndex++] = " "+"sub s"+(stackIndex-1)+";\n";
code[codeIndex++] = " "+"str s"+(stackIndex-1)+";\n";break;

default: jOutput.writeString("error afactor \n");
}return;

}

307

static int multops(){ return -record[Index]; } //29 {-13,-14,-15}, multops
static void bexprs(int op1){ //15 {34,23,24}, bexprs

String bfalse ='\"'+"0"+'\"',btrue='\"'+"1"+'\"';
int save= record[Index], op2=0;
switch (record[Index]){

case 34:Index++;arithexprs(0);
Index++; int op = relops();
Index++;arithexprs(0);
int st1= stackIndex-1,st2 = stackIndex-2;
switch(op){

case 5: booleanop(st2, st1, "jng ", bfalse, btrue,"sub"); break;
case 6: booleanop(st1, st2, "jng ", bfalse, btrue,"sub"); break;
case 7: booleanop(st1, st2, "jng ", btrue, bfalse,"sub"); break;
case 8: booleanop(st2, st1, "jng ", btrue, bfalse,"sub"); break;
case 9: booleanop(st1, st2, "jez ", bfalse, btrue,"sub"); break;
case 10:booleanop(st1, st2, "jez ", btrue, bfalse,"sub"); break;

}break;
case 23: case 24:

Index++; andphrs(0);
if(save==23)Index++; op2= orops();
if(op1==29)

booleanop(stackIndex-2, stackIndex-1, "jez ", btrue, bfalse,"add");
if(save==23){Index++; bexprs(op2); }
break;;

default: jOutput.writeString("error bexprs \n");
}
return;

}
static void multphrs(int op1){ //21 {37,38}, multphrs

int save= record[Index], op2=0;
Index++; afactor();
if(save==37){Index++; op2 = multops();}
if(op1==13)numericop("mul");
if(op1==14)numericop("div");
if(op1==15)numericop("mod");
if(save==37){Index++; multphrs(op2);}
return;

}
static void andphrs(int op1){ //16 {25,26}, andphrs

int save= record[Index], op2=0;
Index++; bfactor();
if(save==25){Index++; op2 = andops();}
if(op1==30)

booleanop(stackIndex-2, stackIndex-1, "jez ",btrue, bfalse, "mul");
if(save==25){Index++; andphrs(op2);}
return;

}

Planning the Program Design

308 8 Higher Level Languages – Translation, Interpretation and Scripting

static void numericop(String ca){
code[codeIndex++] = " "+"lds s"+(stackIndex-2)+";\n";
code[codeIndex++] = " "+ca+" s"+(stackIndex-1)+";\n"; //eg "add"
code[codeIndex++] = " "+"str s"+(stackIndex-2)+";\n"; stackIndex--;

}
static void aoperand(){ //23 {41,43,-3,-4}, aoperand

switch (record[Index]){
case 41:Index++;arithexprs(0);break;
case 43:Index++;variable(); break;
case -3:case -4: Index++; String str = Number();

code[codeIndex++] = " "+"lds "+str+";\n";
code[codeIndex++] = " "+"str s"+(stackIndex)+";\n";
stackIndex++; break;

default: jOutput.writeString("error aoperand \n");
}return;

}
static void boperand(){ //18 {29,-33,-34,32}, boperand

switch (record[Index]){
case 29:Index++;bexprs(0);break;
case -33:code[codeIndex++] = " "+"lds "+btrue+";\n";

code[codeIndex++] = " "+"str s"+(stackIndex)+";\n";
stackIndex++; break;

case -34:code[codeIndex++] = " "+"lds "+bfalse+";\n";
code[codeIndex++] = " "+"str s"+(stackIndex)+";\n";
stackIndex++; break;

case 32:Index++; variable();break; // matrix or name
default: jOutput.writeString("error boperand \n");

}return;
}
static void exprs(){ //26 {15,30}, exprs

switch (record[Index]){
case 15:Index++;arithexprs(0);break;
case 30:Index++;bexprs(0);break;
default: jOutput.writeString("error exprs \n");

}return;
}
static String argslist(int count,String alist){ //30 � {50,51,-1}, argslist

int save=record[Index];
switch (record[Index]){

case 50: case 51:
Index++; String st = typedefinition(); count++;
if(save==50){ Index++; alist = argslist(count,alist); return alist;}
return st;

case -1: return "";
default: jOutput.writeString("error argslist index \n");

}return "";
}

309

static void matrixindex(int count,int[] dim){ //31 {45,47}, matrixindex
switch (record[Index]){

case 45:Index++;arithexprs(0);
int saveStack =(stackIndex-1);
Index++; matrixindex(count+1,dim);
code[codeIndex++] = " "+"mul "+"\""+dim[count]+"\""+";\n";
code[codeIndex++] = " "+"add s"+saveStack+";\n";
stackIndex= saveStack+1;
break;

case 47:Index++;arithexprs(0);
code[codeIndex++] = " "+"lds s"+(stackIndex-1)+";\n";
stackIndex--;
break;

default: jOutput.writeString("error matrix index\n");
}return;

}
static int[] dimension(int count){ //32 {46,-1}, dimension

int[] dim = null;
switch (record[Index]){

case 46:Index++;String snum = Number();
int num = number(snum);
Index++; dim = dimension(count+1);
if(dim==null){ dim = new int[count+1]; }
dim[count] = num;
return dim;

case -1:break;
default: jOutput.writeString("error dimension\n");

}return null ;
}
static void rtype(){ //33 {48, -41}, rtype

switch (record[Index]){
case 48:Index++;type();break;
case -41:break;
default: jOutput.writeString("error rtype\n");

}return;
}
static String args(int count,String alist){ //19 {49} args

if(record[Index]==49){ Index++; return argslist(count,alist);}
else jOutput.writeString("error args \n");
return alist;

}
static String Name(){

String str="";
for(int i=record[Index++];i<record[Index];i++)

str=str+inputString.charAt(i);
return str;

}

Planning the Program Design

310 8 Higher Level Languages – Translation, Interpretation and Scripting

This translation process is
set up to take advantage of
the macro expansions
outlined in chapter 7. It is
clear looking at the code in
Figure 8.14 that the program
can be tidied up and
shortened. No attempt to
optimise the assembly
translation has been made.
This introduces another area
of specialist study that must
be followed up elsewhere,
since it is not essential to the
theme of this book! This
assembly code is translated
by the assembler to give the
machine code shown in
Figure 8.16, and when this is
run in the simulator the result
is shown in Figure 8.15.

Figure 8.14 The program
translation stage for a factorial
function

Figure 8.15 Program execution stage factorial function: 6! 7! 4! and 8!

311

Figure 8.16 Machine code program for the factorial function

For graphics applications, processing arrays is essential. If arrays are to be
included in the language one way of handling them is to also include them in the
macro expansion scheme. What is needed is a way of declaring each array, and a
command to load the accumulator with an element of an array and a command to
store the contents of the accumulator in a defined position in the array.

array fred(100); “array” <name> ‘(’ <size-parameter> ‘)’ ‘;’
load fred(v, i); “load” <name> ‘(’ <variable> ‘,’ <index-parameter> ‘)’ ‘;’
store fred(v, i); “store” <name> ‘(’ <variable> ‘,’ <index-parameter> ‘)’ ‘;’

Planning the Program Design

312 8 Higher Level Languages – Translation, Interpretation and Scripting

Figure 8.17 A program to
read values into an array

These three macros can
be set up to handle arrays
within the existing scheme.
The first statement is
needed to setup the storage
space where the array
values are to be placed. The
second two statements are
provided to transfer values
between variables and
indexed locations in the
array. In Figure 8.17 these
macros are being used to
set up an array, read values
into the array and finally to
check the result by writing
the array values out. Notice
that the read function is
treated in a special way,
being translated directly
into an assembler read
command.

What is interesting about these macro statements is their similarity to the function-
call macros, and the fact that they could be implemented in a similar way. However,
making load and store into procedure calls for accessing an array space in the same
way that the function calls have been implemented would involve a heavy overhead,
it is simpler to place the relevant assembly instructions in-line in a larger program,
rather than jumping to external procedure code for each array reference.

313

// array macros
if(strr.equals("array")) {

String [] params = new String[1];
String st="";
while(!((ch >= 'a')&&(ch <= 'z'))){ch=str.charAt(j++);}
if((ch >= 'a')&&(ch <= 'z')){

while((ch >= 'a')&&(ch <= 'z')||(ch >= '0')&&(ch <= '9')){
st=st+ch;ch=str.charAt(j++);}

}
int ind2 = procNameTable.add(st); // place array name in procNameTable
while(!((ch >= '0')&&(ch <= '9'))){ ch=str.charAt(j++);}
int num =0; // get array dimension
while((ch >= '0')&&(ch <= '9')){

num=num*10+ (int)ch-(int)'0';
ch=str.charAt(j++);

}
procNameTable.procAddress2[ind2] = num;
procNameTable.procAddress1[ind2]= num;
procNameTable.val[ind2]= num; // array dimension

}
if(strr.equals("load")) {

String [] params = new String[2]; String st="";
while(!((ch >= 'a')&&(ch <= 'z'))){ch=str.charAt(j++);}
if((ch >= 'a')&&(ch <= 'z')){

while((ch >= 'a')&&(ch <= 'z')||(ch >= '0')&&(ch <= '9')){
st=st+ch; ch=str.charAt(j++);}

}
int ind2 = procNameTable.add(st); // locate array name in procNameTable
while(!((ch >= 'a')&&(ch <= 'z'))){ ch=str.charAt(j++);}
int count=0; // get parameters
while((count<2)&&(ch != ')')&&(ch != ';')){

String stt1 = "";
 if((ch >= 'a')&&(ch <= 'z')){

while((ch >= 'a')&&(ch <= 'z')||(ch >= '0')&&(ch <= '9')){
stt1=stt1+ch; ch=str.charAt(j++);}

}
params[count++]= stt1; //parameter name
while((ch == ' ')||(ch == ',')){ ch=str.charAt(j++);};

}
temp[k++]= " lda "+ '#'+ getHex(ind2+10,3) +'#'+ ";\n"; // array address
temp[k++]= " add "+ params[1]+ ";\n"; // add array index
temp[k++]= " sta "+ " #FFF# "+ ";\n"; // store in alt IRbase register
temp[k++]= " lvl "+ "#2#"+ ";\n"; // switch IR registers
temp[k++]= " lds "+ "#0#"+ ";\n"; // load value from array
temp[k++]= " lvl "+ "#2#"+ ";\n"; // switch IRbase registers back
temp[k++]= " str "+ params[0]+ ";\n"; // store value from array

}

Planning the Program Design

314 8 Higher Level Languages – Translation, Interpretation and Scripting

if(strr.equals("store")) {
String [] params = new String[2]; String st="";
while(!((ch >= 'a')&&(ch <= 'z'))){ch=str.charAt(j++);}
if((ch >= 'a')&&(ch <= 'z')){

while((ch >= 'a')&&(ch <= 'z')||(ch >= '0')&&(ch <= '9')){
st=st+ch;ch=str.charAt(j++);} // name of array

}
int ind2 = procNameTable.add(st); // locate array name in procNameTable
while(!((ch >= 'a')&&(ch <= 'z'))){ ch=str.charAt(j++);}
int count=0; // get parameters
while((count<2)&&(ch != ')')&&(ch != ';')){

String stt1 = ""; //parameter name
if((ch >= 'a')&&(ch <= 'z')){

while((ch >= 'a')&&(ch <= 'z')||(ch >= '0')&&(ch <= '9')){
stt1=stt1+ch; ch=str.charAt(j++);}

}
params[count++] = stt1;
while((ch == ' ')||(ch == ',')){ ch=str.charAt(j++);};

}
temp[k++]= " lda "+ '#'+ getHex(ind2+10,3) +'#'+ ";\n"; //array address
temp[k++]= " add "+ params[1]+ ";\n"; // add index
temp[k++]= " sta "+ " #FFF# "+ ";\n"; // store in alt IRbase
temp[k++]= " lds "+ params[0]+ ";\n"; // load value
temp[k++]= " lvl "+ "#2#"+ ";\n"; // switch IRbase
temp[k++]= " str "+ "#0#" + ";\n"; // store value in array
temp[k++]= " lvl "+ "#2#"+ ";\n"; // switch IRbase registers back

}

The address for the memory space ear-marked for the array can still be located in a
slot at the head of the program in the same way that the addresses for procedures are
stored. This makes it easy for all other references to the array in a program to identify
its position in memory in a similar way that procedure calls locate their procedure
code, through one standardised address location.

Figure 8.18 Machine language program structure

Program A

Procedure Y

Procedure X

Array Z

X Address

Y Address

Z Address

procedure
calls

315

The structure of the program that has evolved in this exploration is interesting and
worth discussing in the context of further high-level language extensions before
returning to the use of arrays for graphics algorithms. Although in this presentation
arrays have been implemented using macro expansions, the idea of implementing
arrays as function calls introduces an important extension to the existing system,
which is capable of providing the support needed for an object-oriented language like
Java.

An array is a data-type. If a data-type is defined by the operations that it permits to
be carry out on a collection of “raw” data elements, then grouping the two accessing
functions and the array data-space, as a unit, gives a standardised framework for any
object classified as an array. Duplicating a parameterised copy of this structure can be
used to set up a new array as an “object” of type array. However, because procedures
have been coded using base displacement addressing and program space is
distinguished from data space, it means that all objects of the same type can share a
single copy of the code for the procedures that define the permitted operations on the
data. In Java this code is provided in a class or interface definition.

This basic definition, including both procedures and data-structures, can be treated
as a template for all objects of the same data type. For the array this means new array
objects only need to contain the address slots referencing the accessing procedures
and the array location, along with the space for the new array, rather than the whole
package. Although this would not save much memory space in the case of arrays, the
framework it provides is a general one that can be used to implement a much more
complex data-type and provide multiple instances of objects of that type.

A collection of objects of the same type form a set of entities which can be called
by the same set or type name. Also each object in this set can be distinguished by an
individual variable name having the type defined by the class or template definition of
the object in question. To complete such a system, the type or class definition must
include a generating function or “constructor” to create new instances of objects when
they are required in other programs.

Figure 8.19 Class and object structures

Class Definition A

Object P of type A

Object Q of type A

Procedure X

X Address

Y Address

Object Data

Procedure Y

Class Data

X Address

Y Address

Object Q Data

X Address

Y Address

Object P Data

Planning the Program Design

316 8 Higher Level Languages – Translation, Interpretation and Scripting

This indirect reference to objects and data elements allows dynamic data structures
such as linked-lists and trees to be built and demolished as required during the
execution of an algorithm. The layout of program code and data space in memory can
be set up in the way shown in Figure 8.20 to allow the stack space used for procedure
calls and the growth and decline of dynamic data structures to occur in the most
flexible way possible.

Figure 8.20 Flexible arrangment of memory space for dynamic structures

New data objects can be created by the class constructors and placed in the
memory space labelled Heap in Figure 8.20. As dynamic objects are dispensed with,
gaps can be created in this area of memory so there is a management task needed to
ensure that memory space is not wasted. In general terms this arrangement allows the
maximum expansion of stack and heap space that the available resources allow.

Figure 8.21 Entering the diagonal values
in a three by three array

Arrays are an important data
structure for handling repetitive tasks as
the previous chapters have already
indicated.

Matrices and vectors are
mathematical objects that can be
implemented by arrays, but which need
to be associated with their own set of
procedures to model the behaviour of
the mathematical entity that they
represent.

Although the simple array is
important for many graphics operations.
An image as a pixel array requires many
more operations than simple element-
by-element access. A new object type is
required which provides other array-
based procedures.

Figure 8.21 shows the miniJC
program to enter a set of values into the
main diagonal of a small array. The
simulator output is given in Figure 8.22.
If the hardware of the system is
extended to include a display system
then this kind of program can be used to
draw in the pixel values needed to
create a picture.

Program code HeapStack Registers

317

Figure 8.22 Entering values into the main diagonal of a three by three array

As the programs get longer the simulator system showing each step becomes too
slow for practical purposes, even though it is still very useful for step by step
debugging. The simulator with a cut down graphics user interface and with a
simulated display unit added supports the final steps in this exploration linking
language to graphics by running the programs but only showing the input data and the
output data, along with the display screen contents.

public static Input jInput = null;
public static Output jOutput0 = null, jInputList = null, jOutputList = null;
public static DisplayWindow display = null;
public static CoordinateFrame cf=null;
public static Color[] colour = new Color[]

{Color.red,Color.blue,Color.green,Color.black};
public Simulator(int width,int height, Output Out){

jOutput0=Out;
jInput = new Input(110,501,150,101,"Enter Input");
jInputList = new Output(110,291,150,215,"Input List");
jOutputList = new Output(110,60,150,231,"Output List");
display=new DisplayWindow(null,260, 60,518,542,Color.gray);
Point p1= new Point(1,0,0); Point p2= new Point(1,512,512);
Point p4= new Point(1,512,0); Point p3= new Point(1,0,512);
display.plotRectangle(p1,p2,Color.white);
cf= new CoordinateFrame(); cf. setScales(p1,p2,p3,p4);

}

Planning the Program Design

318 8 Higher Level Languages – Translation, Interpretation and Scripting

Figure 8.23 Linking a display unit into the micro-simulator

Figure 8.23 shows the result of changing the value in a display array from green to
blue where the indexes are the same rather than printing out the array in the way
shown in Figure 8.22. Figure 8.24 shows the program, extended to display a circular
blue disk against a green background. The values entered for b and c are the indexes
to a colour table contained in the display processor simulator.

Figure 8.24 Linking a display unit into the micro-simulator

319

The size of the simulator’s memory limited its use as a display array. When vector
graphics systems were developed all that needed to be transferred to the display
hardware was a list of coordinate points giving the ends of line segments. However
even for a small TV raster based display a much larger block of memory is required.
Two approaches to this problem evolved. The first was to extend the memory in the
main computer system and allow the display system dual access to the display array
in memory. The second was to output each pixel display value and its array index-
positions to an independent display system with its own memory space, dedicated to a
raster display system. The second approach is the simplest to implement without a
major change to the existing simulator, and the language processors driving it.

static void functioncall(){ //functioncall
int count =0,savestack=0;String strpar="";String str ="";
switch (record[Index]){

case 20: Index++; str = Name();
savestack=stackIndex;
Index++; strpar = parameterlist(strpar);
if(str.equals("read")){

code[codeIndex++] = " "+"rds s"+(stackIndex)+";\n";
stackIndex++;

}else if(str.equals("write")){
code[codeIndex++] = " "+"wrt "+strpar+";\n";
stackIndex=savestack;

}else if(str.equals("pixel")){
code[codeIndex++]= "pixel "+ '('+ strpar +");\n";
stackIndex=savestack;

}else {
code[codeIndex++]= "call "+ str + '('+ strpar +");\n";
code[codeIndex++] = " "+"str s"+(stackIndex)+";\n";
stackIndex++;

}
break;

default: jOutput.writeString("error functioncall index = "+Index+"\n");
}return;

}

Planning the Program Design

A new output procedure “pixel”‘(‘<x>’,‘<y>’,‘<colour index>’)’ is defined for
the miniJC language, and a corresponding new macro: pixel(x,y,c) is included in the
assemby language to support a display unit within the simulator. This macro uses an
extension to the lvl command to allow three values to be passed to the display sub-
system simulated using a DisplayWindow object described in previous chapters. The
third value “c” the index of the pixel colour defined in a colour array in the display
sub-system is loaded into the accumulator the second value is the y or row-value for
the display array and is stored in a variable operated on by the lvl command. This
passes this value to the display device and modifies the computer’s state so the
following store command not only provides the x or column value but also passes the
value held in the accumulator to the display device. The extension to the miniJC
compiler involves adding to the function call procedure.

320 8 Higher Level Languages – Translation, Interpretation and Scripting

The change to the assembler requires the macro expansion program to be extended.

else if(strr.equals("pixel")) {
String [] params = new String[3]; int count=0;
while((count<3)&&(ch != ')')&&(ch != ';')){ String stt1 = "";

if((ch >= 'a')&&(ch <= 'z')) //parameter names
while((ch >= 'a')&&(ch <= 'z')||(ch >= '0')&&(ch <= '9')){

stt1=stt1+ch; ch=str.charAt(j++); }
params[count] = stt1; count++;
while((ch == ' ')||(ch == ',')){ ch=str.charAt(j++);};

}
temp[k++]= " lds "+ params[2] + ";\n"; // pixel index colour
temp[k++]= " lvl "+ params[1]+ ";\n"; // pixel y value
temp[k++]= " str "+ params[0] + ";\n"; // pixel x value

}

The lvl and str commands in the hardware simulator also have to be modified.

case 3: // lvl
if(addr>3){ pixel=true; rowy=readMemory(relA);
}else{ pixel=false; /* cases addr = 0..3*/;;;; } break;

case 10: // str
if(pixel){

Point p1= new Point(2); p1.n[1]= readMemory(relA); p1.n[2]=rowy;
display.plotPoint(p1,cf,colour[registerA]);
pixel=false;

}else writeMemory(relA,registerA,true);
break;

A similar extension can be set up to access values stored in a display memory and

combining them with new values from other images. This arrangement however
depends on processing locations in the display array, one by one. Where a large
number of pixels need to have the same operation carried out the overhead in
accessing them in this way can become large. Operations on rectangular areas of the
display space have been implemented at the assembler and machine level of display
systems (called bitblt operations) to speed up interactive image manipulation. These
operations allow new pixel values to be combined with existing pixel values in a
variety of ways. A very useful operation is provided by the exclusive-or combination
of values. Applying this operation once changes the displayed pixels, applying it
again returns the pixels to their original values. This is particularly useful in
interactive displays. The mouse allows a point position to be defined as a coordinate.
This location can then have a pointer symbol exclusive-ored with this location in the
display array. On moving the mouse, the original pointer is erased by a second
application of the operation, and the new location marked by applying the pointer to
the new mouse coordinate position. The last three chapters have illustrated the way a
high-level computer language can be used to to create and interact with displays. The
operations that can be built on this foundation form the subject of the rest of the book.

1

2 3 4

5

6 7 8

9
Primitive, Raster-
Infill Operations:
Line Interpolation

Introduction

The most exciting advance that resulted from including line or vector generators in a
display processor was that the consequence of moving or changing a vertex point in a
display file automatically moved all the lines linked to it in the display. Where this
operation could be done interactively with a mouse or pointer device, it created a new
form of editing allowing points to be dragged from one place to another, and allowing
the lines linked to the points to rubber band into their new locations. Interactively
working with a set of lines in this way was a major improvement over existing
techniques, and the natural desire to drag objects around the screen in a similar way
for editing or correcting a display, led to the next evolutionary step in the
development of hardware display primitives.

Representing an object by a set of vertex points, reduced the data required to
represent a display scene, and allowed more computation to be undertaken in each
refresh, display-regenerating cycle. However, this was still a relatively low-level form
of modelling. Duplicate objects in different positions in the screen still needed
different line end point co-ordinate sets.

The introduction of absolute and relative co-ordinates meant that only a single
instance of an object model needed to be held in store if held as a set of relative co-
ordinates. These models could be copied or dragged to a new location, whenever new
objects or symbols of the same type were required. By adding the relative co-
ordinates representing the object, to absolute co-ordinates representing true locations
in the display space, meant that multiple copies of the object could be placed all over
an image at a relatively small extra computational cost in the overall display process.
This calculation was akin to base-displacement addressing used to access blocks of
storage in a computer’s memory

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_9, © Springer-Verlag London Limited 2008

322 9 Primitive, Raster-Infill Operations: Line Interpolation

The advent of the frame store and TV monitor based display systems provided a
different framework in which to generate lines. A line had to be defined using a set of
points located on a regular rectangular grid or raster. Although start and end points of
line segments could easily be placed on the points of a grid it is clear that most of the
intermediate grid points would not lie on the line exactly and their positions would
have to be approximations. Using the standard equation for a line y = m.x + c gives
the methods Line(..) and line(..). For slopes from 0o to 45o, the values of y are
calculated for grid unit steps in x, and then rounded to the nearest grid value for y. For
45o to 90o the same is done for unit steps in y, rounding the matching x value to the
nearest grid line. The output is shown in Figure 9.1.

Figure 9.1 Simple line interpolation: forwards and backwards

 public void Line(Point p1, Point p2, int wd, Color cc){
 int dx = p2.xi()-p1.xi(); int dy = p2.yi()-p1.yi();
 if (Math.abs(dx) > Math.abs(dy))
 line(p1.xi(), p1.yi(), p2.xi(), p2.yi(), wd, dx, dy, false, cc);
 else line(p1.yi(), p1.xi(), p2.yi(), p2.xi(), wd, dy, dx, true, cc);
 }
 private void line(int x, int y, int xend, int yend, int width,
 int dx, int dy, boolean steep, Color cc){
 double m=1,c=0;int kx =1;
 if(dx<0)kx= -1; else if (dx ==0) kx = 0;
 if (dx != 0){m = (double)dy/(double)dx; c = (double)y - m*(double)x;}
 for(;;){
 if (steep) paintInnerCell(y,x,width,cc);else paintInnerCell(x,y,width,cc);
 if (x == xend) return;
 x = x+ kx; y = (int)(m*((double)x)+c+0.5);
 }
 }

Line interpolation needs to be as simple and as fast as possible. An improvement in

speed can be obtained by removing the multiplication needed, each time, to calculate
the new y value from the incremented x value. This is done by calculating the standard

Introduction 323

step size in y needed for each unit step in x. These increments are then added on to the
previous co-ordinate values to give the new points. Representing a line by the steps in x
and y needed to define its position on a grid produced the “Digital Differential
Analyser” DDA algorithm. The output of which is shown in Figure 9.2.

Figure 9.2 DDA line interpolation: forwards and backwards

 public void ddaLine(Point p1,Point p2,int wd,Color cc){
 int dx = p2.xi()-p1.xi();int dy = p2.yi()-p1.yi();
 if(Math.abs(dx)>Math.abs(dy))
 dda(p1.xi(),p1.yi(),p2.xi(),p2.yi(),wd,dx,dy,false,cc);
 else dda(p1.yi(),p1.xi(),p2.yi(),p2.xi(),wd,dy,dx,true,cc);
 }
 private void dda(int x,int y,int xend,int yend,int width,
 int dx,int dy,boolean steep, Color cc){
 double m = 1, c = 0, yy = (double)y; int kx =1;
 if(dx!=0)m = (double)dy/(double)dx; //c = (double)y - m*(double)x;}
 if(dx<0){kx= -1; m = -m;} else if (dx ==0)kx = 0;
 for(;;){
 if(steep) paintInnerCell(y,x,width,cc);else paintInnerCell(x,y,width,cc);
 if (x == xend) return;
 x = x+kx; yy = yy + m; y = (int)(yy + 0.5);
 }
 }

This simple incrementing scheme can also be implemented by specialised

hardware. Using a fixed-point representation of fractional numbers gives the circuit
shown in Figure 9.3. The display part of the y value is only incremented by carries
from its fractional unit. This is built from an adding circuit, which adds on the
fractional increment to the y value for each unit step taken in x. The rounding
operation is implicitly carried out by initialising the fractional part of the y value for
the first point to 0.5, in other words, 0.10 binary.

324

+

+

+

carry

Y Register Counter Y Fraction Register

X Register Counter Y Increment Register

One unit step in X and one Y increment: each clock cycle

Figure 9.3 A schematic DDA line interpolation circuit

Line Following Algorithms on a Raster Grid

An alternative approach to the DDA algorithm, which avoided the use of fractional
numbers, was first analysed by J. Bresenham for line plotters in the early sixties. This
was based on the idea that a line could be represented by the point set obtained by
walking from one point to a neighbouring point on a grid by keeping as close to the
real line as possible. The task was to select, which was the best neighbouring point to
move to, from the current point, in order to represent a given line most accurately.
There are two possible schemes, which can be developed here depending on what the
definition of neighbouring points on a grid is taken to be. The simplest arrangements
can have either four or eight neighbours in a rectangular grid in the manner shown in
Figure 9.4.

1

2 3 4

5

6 7 8

2

1 3

4
 .

Figure 9.4 Four and eight way neighbours to a point in a grid

Four Point Neighbours

Starting with the simpler of these two possibilities, where each point is considered to
have four neighbours. Each neighbouring position to the East, North, West and South
of the given point, can be located by adding or subtracting one unit to its x or y (but

9 Primitive, Raster-Infill Operations: Line Interpolation

325

not both) grid co-ordinate value for each step taken. Horizontal and vertical lines can
be set up as rows and columns of grid points. Inclined lines have to be approximated
by taking points in a staircase pattern in the form shown in Figure 9.5. Each step in
this pattern will move along the line, either in the x or the y direction in the way that
keeps the approximate line as near to the real line as possible.

One implementation of this idea can be developed in the following way. Given a
line defined by its two end points (x1, y1), and (x2, y2) the slope of the line will be
DY/DX where DY = y2-y1, and DX = x2-x1, and the standard equation of a line is:

y = m.x + c

Substituting m = DY/DX into the equation and multiplying out gives:

0 = DY.x - DX.y + C

From this a distance d from any point (xa, ya) to this line can be calculated by:

d = DY.xa - DX.ya + C

When a point is on the line then d = 0, when the point is above the line then d < 0
and when the point is below the line then d > 0. If the initial point is on the line and is
also on a regularly spaced grid with unit intervals between rows and columns, then a
step in the y direction to (x, y+1) will be at a new distance d from the line where:

d = DY.x - DX.(y+1) + C

However, the initial distance is:

d = DY.x - DX.y + C

The change can be obtained by subtracting: d - d = -DX

If this element (d - d) is renamed: Δdy then:

Δdy = -DX,

Similarly a move in the x direction to (x+1, y) will produce a change in d of

Δdx = DY.

These distance measures and changes are particularly convenient because DX and

DY as they are defined above are integer numbers. This arrangement avoids the use
of fractional numbers needed to represent the slope of lines in the DDA approach.
Consider the line in Figure 9.5, drawn through the origin from point (-7, -4) to (7, 4).
At the start of the line at the point (-7, -4): d = 0, DX = 14 and DY = 8.

Four Point Neighbours

326

-5

-4

-3

-2

-1

0

1

2

3

4

5

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

A1
B1

Figure 9.5 Interpolating a line from (-7, -4) to (7, 4)

From this starting point there are two options given the orientation of the line,
either a step in the x direction or a step in the y direction by one unit. If a step is taken
in the y direction to point (-7,3), this will give a d value of -DX, in other words the
value of d becomes -14. This sign indicates a position above the line, so further steps
taken in this direction will move further away from the true line.

d < 0

Increment y
Plot(x, y)

d = d - DX

Increment x
Plot(x, y)

d = d + DY

yes

yes no

Finished
no

A

A

B

Figure 9.6 The basic line following algorithm.

To move forward, yet back towards the true line requires the next move to be taken

in the x direction. A step in the x direction will involve a change in d of +8, so d
becomes -6 at the point (-6,3). This is still above the line indicated by the negative

Four Neighbours

9 Primitive, Raster-Infill Operations: Line Interpolation

327

value, so a further step in the same direction needs to be taken. This gives a d value of
2 at the point (-5,3). This is now below the line and increments must switch back to
the y direction. A y step will immediately return to the other side of the line with the
value of d changing from 2 to -12. Further steps in the x direction are then needed,
until the sign of d changes again. The full sequence of points that this process
generates between the point (-7, -4) and the point (7,4) is shown in Figure 9.5.

This algorithm can be expressed by the flow chart shown in Figure 9.6. A similar
effect is obtained if, at the starting point, where d = 0, the initial step is taken in the x
direction. In this case d becomes +8 and a move in the y direction will take place on
the second step. To implement this change the increment selection test would become
d<= 0 rather than d < 0 in Figure 9.6.

If this algorithm is applied to the line defined in the opposite direction so that (x1,
y1) is (7, 4), and (x2, y2) is (-7, -4) then the following sequence is produced. Initially
d = 0. Following the scheme in Figure 9.5 this requires an increment in the y
direction, so d becomes d - DX, but DX in this case is -14 since it is the difference x2
- x1, so d becomes 14. However, this value leads to another x increment, which
increases the size of d moving further from the true line, rather than nearer to it.
Clearly a variation in the basic algorithm is required to correctly handle the different
sign relationships that exist between DX and DY for all the line drawing directions
which will be encountered.

12

3 4

Figure 9.7 The four main line-incrementing patterns

At first sight there appear to be four possible cases, which must be considered,

depending on the orientation of the line. These are shown in Figure 9.7. However if
the values of the test variables that control the selection of the different incrementing
patterns are laid out in a table: more possibilities emerge. A decision table based on
the sign and the values that DX, DY and d can take, gives the list of the different
conditions and associated actions that need to be considered.

Decision Table

Conditions
DX -ve 0 +ve
DY -ve 0 +ve -ve 0 +ve -ve 0 +ve
d - 0 + - 0 + - 0 + - 0 + - 0 + - 0 + - 0 + - 0 + - 0 +

Actions

C

H

B

V

P

V

D

H

A

Four Point Neighbours

328

The four initial cases appear in this table labelled A, B, C and D. Along with these
there are the vertical line and the horizontal line cases labelled V and H respectively.
There is also the degenerate case where x1 = x2 and y1 = y2, labelled P. In this case
the algorithm can be set up to plot a single point. From this analysis a procedure can
be written with nine parts. However, if the structure of this algorithm is examined a
little further some interesting properties emerge which can be used to considerably
reduce the code needed to implement it.

-5
-4
-3
-2
-1
0
1
2
3
4
5

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

A

D

B

C

1 2

3 4

Figure 9.8 Interpolating four lines (0,0) to (7,4) to (-7,4) to (-7,-4) and to (7,-4)

Returning to the four general schemes in Figure 9.7, if the initial point of each line

(x1, y1) is taken as the origin point (0, 0), these four cases correspond to lines drawn
from the origin into the four different axes quadrants of the x-y plane. The signs of
the values DX and DY correspond to the signs of the co-ordinates of the second point
(x2, y2) in each case, as shown in Figure 9.8. This approach allows the line shown in
Figure 9.5 to be two lines drawn in opposite directions from the origin, indicated by
the labels B1 and A1 for the two quadrants.

The target is to find if there is a way in which these different cases can be handled
by a single procedure. One approach to this task is shown in Figure 9.8. If the
absolute unsigned value of the DX and DY are used to define the value of d and
consequently to determine the stepping sequence, then using the correctly signed,
incrementing directions for the x and y steps, will give the line patterns shown for the
four quadrants. In effect the pattern of points generated in the first quadrant is
reflected about the axis-lines into the three neighbouring quadrants. However, this
way of amalgamating the different cases produces an obvious problem. It is necessary
for consistency, that identical lines drawn in opposite directions be approximated by
the same set of points. Comparing Figures 9.5 and 9.8 shows this is not the case. The

Four Neighbours

9 Primitive, Raster-Infill Operations: Line Interpolation

329

line in Figure 9.5 from (-7, -4) to (7,4) does not match the two lines (0, 0) to (-7, -4)
and (0, 0) to (7, 4) in Figure 9.8.

x1
y1

x
y

x2-x1 DX

y1-y2 DY

S

x1 > x2
yesno

x = x2
y = y2

DX = x1 - x2

x = x1
y = y1

DX = x2 – x1

DY = y1 – y2

DY = -DY
yes

DY < 0

A
no

Figure 9.9 Initialising a line following algorithm for four quadrants

Matching these line patterns can be achieved by always drawing lines that should
be identical, in the same direction, for example from the lesser x value to the greater x
value, where necessary by reversing the order of the end point co-ordinates used to
define the lines. This approach makes cases A and C the same, and cases B and D the
same in the decision table. This reduces the sloping lines to two cases, which can be
reduced to one case by using the unsigned value of DY when calculating changes in
the value of d moving in the x direction along the normalised line, but keeping the
correctly signed incrementing steps.

This “reflects” the lines in the second and fourth quadrants, (cases B and D), to the
first and third quadrants, (cases A and C). To modify the algorithm shown in Figure
9.6 to work in this way requires the initialisation shown in Figure 9.9, increment x
still means add one to the current value of x, as before. In contrast increment y now
means add one or subtract one depending on the sign of DY.

This approach gives consistent results, but sets of points representing line
segments, for example, from a polygon boundary will not be generated naturally as a
continuous sequence round the polygon, which was necessary for the original
application on line plotters. Such behaviour, if it is required, must be obtained by
following a different strategy, which is to design a backward stepping algorithm that
can create the same overall point sequence as the corresponding forward stepping
algorithm.

Four Point Neighbours

330

0 1 2 3 4 5 6 7 8

Figure 9.10 Forward stepping algorithm

The problem, which this poses, appears when lines of shallow slope are being
processed. The diagram in Figure 9.10 shows the sequence, which the initial basic
algorithm will generate, in the first quadrant. Most of the points are above the true
line. If the same approach is adopted to generate the reverse sequence, "by moving
towards the true line until it is crossed then changing direction and repeating the
process", the first step may well move to a point corresponding to the original
sequence above the true line. However, it is clear that the second step, will move
across the line and this will not match the previous stepping pattern. The sequence
will be of the form shown in Figure 9.11.

To get the same sequence from the backward stepping algorithm, it is necessary to
test the distance value d, at the same set of positions used in the forward stepping
algorithm. This is possible to achieve in the backward stepping algorithm, by looking
ahead to the point and the test which in the forward stepping algorithm would have
selected the current position in the backward stepping sequence. The critical points,
which illustrate this relationship, are where a horizontal step in the interpolated line
crosses the true line. The change in direction is at one end of this line segment in the
forward stepping algorithm and is at the other end in the backward stepping case.

0 1 2 3 4 5 6 7 8

Figure 9.11 Backward stepping algorithm

Four Neighbours

Four Neighbours

9 Primitive, Raster-Infill Operations: Line Interpolation

331

These segments are high lighted in Figures 9.10 and 9.11. If a test is carried out at
the other end of this critical segment in the backward algorithm it will match the
forward stepping algorithm exactly.

In Figure 9.13 the algorithm for the third quadrant is given. The testing sequence,
which this carries out, is illustrated in Figure 9.12. The offset value of d is calculated
at the test position indicated by the arrow for each current line position. With this
value, the same strategy can be applied as before: as soon as the true line is crossed,
(indicated by a change of sign in the offset distance value), the incrementing direction
is changed.

0 1 2 3 4 5 6 7 8

Figure 9.12 Backward stepping interpolation algorithm with look ahead

A

d+DY-DX<0

Finished
no

yes
B

Decrement y
Plot(x,y)
d = d - DX

Decrement x
Plot(x,y)
d = d + DY

A

yes no

Figure 9.13 Backward stepping algorithm with look ahead test

However, a more elegant alternative is to initialise the distance value d for the

backward stepping algorithm by this offset value before the line generation process is
started. This can be done because the same offset step applies to all points wherever

Four Neighbours

Four Point Neighbours

332

the test is being carried out. The result is the simpler selection test (d < 0) can then be
applied in both forward stepping and backward stepping cases to trigger the change in
stepping direction. The only exception to this has to be the condition where (d = 0), in
this case: in one direction the stepping direction has to be changed in the other it must
not.

If the forward stepping algorithm is labelled A1 and the backward stepping
algorithm B1 then all four quadrants can be covered by reflecting the pattern of points
obtained in quadrants one and three into four and two respectively, or alternatively
across the other axis. The first of these alternatives is illustrated in Figure 9.14.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
-5
-4
-3
-2
-1
0
1
2
3
4
5

Reflect
A1

A1 B1

B1

Figure 9.14 Reflecting the line increment pattern about the x- axis

If the basic selection algorithm and control variables are laid out in a table for the
four quadrants, the way that such a reflection operation can be implemented is
summarised reasonably clearly in the following table. Setting out these relationships
in a table makes it possible to see what is fixed and what is variable. In this case it can
be seen that the incrementing patterns for quadrants 1 and 2 are opposites as are 3 and
4. The diagram in Figure 9.14 indicates that the pattern in quadrant 2 could be a
reflection of the line incrementing scheme produced in quadrant 3, and similarly,
quadrant 1 could be reflected from quadrant 4, or vice versa. This can be
implemented by treating the (dx < 0) cases as the same, but using negated y
increments, and the two (dx > 0) cases as the same but again with negated y
increments. For identical forward and backward drawing, the diagonal (d = 0) tests
must still select opposite stepping actions, although which way round this is done
appears to be arbitrary.

The simplest way to show how these relationships can be turned into working code
so that all four quadrants can be handled by one procedure is to divide the task into
two stages.

Four Neighbours

9 Primitive, Raster-Infill Operations: Line Interpolation

333

Quadrant 2

dx < 0
dy > 0
d = -dx - dy (Initialised value)

Quadrant 1

dx > 0
dy > 0
d = 0 (Initialised value)

d < 0: - ve : step in Y direction: d more -
d = 0: zero: step in X direction: d more +
d > 0: + ve: step in X direction: d more +
stepX: d = d - dy, stepY: d = d - dx

d < 0: - ve : step in X direction: d more -
d = 0: zero: step in Y direction: d more +
d > 0: + ve: step in Y direction: d more +
stepX: d = d + dy, stepY d = d - dx

Quadrant 3

dx < 0
dy < 0
d = dx - dy (Initialised value)

Quadrant 4

dx > 0
dy < 0
d = 0 (Initialised value)

d < 0: - ve : step in X direction: d more -
d = 0: zero: step in X direction: d more -
d > 0: + ve: step in Y direction: d more +
stepX: d = d - dy , stepY: d = d + dx

d < 0: - ve : step in Y direction: d more -
d = 0: zero: step in Y direction: d more -
d > 0: + ve: step in X direction: d more +
stepX: d = d + dy , stepY: d = d + dx

The first is to use the initial conditions and tests to generate the required sequence

of X or Y steps, for example by defining a variable j so that a statement of the form:

 if (j < 0) stepY; else stepX;

can be written The second is to implement stepX and stepY to increment the x and y
values in the correct way for the quadrant in question. This can be done by setting up
two incrementing variables kx and ky so these steps can be executed simply by x= x +
kx; and y= y + ky. These variables are initialised to +1 or -1 to correspond with the
original signs of dx and dy.

To generate the X and Y stepping sequence for quadrant 1 requires d to be
initialised to 0, and increments to d to be defined for X steps as d = d+ dy, and for Y
steps as d = d - dx. When (d < 0) an X step is made otherwise a Y step is made. An
identical stepping sequence to the one this will generate, however, is also wanted for
quadrant 4. The simplest way to obtain such a sequence for quadrant 4 is to modify its
initial conditions to correspond to working in quadrant 1. This can be done by
executing the statement:

if (dx > 0) && (dy < 0) dy = -dy;

The same approach could be adopted to map quadrant 3 into quadrant 2, by
reversing the sign of dy. However, the sequence for quadrant 2 can also be obtained
directly from quadrant 1. If the way that the step selection depends on the value of d
is laid out in a table, given below, it can be seen that the step selection of quadrant 2
is the opposite of that in quadrant 1.

-ve

-ve

+ve

-ve

+ve

-ve

+ve

+ve

Four Point Neighbours

334

Quadrant dy dx d: -ve d: zero d: +ve
1 +ve +ve step X step Y step Y
2 +ve -ve step Y step X step X
3 -ve +ve step X step X step Y
4 -ve -ve step Y step Y step X

This means, if the corresponding offset-value to the value of d, required to give the

correct stepping sequence in quadrant 2, is set up for quadrant 1. A sequence of X and
Y steps will be generated, but with X steps for Y, and Y for X, generated by the
quadrant 1 tests on d. All that is needed is to reverse these step directions
appropriately, and the same pattern will then be suitable for quadrant 3 and quadrant
2. The initial offset value for d in the first quadrant is given by d = dy – dx. To get
this and the correct increments to d requires dx = -dx to map from quadrant 2 to 1,
and dx = -dx and dy = -dy to map from quadrant 3. Combining these requirements
with those required for mapping quadrant 4 to 1, can be satisfied by the following
code sequence:

 if (dy < 0){ky = -1; dy = -dy;}
 if (dx < 0){kx = -1; dy = -dy; d = dy-dx;}

The switching between X and Y steps depends on the value of d, and the original
sign of dx. This is retained in the sign of kx:

 (dx >= 0): (kx = 1) (dx < 0): (kx = -1
(d < 0) stepX: j = 1 stepY: j = -1

(d >= 0) stepY: j = -1 stepX: j = 1

This selection operation can be implemented by the code:

 if(d < 0) j = kx; else j = -kx;
 if(j < 0){d = d - dx; y = y + ky;}
 else {d = d+ dy; x = x + kx;}

This gives a program, which will interpolate in all quadrants, of the form:

 int Cls = 60, Rws = 40;
 Tiles T = new Tiles(Cls,Rws,Color.white);
 DisplayGrid d = new DisplayGrid(f,T.tileColour,T.cols,T.rows);
 d.paintGridArray(); d.drawGridLines(Color.black,Color.gray);
 f.writeString("Please enter number of line segments: ");
 int number = f.readInteger();

 for(int i = 0; i <number; i++){
 f.writeString("Use the mouse to enter the line vertices"); f.writeLine();
 Point pa = d.getCell(); Point pb = d.getCell();
 d.line(pa, pb, 1, Color.blue);
 }

9 Primitive, Raster-Infill Operations: Line Interpolation

335

 public void line (Point p1,Point p2,int border, Color cc){
 int kx = 1, ky = 1, dx, dy, d = 0, j = 0;
 dx = p2.xi() - p1.xi(); dy = p2.yi() - p1.yi();
 if (dy < 0){ky = -1; dy = -dy;}
 if (dx < 0){kx = -1; dy = -dy; d = dy-dx;}
 for(;;){
 paintInnerCell(p1.xi(), p1.yi(), border, cc); // plot point
 if (p1 (“==”, p2))return;
 if(dy!=0){
 if(d < 0)j = kx; else j = -kx;
 if(j < 0){d = d - dx; p1.y(“=”, p1.yi() + ky);}
 else {d = d+dy; p1.x (“=”, p1.xi() + kx);}
 }else p1.x(“=”, p1.xi() + kx);
 }
 }

Figure 9.15 Lines generated by four-neighbour line-interpolation

The way this algorithm produces the same set of grid points interpolating from p1

to p2 as from p2 to p1 is illustrated in Figure 9.16 by setting up the line drawing
procedure to give different sized “point” tiles, red for forwards and blue for
backwards: the blue overwriting the red so they can both be seen,.

 d.line(pa, pb, 1,Color.red);
 d.line(pb, pa, 3,Color.blue)

In Figure 9.15 and 9.16 it can be seen that the vertical and horizontal lines appear
lighter in weight than the oblique lines; and consequently, when using a higher
resolution grid they look thinner than the diagonal lines.

Four Point Neighbours

336

Figure 9.16 Four neighbour interpolation, forwards and backwards

Eight Point Neighbours

One approach to giving lines of different slope a more equal weight is to apply an
eight neighbour interpolation scheme. Allowing movement to eight neighbouring
positions means that diagonal grid-moves are permitted. This gives point sequences
for lines matching those generated by the DDA interpolation algorithm, which in turn
means that quadrants have to be divided into two to give an octant based framework
.

0 1 2 3 4 5 6 7 8
Figure 9.17 Forward stepping algorithm

An incrementing pattern for this method is illustrated in Figure 9.17 for a line in

the first octant with a slope between 0o and 45o to the horizontal. In this case if the
current point is above the line its distance to the line will be negative and a horizontal

Eight Neighbours

9 Primitive, Raster-Infill Operations: Line Interpolation

337

move towards the true line can be made using single steps in the X direction.
However when the true line is crossed then a diagonal step is taken, stepping both X
and Y together, to return to a position above the line. This diagonal step will only
cross a line, if the line has a shallower slope than 45o. A line with a slope that is
greater than 45o requires unit steps in the Y direction, when below the line, but a
diagonal step as soon as the true line is crossed, to return to a position below it.

-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

A1

B1

Figure 9.18 Eight neighbour interpolation

Figure 9.18 shows the way this allocates the line incrementing patterns to eight

regions. The pattern for the A1 sequence is given in Figures 9.17, and Figure 9.19
shows the corresponding stepping sequence for the line drawn in the opposite
direction, the B1 sequence.

As with the “four-neighbours” approach, using the same testing scheme to define
the incrementing steps, in these two cases, does not give a matching set of points for
the identical line drawn in opposite directions. In Figures 9.17 and 9.19 the critical
line segments are highlighted for switching the direction of increments, and the same
strategy that was applied before, can be applied again to this case. If an offset test is
used for the second case: testing the point that, in the reverse direction would have led
to the current point being chosen, then the same set of points whether moving forward
or backwards can be selected. In the case of the eight neighbours scheme, however,

Eight Neighbours

Eight Point Neighbours

338

this “offset” test has to diagonally cross two cells, in the way shown by the arrows in
Figure 9.20.

0 1 2 3 4 5 6 7 8

Figure 9.19 Backward stepping algorithm

The same strategy used in the “four neighbours” algorithm, reflecting incrementing
patterns, can again be applied to this case, giving the stepping patterns in Figure 9.21.

0 1 2 3 4 5 6 7 8

Figure 9.20 Backward stepping algorithm with look ahead test

Transferring the 1-4 labelling of the quadrants used in the “four-neighbours”

examples to these octants makes comparisons easier. Once the stepping patterns for
octants 1-4 have been generated by reflection across the x or y axes, they can be
transferred to the remaining octants by reflecting the pattern across the 45o diagonal
in the way illustrated in Figure 9.21.

4 3

2 1

4 3

2 1

4+4=8

3+4=7 2+4=6

1+4=5

Figure 9.21 Octant labelling matching the quadrant labelling

Eight Neighbours

Eight Neighbours

9 Primitive, Raster-Infill Operations: Line Interpolation

339

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

Reflect

A1

A2

 B2

B1

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

A1

A1 A2

B2

B1

B1 B2

A2

Reflect

Reflect

Figure 9.22 Reflecting line increment patterns vertically and diagonally

Eight Neighbours

Eight Neighbours

Eight Point Neighbours

340

This diagonal reflection can be implemented, in the same way employed in the
DDA algorithm, by swapping x and y ordinates. This solution means that only the
stepping sequences labelled A1, A2, B1 and B2 in Figure 9.22 need to be analysed
further.

Octant 2

dx < 0
dy > 0
d = -dx - 2dy (Initialised value)

Octant 1

dx > 0
dy > 0
d = 0 (Initialised value)

d < 0: - ve : step in X & Y direction.
d = 0: zero: step in X direction.
d > 0: + ve: step in X direction.
StepX: d= d-dy. StepX&Y: d = d-dy-dx

d < 0: - ve : step in X direction.
d = 0: zero: step in X & Y direction.
d > 0: + ve: step in X & Y direction.
StepX: d= d+dy. StepX&Y: d = d+dy-dx

Octant 3

dx < 0
dy < 0
d = dx-2dy (Initialised value)

Octant 4

dx > 0
dy < 0
d = 0 (Initialised value)

d < 0: - ve : step in X direction.
d = 0: zero: step in X direction.
d > 0: + ve: step in X & Y direction.
StepX: d= d-dy. StepX&Y: d = d-dy+dx

d < 0: - ve : step in X & Y direction.
d = 0: zero: step in X & Y direction.
d > 0: + ve: step in X direction.
StepX: d= d+dy. StepX&Y: d = d+dy+dx

Setting out these relationships in a table again makes it possible to see how the

variables in each octant relate to each other. In this case it can be seen that the
incrementing patterns for octants 1 and 2 are opposites, as are 3 and 4. Figure 9.22
shows how the pattern in octant 2 can be reflected from the line stepping scheme
produced in octant 3. Similarly, how octant 1 can be reflected from octant 4: by
treating the two (dx < 0) cases as the same but using opposite y stepping directions,
and the (dx > 0) cases as the same again with opposite y stepping directions. For
forward and backward drawing to be identical, the table’s diagonal (d = 0) tests must
still select opposite stepping actions.

Taking all these relationships into account led to the following implementation. As
before, in order to modify the signs of dx and dy to implement mapping operations
between octants, the stepping directions for the final line were stored in the variables
kx and ky. These were assigned values of -1 or +1 to match the original corresponding
signs of dx and dy. There appeared to be a variety of ways to map one octant to
another, however the following approach provided a relatively direct scheme to
satisfy the relationships laid out in the overall octant table. The distinguishing test to
select either X or X&Y steps depends on (d > 0) for octants 3 and 4, and on (d < 0)
for octants 2 and 1. Mapping octant 4 to 1 and 2 to 3, by inverting the sign of dy, still
leaves two distinct cases. However the following operation offers a way to merge the
two into one testing sequence which satisfies the original design target for the
algorithm.

-ve

-ve

+ve

-ve

+ve

-ve

+ve

+ve

9 Primitive, Raster-Infill Operations: Line Interpolation

341

case A (d < 0) (d < 0) R case B ((-d) < 0) R
case A (d = 0) S case B ((-d) = 0) R
case A (d > 0) S case B ((-d) > 0) (d < 0) S

If the selection is made by the (d < 0) test then in ‘case A’ action R will be taken if

this test is true otherwise action S. If for ‘case B’ the sign of d is reversed then the
same test (d < 0) can be set up: to select action S if (d < 0) is true, otherwise action R.
What this reversal achieves is to swap the action from R to S when (d = 0), in the two
cases. This makes it possible to map octant 3 to 1, using the code segment:

 if(d < 0) j= kx; else j= -kx;
 if(j < 0) step X&Y else step X;

The sign of kx is used to select which stepping pair should be used. If kx is
positive, then it selects octant 1, if negative it selects octant 3. This is the same code
structure used to map from quadrant 2 to 1 with no sign change, in the four
neighbours interpolation algorithm, and can be used here, in the same way, if so
desired, as the following table shows.

Octant dy dx d < 0 d = 0 d > 0
1 +ve +ve step X step X & Y step X & Y
2 +ve -ve step X & Y step X step X
3 -ve -ve step X step X step X & Y
4 -ve +ve step X & Y step X & Y step X

Thus, reversing the sign of d in octant 3 allows octant 3 to be mapped diagonally:

to use the same selection test as octant 1, and vice versa. Applying these ideas led to
the following program code, which will handle all eight octants.

 DisplayGrid d = new DisplayGrid(f,T.tileColour,T.cols,T.rows);
 d.paintGridArray(); d.drawDualGrid(Color.black,Color.gray);
 f.writeString("Please enter number of line segments: ");
 int number = f.readInteger();

 for(int i = 0; i <number; i++){
 f.writeString("Use the mouse to enter the line vertices"); f.writeLine();
 Point pa = d.getCell(); Point pb = d.getCell();
 d.line(pa, pb, 1, Color.red);
 d.line(pa, pb, 3 ,Color.blue);
 }
 public void line(Point p1, Point p2, int wd, Color cc){
 int kx=1,ky=1; int dx = p2.x-i()p1.xi(); int dy = p2.yi()-p1.yi();
 if (dx < 0) { kx = -1; dx = -dx;}
 if (dy < 0) {ky = -1; dy = -dy;}
 if(dx>dy) octant(p1.xi(), p1.yi(), p2.xi(), p2.yi(), wd, kx, ky, dx, dy, false, cc);
 else octant(p1.yi(), p1.xi(), p2.yi(), p2.xi(), wd, ky, kx, dy, dx, true, cc);
 }

(d >= 0)
(d >= 0)

Eight Point Neighbours

342

 private void octant(int x, int y, int xend, int yend, int width,
 int kx, int ky, int dx, int dy, boolean steep, Color cc){
 int d= 0, j = 0;
 if(kx<0){ d= 2*dy-dx; dx = -dx; dy = -dy;}
 for(;;){
 if(steep) paintInnerCell(y, x, width, cc); else paintInnerCell(x, y, width, cc);
 if (x == xend) return;
 if(dy != 0){
 if(d > 0) j= kx; else j= -kx;
 if(j < 0){d= d+dx-dy; y= y+ky;} else d= d-dy;
 } x = x+ kx;
 }
 }

As before, line variable initialisation maps octant 2, 3 and 4 to 1, by making the
values of dx and dy both positive. The initialisation of d is then carried out with these
values for octant 1. Lines from octants 3 and 2 are then mapped back to octant 3 by
making both dx and dy negative. Examining the innermost loop of the line
interpolation procedure, the increment to d for the X&Y step is made by d = d+dx-dy,
and for the X step by d = d-dy. For lines from octant 1 dx and dy are positive and d is
initialised to 0, which means this ‘negative’ incrementing operation maps the line to
octant 3. The offset value for the lines originally from octant 2 or 3, is initialised by d
= 2.dy-dx but with negated increments for dx and dy. This defines d correctly for
octant 3. Applying the code given above effectively allows a mapping from octant 1
to octant 3, so giving a single unified selection test for an “eight-neighbour” line
interpolation algorithm.

Figure 9.23 Eight neighbour line interpolation: forwards (red)& backwards (blue)

9 Primitive, Raster-Infill Operations: Line Interpolation

343

Figure 9.23 illustrates the output of this program for different line directions,
which compared with Figure 9.15 goes some way to giving more balanced line
weights. It also shows that the forward and backwards behaviour of this algorithm has
been correctly implemented, by overlaying different sized “point” tiles for the two
directions.

The diagram shown in Figure 9.24, where the algorithm is used to display nearly
horizontal lines: prompted the final step in this program development. The stepping
sequence is biased: selecting mostly points above the true line. The reason for this can
be found in the interpolation patterns illustrated in Figures 9.10 and 9.17. The
solution to this imbalance would be to move the resulting pattern of points
downwards so that, on average, as many points lie below the line as above it. Clearly
working on a grid this is not an option. However, an equivalent operation is to slide
the pattern along the line still using grid-based points but using a different distribution
along the line. The way this can be done is illustrated in Figure 9.24 for a “four-
neighbours” scheme. The trick is to initialise the distance-measure d from the true
line to be that for a point placed half a cell width above the line. However, the
original incremental values of dx and dy, used to set up this distance, may not be even
numbers, which can be halved as integers. The half value can be obtained by doubling
both the initial values of dx and dy used as increments to d, but using half the result or
the original dx or dy values to initialise the distance d.

Figure 9.24 Offset line patterns improve near horizontal interpolation

The interesting development which arises from this adjustment, when the “eight-

neighbour” interpolation scheme is examined, is that this offset testing can be set up

Four Neighbours

Eight Point Neighbours

344

symmetrically so the forward and backward initialisation and tests can be treated in
virtually the identical way. The offset distance, moving forwards in the first octant, is
half a step in the Y direction followed by a full step in the X direction.

Figure 9.25 “Offset-testing” set up symmetrically

Octant 2

dx < 0
dy > 0
d = -dx - 2dy (Initialised value)

Octant 1

dx > 0
dy > 0
d = 2dy - dx (Initialised value)

d < 0: - ve : step in X & Y direction.
d = 0: zero: step in X direction.
d > 0: + ve: step in X direction.
StepX: d= d-dy. StepX&Y: d = d-dy-dx

d < 0: - ve : step in X direction.
d = 0: zero: step in X & Y direction.
d > 0: + ve: step in X & Y direction.
StepX: d= d+dy. StepX&Y: d = d+dy-dx

Octant 3

dx < 0
dy < 0
d = dx - 2dy (Initialised value)

Octant 4

dx > 0
dy < 0
d = 2dy + dx (Initialised value)

d < 0: - ve : step in X direction.
d = 0: zero: step in X direction.
d > 0: + ve: step in X & Y direction.
StepX: d= d-dy. StepX&Y: d = d-dy+dx

d < 0: - ve : step in X & Y direction.
d = 0: zero: step in X & Y direction.
d > 0: + ve: step in X direction.
StepX: d= d+dy. StepX&Y: d = d+dy+dx

Eight Neighbours

-ve

-ve

+ve

-ve

+ve

-ve

+ve

+ve

9 Primitive, Raster-Infill Operations: Line Interpolation

345

The corresponding initialisation for the third octant moving in the opposite
direction is again half a step in the Y direction, in this case down, followed by a full
step in the X direction backwards, as shown in Figure 9.25. This will select the same
set of points in both directions, and the points will be distributed in a balanced way on
each side of the true line. As before, the only special case is where test points fall
exactly on the line, when d = 0. These readjustments give the following revised table
and the modified code:

octant dy dx d: -ve d: zero d: +ve
1 +ve +ve step X step X & Y step X & Y
2 +ve -ve step X & Y step X step X
3 -ve -ve step X step X step X & Y
4 -ve +ve step X & Y step X & Y step X

private void octant(int x, int y, int xend, int yend, int width,
 int kx, int ky, int dx, int dy, boolean dir, Color cc)
 {
 int d = 2*dy-dx; dx = 2*dx; dy = 2*dy;
 if (ky < 0){ d = -d; dx = -dx; dy = -dy;}
 while(true){
 if(dir) paintInnerCell(y,x,width,cc); else paintInnerCell(x,y,width,cc);
 if (x == xend) return;
 if (d < 0) int j = -ky; else j =ky;
 if (j > 0){d = d+dy-dx; y = y+ky;} else d= d+dy;
 x = x +kx;
 }
 }

 public void line(Point p1, Point p2, int wd, Color cc)
 {
 int dx = p2.xi()-p1.xi(); int dy = p2.yi()-p1.yi(); int kx = 1; int ky = 1;
 if (dx < 0){ kx = -1; dx = -dx; }
 if (dy < 0){ ky = -1; dy = -dy; }
 if (dx < dy)octant(p1.yi(),p1.xi(),p2.yi(),p2.xi(),wd,ky,kx,dy,dx,true,cc);
 else octant(p1.xi(),p1.yi(),p2.xi(),p2.yi(),wd,kx,ky,dx,dy,false,cc);
 }

This implementation of the program follows the same strategy as the previous one.
Octant 2 is mapped to 3, and 4 to 1. However, in this case octant 3 and 1 are then
processed as octant 1, to unify the code rather than as octant 3. There are in this case
two offset values, which have to be initialised. The first is set up in octant 1; the
second is set up for octant 3 by negating this initial value. In the inner loop of this
interpolation procedure, the distance increments are carried out for octant 1, so d
values defined using octant 3 values for dx and dy will be negative in this context.
The outputs of this algorithm and the previous algorithm are illustrated in Figures
9.26 and 9.27 for two sets of line segments, to show the improved treatment of acute,
internal and external angles.

Eight Point Neighbours

346

Figure 9.26 Biased line interpolation

Comparing the inner vertices and the outer vertices of the comb shapes using the
“biased” interpolation algorithm in Figure 9.26 shows an unbalanced treatment, the
outer angles are sharp the inner angles are rounded where they should be more or less
the same.

Figure 9.27 Balanced line interpolation

9 Primitive, Raster-Infill Operations: Line Interpolation

347

In contrast Figure 9.27 shows a substantial improvement resulting from using the
balanced algorithm, giving a similar treatment for both inner and outer angles.

This final form of the algorithm gives the same sequence of points generated by
the original dda algorithm, without using floating-point numbers and minimising the
use of the multiplication operation. However, though this was critical in early
systems, advances in hardware make the distinction less important in current systems,
except where the line interpolation needs to be implemented in a minimum way, say
on an integrated circuit for operations like polygon fill. On the other hand discussion
in later chapters shows there are important advantages to using floating point numbers
to represent line end-point co-ordinates, for example, when interpolating sections of a
line represented by the same line equation where the interpolated point sequences
from two line segments with different end points need to match up exactly if they
overlap.

The step-by-step exploration of a line following algorithm on a grid, given above,
by progressively refining the operation, generates a fairly complex analysis for what
started out as a simple idea. The complexity arises mainly from the need to make the
point selection consistent for lines drawn in any direction. However, it is also made
particularly difficult because each step was being determined by a single distance test.
If the dda algorithm is revisited it can be seen that the grid point choice implicitly
considers two distances. For shallow-gradient lines, the exact y value is calculated as
a floating-point number for a sequence of integer x values. These y values are then
rounded to the nearest integer to give a y value on the grid. This is in effect
comparing the exact y value with two integer grid values and selecting the nearer. An
alternative approach to implementing the line following algorithm can be set up by
adopting a similar selection process.

Figure 9.28 Line following comparing two distances

static void gridline(Point jj,Point kk,Color cc,Grid gd, int bdr){

int x1 = jj.xi(),y1 = jj.yi(), x2 = kk.xi(),y2 = kk.yi();
int x = x1, y = y1, dx = x2-x1, dy = y2-y1, db=0, dt= dx;
while(true){

if(dt+db > 0){
gd.paintInnerCell(x,y,bdr,cc);}else{ gd.paintInnerCell(x,y+ky,bdr,cc);}

if(x==x2)return; else{ x=x+kx; db = db-dy; dt=dt-dy;}
if (dt < 0){ y=y+ky; db = db+dx; dt=dt+dx;}

}
}

Eight Point Neighbours

kk

j j

dt

db

348

However, it is still necessary to consider lines drawn in different directions.
Considering shallow gradients first there are four quadrants to be catered for:

static void gridline(Point jj,Point kk,Color cc,Grid gd,int bdr){

int x1 = jj.xi(),y1 = jj.yi(), x2 = kk.xi(),y2 = kk.yi();
int x = x1,y = y1;
int kx=1, ky=1,j=0,db=0, dt= 0;
int dx = x2-x1, dy = y2-y1;
if(dx<0){kx=-1; j=j+1;}
if(dy<0){ky=-1; j=j+2;}

switch(j){
case 0: //first quadrant

while(true){
if(dt+db > 0){ gd.paintInnerCell(x,y,bdr,cc);}
else { gd.paintInnerCell(x,y+ky,bdr,cc);}
if(x==x2)return;else{ x=x+kx; db = db-dy; dt=dt-dy;}
if (dt < 0){ y=y+ky; db = db+dx; dt=dt+dx;}

}
case 1: //second quadrant

while(true){
if(dt+db <= 0){gd.paintInnerCell(x,y,bdr,cc);}
else {gd.paintInnerCell(x,y+ky,bdr,cc);}
if(x==x2)return;else{ x=x+kx; db = db+dy; dt=dt+dy;}
if (dt >=0){ y=y+ky; db = db+dx; dt=dt+dx;}

}
case 3: //third quadrant

while(true){
if (dt+db <= 0){ gd.paintInnerCell(x,y,bdr,cc);}
 else { gd.paintInnerCell(x,y+ky,bdr,cc);}
if(x==x2)return;else{ x=x+kx; db = db-dy; dt=dt-dy;}
if (dt >=0){ y=y+ky; db = db+dx; dt=dt+dx;}

}
case 2: //fourth quadrant

while(true){
if (dt+db > 0){gd.paintInnerCell(x,y,bdr,cc);}
else {gd.paintInnerCell(x,y+ky,bdr,cc);}
if(x==x2)return;else{ x=x+kx; db = db+dy; dt=dt+dy;}
if (dt < 0){y=y+ky; db = db+dx; dt=dt+dx;}

}
}

}

Steep gradients can be handled by swapping the x and y ordinates, reflecting the
pattern of points about the main diagonal, in the way outlined in Figure 9.21.
Adopting the same approach as before it is possible to map these eight cases into a
single parameterised procedure in the following way.

9 Primitive, Raster-Infill Operations: Line Interpolation

349

Figure 9.29 Radial line test

public static void main(String[] args){

double xmin,xmax,ymin,ymax;
int cols = 50,rows = 32;
Color[][] cc = new Color[cols][rows];
for(int i=0; i<cols;i++){ for(int j=0; j<rows; j++){ cc[i][j] = Color.white; }}
Grid gd = new Grid(IO, dW , cc , cols, rows);
gd.paintGridArray(); gd.drawGridLines(Color.black,Color.gray);
Point kk = gd.getCell();Point jj = gd.getCell();
while(gd.contains(jj)){ // for a series of lines

gridline(kk, jj, Color.red, gd,1); gridline(jj, kk, Color.green, gd,3); //forward & backwards
kk = gd.getCell(); jj = gd.getCell(); // get next line

}
}
static void gridline(Point jj, Point kk, Color cc, Grid gd, int bdr){

int x1=jj.xi(),y1=jj.yi(),x2=kk.xi(),y2=kk.yi(),x=x1,y=y1,kx=1,ky=1,j=0;
int db=0,dt=0,dx=x2-x1,dy=y2-y1,xp=x,yp=y,fy=0; boolean up=false,t1=false;
if(Math.abs(dy)>Math.abs(dx)){up=true;int tmp=x1; xp=x=x1=y1;
yp=y=y1=tmp; tmp=x2; x2=y2; y2=tmp; tmp=dx; dx = dy; dy = tmp;}
if(dx<0){kx=-1; j=j+1;} if(dy<0){ky=-1; j=j+2;}db=0;dt = dx; fy=dy;
if((j==0)||(j==3))fy= -dy; if((j==0)||(j==2))t1=true;
while(true){

if ((t1&&(dt+db>0))||(!t1&&(dt+db<=0))){yp=y;}else{yp=y+ky;}
if(up)gd.paintInnerCell(yp,xp,bdr,cc);else gd.paintInnerCell(xp,yp,bdr,cc);
if(x==x2)return; else {xp = x = x+kx; db=db+fy;dt=dt+fy;}
if((t1&&(dt<0))||(!t1&&(dt>=0))){y=y+ky;db=db+dx;dt=dt+dx;}

}
}

Eight Point Neighbours

350

Anti-Aliased Lines

At first sight this gives a no better result than before, though perhaps it is slightly easier
to understand. However, this approach opens up an alternative to using simple black or
white pixels. The values, for the two pixels on each side of the line used to select which
pixel to shade, are proportional to the pixel distances from the true line. These values
can be used to give the same effect as a line captured by an analogue camera and
displayed on a black and white TV screen, by shading each pixel in proportion to its
distance from the true line, in the way illustrated in Figures 9.31 and 9.32:

Figure 9.30 Anti-aliased lines on a grid

static void antiAliasedGridLine(Point jj,Point kk,Color cc,Grid gd){
int x1=jj.xi(),y1=jj.yi(),x2=kk.xi(),y2=kk.yi(),x=x1,y=y1,kx=1,ky=1,j=0;
int db=0,dt=0,dx=x2-x1,dy=y2-y1,xp=x,yp=y,yq=y,fy=0;
boolean up=false,t1=false; float h=1, s =0, b1=0, b2= 0;
if(Math.abs(dy)>Math.abs(dx)){

up=true;int tmp=x1; xp=x=x1=y1;yp= y=y1=tmp;
tmp=x2; x2=y2; y2=tmp; tmp=dx; dx = dy; dy = tmp;}

if(dx<0){kx=-1; j=j+1;} if(dy<0){ ky=-1; j=j+2;}
db=0;dt = dx; fy=dy;
if((j==0)||(j==3))fy= -dy; if((j==0)||(j==2))t1=true;
while(true){

yp=y; yq=y+ky; b1= 1-dt/(float)(dt-db); b2=1+db/(float)(dt-db);
Color c1 = Color.getHSBColor(h,s,b1), c2 = Color.getHSBColor(h,s,b2);
if(up){gd.paintInnerCell(yp,xp,0,c1);gd.paintInnerCell(yq,xp,0,c2);}
else{ gd.paintInnerCell(xp,yp,0,c1);gd.paintInnerCell(xp,yq,0,c2);}
if(x==x2)return; else {xp = x = x+kx; db=db+fy;dt=dt+fy;}
if((t1&&(dt<0))||(!t1&&(dt>=0))){y=y+ky;db=db+dx;dt=dt+dx;}

}
}

9 Primitive, Raster-Infill Operations: Line Interpolation

351

A justification for this construction can be made in the following way. The value
for each pixel is being treated as a point sampled value in the simple line interpolation
algorithm whereas in the case of the analogue TV camera the value of each pixel is an
integration of the brightness over each pixel area. Consider a raster line through two
objects with a uniform shading value against a uniform back ground with the pixel
values sampled on a regular grid placed in the way shown in Figure 9.31a.

Figure 9.31 Pixel point sampling model

Figure 9.32 Pixel area sampling model

If the pixel values are considered to be measures from pixel area sampling then a
block diagram of the form shown in Figure 9.32 is probably the best way of
representing them. Notice that the point sampling technique will only reflect the true
position of the object if the boundary of the object lines up with the edges of the pixel
blocks and if the object is an integral number of pixel widths wide in the way shown
in Figure 9.31a otherwise information is lost as in the case of Figure 9.31b. In
contrast if the values are block area values, which are the best estimate of the area
covered then information about the true size and location of the object is not totally
lost, shown in Figure 9.32b.

If an edge is considered as a point value but it is placed on the sampling grid then
it will be represented by a block centred on the edge as in Figure 9.31a. The area of
this block can be converted into a triangle with its base points at the bottom of the two
neighbouring pixel point values in the way shown in Figure 9.33a. If two point values
are placed next to each other then by adding together their triangular representations:
a standard form of linear interpolation between the initial point values is obtained
shown in Figure 9.33b. Given a continuous distribution it is possible to break it down
into a series of equivalent blocks.

a

Pixel Point Sampling on a Grid

Pixel Area Sampling on a Grid

a b

b

Anti-Aliased Lines

352

Figure 9.32 Point triangles and linear interpolation

Where the linear sections are unevenly spaced point samples need to be taken at the
vertex points of the boundary shape. If a regular grid is applied to the same boundary
errors will be generated at the changes in direction: shown in red in Figure 9.33b.

Figure 9.33 Interpolating a surface on irregular and regular grids

Applying the same approach to line interpolation helps to identify the position of
the line. This can be done by placing a triangular distribution centred on the true
position of the line then sampling it using the regular grid positions. This gives a
centre of gravity for the resulting pixel values lying on the position of the true line.

Figure 9.34 Interpolating pixel values for a line not centred on a pixel

A C

B

A+B = C

9 Primitive, Raster-Infill Operations: Line Interpolation

a

b

353

Figure 9.35 The relationship between pixel values used for line anti-aliasing

cba
x
x

x
fex

x
feex

c
ba

x
fx

c
b

x
ex

c
a

)(2

; ;

:ianglessimilar trBy

=+

=
+−

=
−+−

=
+

−
=

−
=

() ()

() () ()

aebf
ebeabfbe

ebabazbfbebaz
ecczfzezbzaz

xcezxbfezxaz
cbaO

. .
. ..

.. ...
..

..
 balances that assuming and about Moments Taking

=
+=+

+++=+++
+=+++
+=+++

+

Hence the centre of gravity of the two blocks a + b lies on the centreline of block c.

O

z+e

z

z+e+f

a b

c

e f

x

x

Anti-Aliased Lines

354

Although this extension distributes the weight of the pixel values correctly about
the position of the true line, Figure 9.30 shows that the distribution along the length of
the lines varies with direction. This is because the distances used to evaluate the pixel
weightings are taken parallel to the axes. If the line width and the matching triangular
distribution were taken perpendicular to the line’s direction this variation would be
reduced. The difficulty doing this is that for the 45o line pixels above and below the
central pixel would have to be visited. This would require a major change in the
program structure. However, there is an alternative approach, which can be applied
within the existing program framework to adjusting the pixel value density along
lines of different orientation. If the density of each pixel is modified by a scale factor
dependent on the line’s slope then a more uniform treatment of lines in different
directions should result. This scale factor can be calculated for straight lines before
the interpolation loop is entered. If the density of the 45o line is taken as unity then the
density of other lines must be adjusted by a factor of cosine (45-θ).

 ()

2
1.

2
1 scale

isfactor scale the0 is When

.
2

1 scale

sin.45sincos.45cos scale
45cos scale

2

22

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

θ

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+

+
=

θ+θ=
θ−=

dx

dx

dxdy

dxdy

Figure 9.36 Pixel density scale factor

static void antiAliasedGridLine(Point jj,Point kk,Color cc,Grid gd){

int x1=jj.xi(),y1=jj.yi(),x2=kk.xi(),y2=kk.yi(),x=x1,y=y1,kx=1,ky=1,j=0;
int dx=x2-x1,dy=y2-y1, db=0, dt=0, xp=x,yp=y,yq=y,fy=0;
boolean up=false,t1=false; float h=1, s =0;
double DX = Math.abs(dx), DY= Math.abs(dy), b1=0, b2= 0;
if(DY>DX)){up=true;int tmp=x1; xp=x=x1=y1;yp= y=y1=tmp;

tmp=x2; x2=y2; y2=tmp; tmp=dx; dx = dy; dy = tmp;}
if(dx<0){ kx = -1; j=j+1;} if(dy<0){ky = -1; j=j+2;} db=0;dt = dx; fy=dy;
fy=dy; if((j==0)||(j==3))fy= -dy; if((j==0)||(j==2))t1=true;
double scale = (DX+DY)/Math.sqrt(2.0*(DX*DX+DY*DY))/(double)dx;
while(true){

yp=y; yq=y+ky; b1 = 1-dt*scale; b2= 1+ db*scale;
Color c1 = Color.getHSBColor(h,s,(float)b1);
Color c2 = Color.getHSBColor(h,s,(float)b2);
if(up){gd.paintInnerCell(yp,xp,0,c1);gd.paintInnerCell(yq,xp,0,c2);}
else{ gd.paintInnerCell(xp,yp,0,c1);gd.paintInnerCell(xp,yq,0,c2);}
if(x==x2)return; else {xp = x = x+kx; db=db+fy;dt=dt+fy;}
if((t1&&(dt<0))||(!t1&&(dt>=0))){y=y+ky;db=db+dx;dt=dt+dx;}

}
}

θ

h
dy

dx

9 Primitive, Raster-Infill Operations: Line Interpolation

355

Applying this adjustment to the gridline code gives the result shown in Figure 9.37.

Figure 9.37 Anti-aliased lines adjusted for direction

As the resolution is increased so the effect of this refinement improves

Figure 9.38 Anti-aliased lines adjusted for direction

Anti-Aliased Lines

356

static void Line(Point jj,Point kk,Color cc,DisplayWindow dw, double width){

int x1=jj.xi(),y1=jj.yi(),x2=kk.xi(),y2=kk.yi(),x=x1,y=y1,kx=1,ky=1,j=0;
int dx=x2-x1,dy=y2-y1,db=0,dt= 0,xp=x,yp=y,yq=y,fy=0;
boolean up=false,t1=false;double DX= Math.abs(dx),DY= Math.abs(dy);
if(DY>DX) {up=true;int tmp=x1; xp=x=x1=y1;yp= y=y1=tmp;

tmp=x2; x2=y2; y2=tmp; tmp=dx; dx = dy; dy = tmp;}
if(dx<0){kx=-1; j=j+1;} if(dy<0){ky=-1; j=j+2;} db=0;dt = dx; fy=dy;
if((j==0)||(j==3))fy= -dy; if((j==0)||(j==2))t1=true;
float h=1, s1 =0, s2=0; double b1=0, b2= 0,scale;
scale = width*(DY+DX)/Math.sqrt(2.0*(DY*DY+DX*DX))/ (double)dx;
 while(true){

 yp=y; yq=y+ky; b1= 1-dt*scale; b2= 1+db*scale;
Color c1 = Color.getHSBColor(h,s1,(float)b1);
Color c2 = Color.getHSBColor(h,s2,(float)b2);
if(up){dw.plotPoint(yp,xp,c1);dw.plotPoint(yq,xp,c2);}
else{ dw.plotPoint(xp,yp,c1);dw.plotPoint(xp,yq,c2);}
if(x==x2)return; else {xp = x = x+kx; db=db+fy; dt=dt+fy;}
if((t1&&(dt<0))||(!t1&&(dt>=0))){y=y+ky;db=db+dx;dt=dt+dx;}

}
}

Finally scaling the interpolation down to the pixel grid gives Figure 9.39 where
anti-aliased and non anti-aliased line drawings are shown side by side

Figure 9.39 Anti-aliased and aliased lines on the pixel grid

9 Primitive, Raster-Infill Operations: Line Interpolation

357

Applying this adjustment to the pixel values is equivalent to reducing the width of
the line from a one pixel to a 0.7-pixel width. If a further scale factor is applied then
line width of even smaller dimensions can be approximated on the grid. To cope with
line width greater than this however, needs a different approach explored in the next
chapter.

Figure 9.40 Approximating lines of different widths on the pixel grid

Figure 9.41 Anti-aliased polyline junctions

Anti-Aliased Lines

358

This treatment works for single lines however, Figure 9.41 shows up a remaining
difficulty. When the shading values for pixels generated by two different line
segments conflict then it is possible for a white cell to overwrite a grey cell. In this
case it is necessary for simple black lines on white backgrounds to take the maximum
value for each pixel in the way shown in Figure 9.42. This means access to values
already in the pixel array needs to be possible and a simple one-way flow of data to a
display system is not adequate. Where the background is coloured, and lines have
different colours, then a more sophisticated approach has to be introduced.

Figure 9.42 Corrected anti-aliased polyline

9 Primitive, Raster-Infill Operations: Line Interpolation

10

Area Fill, Masks,
Circles and Thick
Line Interpolation

Introduction

Line interpolation introduced in the last chapter, involves generating or creating data
from a small set of given data – the line end points – to represent the line in a
different way – all the display grid points close to the line. The need to carry out this
kind of operation occurs in many contexts. It is a key part of managing the
complexity of potentially large data sets. If the data can be created when and in the
way it is wanted using a generating function then at the cost of processing time,
storage resources can be conserved. This is particularly important for the potentially
infinite sets of point data, which could, theoretically, be needed to completely
represent continuous geometric objects. This infill process is the essential
complement to the spatial partitioning and piece-wise modelling operations discussed
in later chapters.

The interpolation rules determine the structure of the object being created in its
new representation, in this case as colour or property values stored in a pixel grid. In
this chapter the line ‘in-fill’ procedures of the last chapter are extended in various
ways, firstly to give a simple area fill algorithm: for triangles polygons and circles;
then in a more complex manner to give thick line interpolation.

The representation of areas by their boundary lines, where these lines are
interpolated onto a grid supports a collection of intermediate operations, which are
also briefly introduced. This in–between representation allows hidden line and
hidden area operations to be implemented in various ways explored in this chapter
and revisited in later chapters using non-grid based algorithms.

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_10, © Springer-Verlag London Limited 2008

360 10 Area Fill, Masks, Circles and Thick Line Interpolation

Triangle and Polygon Fill

If the boundaries of a triangle are interpolated using the procedures from the previous
section the result will be that shown in Figure 10.1. At first sight shading or filling in
the points within the triangle with a different colour would seem to require drawing
lines from each left boundary line point to the corresponding right boundary line
point on the grid, for all the boundary points generated by the boundary line
interpolation procedure.

MinX[y] MaxX[y]

Figure 10.1 Selecting left and right edge points for shading

However, closer scrutiny reveals a problem. Shallow lines such as the base of the
triangle in Figure 10.1 generate more than one potential edge point for such a ‘scan-
line’ or grid-row shading line. Since it is necessary to store these edge points while
the boundary is being generated one of these multiple points must be selected for
each row of the grid, one for the left edge and one for the right edge.

The simplest approach, (which will be extended later), is to select the outermost
points in each case. This can be done for the left edge by selecting the co-ordinate
with the minimum x value for a given y value, and for the right edge the co-ordinate
with the maximum x value for a given y value. As the code given below shows it is
not necessary in this initial solution to this problem to distinguish between left edge
and right edge points, A minimum and maximum selection operation applied to all
the boundary points will select the appropriate points for the final shading task. In
Figure 10.1 the resulting edge points are shown as solid black circles, the “inner”
unused boundary points by black circles with white interiors and the other shading
points by dark grey circles.

Triangle and Polygon Fill 361

 public void polygonFill(Polygon p, Color color){
 int ymin = Integer.MAX_VALUE;
 int ymax = Integer.MIN_VALUE;
 for (int i= 0; i < p.length-1; i++){
 if(ymin > p.p[i].yi()) ymin = p.p[i].yi();
 if(ymax < p.p[i].yi()) ymax = p.p[i].yi();
 }
 int len = ymax - ymin + 1;
 Shading S = new Shading(len, ymin);
 for(int i= 0; i< p.length-1; i++){
 line(p.p[i].xi(), p.p[i].yi(), p.p[i+1].xi(), p.p[i+1].yi(), color, S);
 }
 for(int i= 0; i < len; i++){
 line(S.leftedge[i], i+ymin, S.rightedge[i], i+ymin, color, null);
 }
 }

 public void defineEdges(Point p,Shading s){
 if (s.leftedge[p.yi() - s.miny] > p.xi()){s.leftedge[p.i()y-s.miny] = p.xi();}
 if (s.rightedge[p.yi() - s.miny]< p.xi()){s.rightedge[p.yi()-s.miny]= p.xi();}
 }

 private void line(int x1,int y1,int x2, int y2,Color color,Shading s){
 int kx, ky, dx, dy;
 dx = x2-x1; dy = y2-y1; kx = 1; ky = 1;
 if (dx < 0){ kx = -1; dx = -dx; }
 if (dy < 0){ ky = -1; dy = -dy; }
 if (dx < dy) {this.octant(y1, x1, y2, x2, ky, kx, dy, dx, 2, color, s);}
 else {this.octant(x1, y1, x2, y2, kx, ky, dx, dy, 1, color, s);}
 }

 private void octant(int x, int y, int xend, int yend, int kx, int ky, int dx, int dy,
 int dir, Color color, Shading s){
 int d,j; Point p = new Point(2); d = 2*dy-dx; dx = 2*dx; dy = 2*dy;
 if (ky < 0){ d = -d; dx = -dx; dy = -dy;}
 while(true){
 if (dir == 1){p.x(“=”, x); p.y(“=”, y);}
 else {p.y(“=”, x); p.x(“=”, y);}
 if (s == null) plotPoint(p,color);
 else defineEdges(p, s);
 if (x == xend) return;
 if (d < 0) j = -ky;
 else j =ky;
 if (j > 0) {d = d+dy-dx; y = y+ky;}
 else d= d+dy;
 x = x +kx;
 }
 }

362 10 Area Fill, Masks, Circles and Thick Line Interpolation

class Shading{

public int leftedge[],rightedge[],length,miny;
Shading(int len,int minimumy){

this.leftedge = new int[len]; this.rightedge= new int [len];
for(int i=0;i<len;i++)

{leftedge[i]= Integer.MAX_VALUE; rightedge[i]=Integer.MIN_VALUE;}
this.length = len; this.miny = minimumy;

}
public void defineEdges(Point p){

if (this.leftedge[p.yi()-this.miny] > p.xi())
{ this.leftedge[p.yi()-this.miny] = p.xi();}

if (this.rightedge[p.yi()-this.miny] < p.xi())
{ this.rightedge[p.yi()-this.miny] = p.xi();}

}
}
class Polygon{

private DisplayWindow dW = null;
private TextWindow IO = null;
public Point p[];
public int length=0;
public List ply = null;
Polygon(){}
Polygon(int len){ p = new Point[len];length = len; }

}

MinX[y] MaxX[y]

Figure 10.2 Non-convex polygon

Triangle and Polygon Fill 363

The triangle in Figure 10.1 is a convex area. This algorithm clearly will only work
with polygons that can be represented by single left-edge point-sequences and single
right-edge point-sequences. This will include polygons of the form shown in Figure
10.2, but not, for example, a spiral polygon. To handle more complex figures of this
type, it is necessary to decompose them into simpler shapes, usually convex shapes,
which can then be shaded in sequence; or to develop a more complex shading
algorithm. However it is also possible to shade polygons of the form shown in Figure
10.3 if the shading lines are drawn in vertically. Extending the Shading class to give
the Shadings class in the following way opens up a series of useful applications in
cartography

public static void main(String[] args){
String str =""; int len=0;
IO.writeString("do you wish to enter another polyon? y/n: ");
str = IO.readString();IO.readLine();
while(str.equals("y")){

IO.writeString("please enter the number of vertices: ");
int pnts = IO.readInteger();IO.readLine();
Point poly[] = new Point[pnts+1];
for(int i = 0; i<pnts;i++){

poly[i] = dW.getCoord();
if(i>0)dW.plotLine(poly[i-1],poly[i],Color.blue);

} poly[0].c("->",poly[pnts]= new Point(2));
dW.plotLine(poly[pnts-1],poly[pnts],Color.blue);
int xmin=poly[pnts].xi(),xmax=xmin; int ymin=poly[pnts].yi(),ymax=ymin;;
for(int i = 0; i<pnts;i++){

if(xmin > poly[i].xi())xmin = poly[i].xi(); if(xmax < poly[i].xi())xmax = poly[i].xi();
if(ymin > poly[i].yi())ymin = poly[i].yi(); if(ymax < poly[i].yi())ymax = poly[i].yi();

} IO.writeString("Is shading vertical y/n : ");
str = IO.readString();IO.readLine();
if(str.equals("y")){

len = xmax-xmin+1;
Shadings s= new Shadings(len,xmin,true);
for(int i=0;i<pnts;i++){

s.shadingEdge(poly[i].xi(),poly[i].yi(),poly[i+1].xi(),poly[i+1].yi());
} s.scanfill(dW,len, Color.green);

}else{
len = ymax-ymin+1;
Shadings s= new Shadings(len,ymin,false);
for(int i=0;i<pnts;i++){

s.shadingEdge(poly[i].xi(),poly[i].yi(),poly[i+1].xi(),poly[i+1].yi());
} s.scanfill(dW,len, Color.red);

}
IO.writeString("do you wish to enter another polyon? y/n: ");
str = IO.readString();IO.readLine();

}
}

364 10 Area Fill, Masks, Circles and Thick Line Interpolation

MinY[x]

MaxY[x]

Figure 10.3 Vertically shading a polygon

Figure 10.4 Horizontally and vertically shaded polygons

One application where this vertical shading algorithm can be applied directly is to

produce profile drawings of three-dimensional surfaces.

Triangle and Polygon Fill 365

class Shadings{

public boolean vertical = false;
public int leftedge[], rightedge[], length,min;
Shadings(int len, int minimum,boolean vertical){

this.IO=IO; this.vertical= vertical; this.length = len; this.min = minimum;
this.leftedge = new int[len]; this.rightedge= new int [len];
for(int i=0;i<len;i++)
{leftedge[i]= Integer.MAX_VALUE; rightedge[i]=Integer.MIN_VALUE;}

}
public void defineEdgePoint(Point pp){

Point p = new Point(2);
if(vertical){p.n[1]=pp.n[2];p.n[2]=pp.n[1];}else{p.n[1]=pp.n[1];p.n[2]=pp.n[2];}
int i = p.yi()- this.min;
if (this.leftedge[i] > p.xi()){ this.leftedge[i] = p.xi();}
if (this.rightedge[i] < p.xi()){ this.rightedge[i] = p.xi();}

}
public void shadingEdge(int x1,int y1,int x2, int y2){

int kx,ky,dx,dy;boolean notSteep=true;
dx = x2-x1; dy = y2-y1; kx = 1; ky = 1;
if (dx < 0){ kx = -1; dx = -dx; }
if (dy < 0){ ky = -1; dy = -dy; }
if (dx < dy) {this.octant(y1,x1,y2,x2,ky,kx,dy,dx,false);}
else {this.octant(x1,y1,x2,y2,kx,ky,dx,dy,true);}

}
private void octant(int x,int y,int xend,int yend,int kx,int ky,

int dx, int dy,boolean notSteep){
int d,j;Point p = new Point(2);
d = 2*dy-dx; dx = 2*dx; dy = 2*dy;
if (ky < 0){ d = -d; dx = -dx; dy = -dy;}
while(true){

if (notSteep){p.n[1] = x; p.n[2] = y;}else { p.n[1] = y; p.n[2] = x;}
this.defineEdgePoint(p);
if (x == xend) return;
if (d < 0)j = -ky; else j =ky;
if (j > 0){d = d+dy-dx; y = y+ky;}else d= d+dy;
x = x +kx;

}
}
public void scanfill(DisplayWindow dW, Color color){

if (this.vertical) for(int i= 0; i < this.length; i++){
if(this.leftedge[i] <= this.rightedge[i])
dW.line(i+this.min, this.leftedge[i], i+this.min, this.rightedge[i], color, null);

}else for(int i= 0; i < this.length; i++){
if(this.leftedge[i] <= this.rightedge[i])
dW.line(this.leftedge[i], i+this.min, this.rightedge[i],i+this.min, color, null);

}
}

366 10 Area Fill, Masks, Circles and Thick Line Interpolation

public void scanfill(DisplayWindow dW,int len, Color color){
this.length =len; scanfill(dW,color);

}
private void octantClip(DisplayWindow dW, int x, int y, int xend, int yend,

int kx, int ky, int dx, int dy, boolean steep, Color color){
int d, j; Point p = new Point(2); d = 2*dy-dx; dx = 2*dx; dy = 2*dy;
if (ky < 0){ d = -d; dx = -dx; dy = -dy;}
while(true){

int jj=0; if(vertical)jj=jj+1; if(steep)jj=jj+2;
switch(jj){

case 0:if((y-min<0)||(y-min >length)||(x<leftedge[y-min])||(x>rightedge[y-min]))
dW.plotPoint(x,y,color); break;

case 1:if((y-min<0)||(y-min >length)||(y<leftedge[y-min])||(y>rightedge[y-min]))
dW.plotPoint(x,y,color); break;

case 2:if((x-min<0)||(x-min >length)||(y<leftedge[x-min])||(y>rightedge[x-min]))
dW.plotPoint(y,x,color); break;

case 3:if((x-min<0)||(x-min >length)||(x<leftedge[x-min])||(x>rightedge[x-min]))
dW.plotPoint(y,x,color); break;

} if (x == xend) return;
if (d < 0)j = -ky; else j =ky;
if (j > 0){d = d+dy-dx; y = y+ky;} else d= d+dy;
x = x +kx;

}
}

Surface Shading

Overlapping

Areas

Profile

Figure 10.5 Profile block models

If contours are defined to be the set of lines which are created when a set of
parallel planes intersect a surface in three dimensions, then it is clear that grid data
lends itself to presentation in the form of contour drawings. If all the values along
each row or column are projected upwards, into the third dimension and linked
together the result is a “contour” or “profile” drawing of the surface. It is true: profile
lines are not in the conventional orientation used for cartographic contour lines, a
plan view of these profile lines cannot be used to show the shape of the surface.

Triangle and Polygon Fill 367

However, geometrically they are the same thing, and if these profile lines are viewed
from an oblique angle the result is a 'block model' presentation of the surface, which
as a graphic device works well in portraying the shape of the surface. This is partly
because the grid provides a regular frame of reference, and partly, because the lines
of the profiles create a shading effect which, conforming to Lambert's reflection law,
allows the viewer to perceive a surface representing the shape of the data distribution.

Simply drawing the oblique view of the profile lines however, produces the result
shown in Figure 10.6, where nearer profiles overlay and interfere with, further
profiles in a confusing way. If each polygon representing a profile is draw in from the
back moving forwards filling in the new polygon, then the hidden sections of further
away profiles will be removed as shown in Figure 10.7. Although these polygons are
not convex they can employ the same polygon fill algorithm developed earlier with
one simple modification. Switch the x and y values for each point, then instead of
filling with horizontal scan lines, filling with vertical lines, creates the required
objective, in the way shown in Figure 10.8.

Figure 10.6 Profile drawing of a rotated sync function

Although this approach works, it serves to high light one of the inefficiencies of

the painter’s algorithm. Where there are many overlapping polygonal areas the same
pixel-cells will be visited many times to white out or overwrite what has already been
entered into them.

public class BlockModel{

static TextWindow IO = new TextWindow(10,810,1000,100);
static DisplayWindow dW = new DisplayWindow(IO,10, 10, 1000,800,Color.white);

368 10 Area Fill, Masks, Circles and Thick Line Interpolation

static double minVal = Double.MAX_VALUE, maxVal= Double.MIN_VALUE;
static double[][] values = null;
static int minx = 0, maxx = 0, len = 0, rows = 0, cols = 0;
static CoordinateFrame frm = new CoordinateFrame();

public static void main(String[] args){

Point p1=new Point(2); Point p2=new Point(2);
IO.writeString("please enter the number of rows: ");
rows = IO.readInteger();IO.readLine();
IO.writeString("please enter the number of cols: ");
cols = IO.readInteger();IO.readLine();
displayFunction();
IO.writeString("please enter boundary value: ");
double val = IO.readLongReal(); IO.readLine();
for(int i=0;i<rows;i++){ values[0][i]= val; values[cols-1][i]= val; }
for(int i=0;i<cols;i++){ values[i][0]= val; values[i][rows-1]= val; }
IO.writeString("please enter corners of the display space using the mouse\n");
Point pa = dW.getCoord(); Point pb = dW.getCoord();
minx= pa.xi(); maxx = pb.xi(); len= maxx-minx;
p1.n[1]= 0 ; p1.n[2]= 0; p2.n[1]= rows+cols ;p2.n[2]= rows*2+cols;
frm.setScales(pa,pb,p1,p2);
displaySurface();

}

static void displayFunction(){

double PI = 3.1415962;
values = new double[cols][rows];
double c = ((double)cols)/2.0; double d = ((double)rows)/2;
for(int j=0; j<rows;j++){

for(int i=0;i<cols;i++){
double x = (double)i; double y = (double)j;
double r = Math.sqrt((c-x)*(c-x)+(d-y)*(d-y));
double X = 3.0*PI*r/c;
double sinx = Math.sin(X);
if(X==0)values[i][j] = 1.0; else values[i][j] = sinx/X;

}
}

}

static void displaySurface(){

double x = (double)cols; double y = (double)(cols+rows);
double h = (double)rows*2.0; double range = x+y;
Point p1 = new Point(2); Point p2 = new Point(2); Point p3 = new Point(2);
Point p4 = new Point(2); Point pa = new Point(2); Point pb = new Point(2);
Point pc = new Point(2); Point pd = new Point(2);
Point pstart = new Point(2); Point pend = new Point(2);
Shadings s=null;
for(int i = 0; i<rows-1; i++){

Triangle and Polygon Fill 369

len=maxx-minx;
s=new Shadings(IO,maxx-minx,minx,true);
double xx =x, yy=y;
for (int j=0; j<cols-1; j++){

p1.x("=",xx); p1.y("=",yy + h*values[cols-1-j][rows-1-i]);
p2.x("=",xx+1.0); p2.y("=",yy - 1.0 + h*values[cols-1-j][rows-2-i]);
p3.x("=",xx); p3.y("=",yy - 2.0 + h*values[cols-2-j][rows-2-i]);
p4.x("=",xx-1.0); p4.y("=",yy -1.0 + h*values[cols-2-j][rows-1-i]);
if(j==0)pstart = frm.scaleWtoS(p2);
if(j==(cols-2))pend = frm.scaleWtoS(p3);
pa = frm.scaleWtoS(p1); pb = frm.scaleWtoS(p2);
pc = frm.scaleWtoS(p3); pd = frm.scaleWtoS(p4);
s.shadingEdge(pb.xi(),pb.yi(),pc.xi(),pc.yi());
dW.plotLine(pa,pd,Color.black);
xx=xx-1; yy=yy-1;

}
s.shadingEdge(pstart.xi(),pstart.yi(),pend.xi(),pend.yi());
s.scanfill(dW,Color.lightGray);
dW.plotLine(pstart,pend,Color.black);
x=x+1; y=y-1;

}
}

}

Figure 10.7 Overlaying profiles using the painter’s algorithm

370 10 Area Fill, Masks, Circles and Thick Line Interpolation

Figure 10.8 Block model with hidden lines overwritten

An early approach to this problem was to use a hidden line removal algorithm

rather than the hidden area approach of the painter’s algorithm. Frank Rens
implemented this approach in the SYMVU program to create block model drawings
of topographic surfaces, using the Calcomp plotter, in the way illustrated in Figure
10.10 by using line masking within the line interpolation procedure.

Processing from
the front

Shaded

Obscuring
Polygon

New Profile
Line

Figure 10.9 Profile block model drawing

Using the array of data-values output from both SYMAP and GRID cartography
programs, SYMVU generated profile block model drawings of both abstract
statistical surfaces and terrain models. Each profile was considered as a three-

Triangle and Polygon Fill 371

dimensional polygon, transformed as required by the viewing position. Profiles
nearest to the observer were drawn first, but were only drawn in where previously
drawn profile sections did not mask them in the way shown in Figure 10.9. To carry
out this process it was necessary to implement a masking operation to remove new
section-lines, which passed behind already drawn profiles. This mask was defined as
the union of all previously drawn profile polygons. Each time that a profile line was
completed this mask had to be updated, to include any new outstanding areas.

8 11 7 8 10 11 12 12 13 13 14 16 15 14 13 14 13 12 6 7 8 9 8
10 11 11 12 13 13 14 14 13 12 11 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0

New prof ile line Current obscuring mask

Figure 10.10 Updating a profile mask: higher values replace lower values

In SYMVU Frank Rens implemented this operation as part of the line

interpolation procedure, which generated Calcomp plotting instructions. The
mechanism is shown diagrammatically in Figure 10.10. The maximum y values for
all profile line points so far drawn are stored in an array, one for each x position of
the plotting grid. Only new line points which have y co-ordinates greater than these
stored values are plotted, and when they are they replace the existing values. A 20-
inch plotter with 200 steps per inch only requires a Mask array of 4000 y values to
support the program code:

 if (y > Mask[x]) { Mask[x] := y; Plot(x,y) };

10 11 11 12 13 13 14 14 13 12 11 10
 7 8 10 11 12 12 13 13 14 16 15 14 13 14 13 12 11 8 6 7 8 9 8

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

372 10 Area Fill, Masks, Circles and Thick Line Interpolation

Including this statement in the plotting loop of Bresenham's line drawing
algorithm gave a very fast hidden line removal procedure, implementing, perhaps,
one of the first examples applying the depth buffer principle.

public class BlockModel{

static TextWindow IO = new TextWindow(10,810,1000,100);
static DisplayWindow dW = new DisplayWindow(IO,10, 10, 1000,800,Color.white);
static double minVal = Double.MAX_VALUE, maxVal = Double.MIN_VALUE;;
static double[][] values = null; static boolean vertical = false;
static int minx = 0, maxx = 0, lenx = 0, miny = 0, maxy = 0, leny = 0;
static int rows = 0, cols = 0; static String str ="";
static CoordinateFrame frm = new CoordinateFrame();
public static void main(String[] args){

Point p1=new Point(2); Point p2=new Point(2);
IO.writeString("please enter the number of rows: ");
rows = IO.readInteger();IO.readLine();
IO.writeString("please enter the number of cols: ");
cols = IO.readInteger();IO.readLine();
displayFunction();
IO.writeString("set boundary elements y/n: "); str = IO.readString();IO.readLine();
if(str.equals("y")){

IO.writeString("please enter boundary value: ");
double val = IO.readLongReal(); IO.readLine();
for(int i=0;i<rows;i++){ values[0][i]= val; values[cols-1][i]= val; }
for(int i=0;i<cols;i++){ values[i][0]= val; values[i][rows-1]= val; }

}
IO.writeString("please enter diagonal corners of the display area using the mouse\n");
Point pa = dW.getCoord(); Point pb = dW.getCoord();
if (pa.xi()<pb.xi()) { minx= pa.xi(); maxx = pb.xi(); }else{ maxx= pa.xi(); minx = pb.xi(); }
if (pa.yi()<pb.yi()){ miny= pa.yi(); maxy = pb.yi(); }else{ maxy= pa.yi(); miny = pb.yi(); }
lenx= maxx-minx+1; leny= maxy-miny+1;
p1.n[1]= 0 ; p1.n[2]= 0; p2.n[1]= rows+cols ; p2.n[2]= rows*3+cols;
frm.setScales(pa,pb,p1,p2);
displaySurface(true);

}
static void displayFunction(){

double PI = 3.1415962;
values = new double[cols][rows];
double c = ((double)cols)/2.0; double d = ((double)rows)/2;
for(int j=0; j<rows;j++){

for(int i=0;i<cols;i++){
double x = (double)I, y = (double)j, r = Math.sqrt((c-x)*(c-x)+(d-y)*(d-y));
double X = 3.0*PI*r/c, sinx = Math.sin(X);
if(X==0)values[i][j] = 1.0; else values[i][j] = sinx/X;

}
}

}

Triangle and Polygon Fill 373

static void displaySurface(boolean vertical){
double x = (double)rows, y = (double)0, h = (double)rows*1.0;
Point p1 = new Point(2); Point p2 = new Point(2); Point p3 = new Point(2);
Point p4 = new Point(2); Point pa = new Point(2); Point pb = new Point(2);
Point pc = new Point(2); Point pd = new Point(2);
Shadings s=null;
if(vertical){ s=new Shadings(IO,maxx-minx+1,minx,true); }
else{ s=new Shadings(IO,maxy-miny+1,miny,false); }
s.shadingEdge(minx,800,maxx,800);
Point ppp[] = new Point[rows];
for(int i = 0; i<rows-1; i++){

double xx =x, yy=y;
for (int j=0; j<cols-1; j++){

p1.x("=",xx); p1.y("=",yy + h*values[j][i]); pa = frm.scaleWtoS(p1);
p2.x("=",xx-1.0); p2.y("=",yy + 1.0 + h*values[j][i+1]); pb = frm.scaleWtoS(p2);
p3.x("=",xx); p3.y("=",yy +2+ h*values[j+1][i+1]); pc = frm.scaleWtoS(p3);
p4.x("=",xx+1.0); p4.y("=",yy +1.0 + h*values[j+1][i]); pd = frm.scaleWtoS(p4);
if(i==50){ s.lineClip(dW,pa.xi(),pa.yi(),pd.xi(),pd.yi(),Color.red);
}else if(i<50){ s.lineClip(dW,pa.xi(),pa.yi(),pd.xi(),pd.yi(),Color.black);
}else{ s.lineClip(dW,pa.xi(),pa.yi(),pd.xi(),pd.yi(),Color.green);
ppp[j]=pa; xx=xx+1; yy=yy+1;

} ppp[cols-1]=pd;
for (int j=0; j<cols-1; j++){

s.shadingEdge(ppp[j].xi(),ppp[j].yi(),ppp[j+1].xi(),ppp[j+1].yi());
} x=x-1; y=y+1;

}
}

Figure 10.11 Central profile line drawn in red

b

d a

c

374 10 Area Fill, Masks, Circles and Thick Line Interpolation

The generation and use of the obscuring polygon as the union of previously
processed profile lines is independent of the selection and drawing of the actual lines
from each grid data cell that are used in the display. In Figure 10.12 the profile
polygons used for hidden line removal are only used to render parts of the surface. In
selected areas coloured, diagonal, red, green and blue lines are drawn in across the
grid-data cells.

Figure 10.12 Changing cell based line segments in a profile drawing

 s.shadingEdge(minx,800,maxx,800); Point ppp[] = new Point[rows];
 for(int i = 0; i<rows-1; i++){
 double xx =x, yy=y;
 for (int j=0; j<cols-1; j++){
 p1.x("=",xx); p1.y("=",yy + h*values[j][i]); pa = frm.scaleWtoS(p1);
 p2.x("=",xx-1.0); p2.y("=",yy + 1.0 + h*values[j][i+1]); pb = frm.scaleWtoS(p2);
 p3.x("=",xx); p3.y("=",yy +2+ h*values[j+1][i+1]); pc = frm.scaleWtoS(p3);
 p4.x("=",xx+1.0); p4.y("=",yy +1.0 + h*values[j+1][i]); pd = frm.scaleWtoS(p4);
 if ((i>=50)&&(i<80)&&(j>20)&&(j<50))
 s.lineClip(dW,pb.xi(),pb.yi(),pd.xi(),pd.yi(),Color.green);
 else if ((i>20)&&(i<50)&&(j>20)&&(j<50))
 s.lineClip(dW,pb.xi(),pb.yi(),pd.xi(),pd.yi(),Color.red);
 else if ((i>20)&&(i<50)&&(j>=50)&&(j<80))
 s.lineClip(dW,pb.xi(),pb.yi(),pd.xi(),pd.yi(),Color.blue);
 else s.lineClip(dW,pa.xi(),pa.yi(),pd.xi(),pd.yi(),Color.black);
 } ppp[j]=pa; xx=xx+1; yy=yy+1;
 }
 ppp[cols-1]=pd;
 for (int j=0; j<cols-1; j++){
 s.shadingEdge(ppp[j].xi(),ppp[j].yi(),ppp[j+1].xi(),ppp[j+1].yi());
 } x=x-1; y=y+1;
 }

b

d a

c

Triangle and Polygon Fill 375

The line clipping operation can be implemented in the Shadings class in the
following way. This allows simple profile drawings to be constructed but also allows
other surface lines to be drawn on the surface of the block model. Employing profile
polygons for hidden-line or hidden-area removal however, has limitations using
either the painter’s algorithm, or an obscuring polygon. Both these methods can be
improved by processing the surface, in grid-cell steps rather than in profile strips.

private void octantClip(DisplayWindow dW,int x,int y,int xend,int yend,int kx,int ky,

int dx, int dy,boolean steep,Color color){
int xx=0,yy=0, d, j; Point p = new Point(2);
d = 2*dy-dx; dx = 2*dx; dy = 2*dy;
if (ky < 0){ d = -d; dx = -dx; dy = -dy;}
while(true){

if(steep){xx=y;yy=x;}else{xx=x;yy=y;}
if(vertical){

if((leftedge[xx-min]>yy)||(rightedge[xx-min]<yy))dW.plotPoint(xx,yy,color);
}else{

if((leftedge[yy-min]>xx)||(rightedge[yy-min]<xx))dW.plotPoint(xx,yy,color);
} if (x == xend) return;
if (d < 0)j = -ky; else j =ky;
if (j > 0){d = d+dy-dx; y = y+ky;}else d= d+dy;
x = x +kx;

}
}
public void lineClip(DisplayWindow dW, int x1,int y1,int x2, int y2,Color color){

int kx, ky, dx, dy, x, y, j=0,k=0;
dx = x2-x1; dy = y2-y1; kx = 1; ky = 1;
if (dx < 0){ kx = -1; dx = -dx; }
if (dy < 0){ ky = -1; dy = -dy; }
if (dx < dy){this.octantClip(dW,y1,x1,y2,x2,ky,kx,dy,dx,true,color);}
else {this.octantClip(dW,x1,y1,x2,y2,kx,ky,dx,dy,false,color);}

}

Figure 10.13 Incremental cell by cell update of the obscuring polygon

376 10 Area Fill, Masks, Circles and Thick Line Interpolation

This cell-based approach has already been used in the painter’s algorithm, in
chapter 4 in Figure 4.30. However it is possible to obtain the same improvement for
the obscuring polygon technique, by adding the boundary of each grid cell tile to the
obscuring polygon as it is processed as shown in Figure 10.13.

s.shadingEdge(minx,800,maxx,800);
for(int i = 0; i<rows-1; i++){

double xx =x, yy=y;
for (int j=0; j<cols-1; j++){

p1.x("=",xx); p1.y("=",yy + h*values[j][i]); pa = frm.scaleWtoS(p1);
p2.x("=",xx-1.0); p2.y("=",yy + 1.0 + h*values[j][i+1]); pb = frm.scaleWtoS(p2);
p3.x("=",xx); p3.y("=",yy +2+ h*values[j+1][i+1]); pc = frm.scaleWtoS(p3);
p4.x("=",xx+1.0); p4.y("=",yy +1.0 + h*values[j+1][i]); pd = frm.scaleWtoS(p4);

if ((j>=50)&&(j<80)&&(i>20)&&(i<50))

s.lineClip(dW,pb.xi(),pb.yi(),pc.xi(),pc.yi(),Color.green);
else if ((j>20)&&(j<50)&&(i>20)&&(i<50))

s.lineClip(dW,pb.xi(),pb.yi(),pd.xi(),pd.yi(),Color.red);
else if ((j>20)&&(j<50)&&(i>=50)&&(i<80))

s.lineClip(dW,pc.xi(),pc.yi(),pd.xi(),pd.yi(),Color.blue);
else s.lineClip(dW,pc.xi(),pc.yi(),pd.xi(),pd.yi(),Color.lightGray);

if(j==0){s.lineClip(dW,pb.xi(),pb.yi(),pc.xi(),pc.yi(),Color.black);

s.lineClip(dW,pc.xi(),pc.yi(),pd.xi(),pd.yi(),Color.black);}
if(j==97) s.lineClip(dW,pc.xi(),pc.yi(),pd.xi(),pd.yi(),Color.black);
if((j==49))s.lineClip(dW,pc.xi(),pc.yi(),pd.xi(),pd.yi(),Color.black);
if(i==0) s.lineClip(dW,pc.xi(),pc.yi(),pb.xi(),pb.yi(),Color.black);
if(i==49) s.lineClip(dW,pb.xi(),pb.yi(),pc.xi(),pc.yi(),Color.black);
if(i==97) s.lineClip(dW,pc.xi(),pc.yi(),pb.xi(),pb.yi(),Color.black);

if(j==0) s.shadingEdge(pa.xi(),pa.yi(),pb.xi(),pb.yi());
s.shadingEdge(pb.xi(),pb.yi(),pc.xi(),pc.yi());
s.shadingEdge(pc.xi(),pc.yi(),pd.xi(),pd.yi());
if(i==0) s.shadingEdge(pd.xi(),pd.yi(),pa.xi(),pa.yi());
xx=xx+1; yy=yy+1;

}
x=x-1; y=y+1;

}

The code segment above produced the output shown in Figure 10.14. The use of
cell-based updates to the obscuring polygon allows a better treatment of the right
outer edge of the block model, and makes it easier to avoid line leakage between
profiles at the peripheries of the drawing. One remaining problem with this scheme,
which will be explored more fully in a later chapter, is that the left and lower edges
of a new grid cell tile will be masked out by this immediate update of the obscuring
polygon. This can still cause drawing errors if care in ordering instructions is not
taken.

b

d a

c

Triangle and Polygon Fill 377

static void displayFunction(){
double PI = 3.1415962, valx=0,valy=0; values = new double[cols][rows];
double c = ((double)cols)/2.0; double d = ((double)rows)/2;
for(int j=0; j<rows;j++){

for(int i=0;i<cols;i++){
double x = 4*PI*(double)(i-c)/cols; double y = 4*PI*(double)(j-c)/cols;
if (x==0) valx = 1.0; else valx = Math.sin(x)/x;
if (y==0) valy = 1.0; else valy = Math.sin(y)/y;
values[i][j]= valx*valy;

}
}

}

Figure 10.14 Grid cell boundary update for the obscuring polygon

The algorithms outline in this chapter originated in work carried out on two

cartography programs. The first was OBLIX an experimental program set up to
extend the capabilities of SYMVU in the laboratory for Computer Graphics and
Spatial Analysis in Harvard University in 1968-69, the second was GIMMS started in
the same place in 1970 as a Geographic Information Management and Mapping
System. The use of the obscuring polygon was initially a hidden-line removal
strategy. The hidden area approach of the painter’s algorithm evolved as the simplest
way to create three dimensional images, using the framestore developed during the
seventies to support raster display systems, such as the “Bugstore” in Cambridge
University. The area fill algorithms were a simplification of line shading developed
for GIMMS, and the surface image or texture mapping onto block model surfaces
was developed for OBLIX. OBLIX was also used to explore scan-line shading again
based on line fill algorithms. What is interesting now is that as the resolution of
displays has increased much line drawing has become an area-fill operation.

378 10 Area Fill, Masks, Circles and Thick Line Interpolation

Circles and Thick Lines

The scan line fill of polygons based on interpolating their boundary points onto a grid
can be extended to fill convex areas initially represented in other ways. The simplest
of these is the circle represented by an algebraic equation. If the boundary points of
the circle can be interpolated, then filling in the scan lines from the left edge to the
right edge gives an efficient way of shading the circular area of a disk.

Figure 10.15 Circle interpolation

In chapter 3 a tile pattern for a circular area was obtained by testing each grid
point for being inside or outside a circle using the sign of k in the equation:

222 ryxk −+=

to determine whether the point was inside the circle or not. By generating the
boundary points, then using scan lines: an order O(n) complex operation dependent
on the circle equation is employed followed by a simpler and smaller O(n2) fill
operation for the circle, compared with a more complex O(n2) operation applied to
the whole area.

Circle interpolation can be based on the same principles employed for straight-line
interpolation by dividing the circle into eight octants and then filling in the point
sequence for each octant. What is useful in the case of the circle is its symmetry, only
one octant stepping sequence needs to be determined and the same sequence by the
appropriate reflection and translation operations can be applied to the other seven
octants. Applying this approach generated the display shown in Figure 10.15.

379

If the equation of a circle centred on the origin, is written in the following way:
2220 ryx −+=

It is possible to define the distance of a point (x, y) from this curve in a similar
way to that employed in the case of the straight line by the value of k given by the
following equation:

222 ryxk −+= 1
If a step in the x direction of Δx is taken then this distance k becomes:

()
222

222

..2 rxxxxkk
ryxxkk
−Δ+Δ+=Δ+

−+Δ+=Δ+ 2

Subtracting 1 from 2 gives:
2..2 xxxk Δ+Δ=Δ 3

If the increment is a unit step then, for both steps in x, and steps in y, the values of
Δk become:

1.2
1.2

+=Δ
+=Δ

yk
xk

y
x 4

These values will themselves change with position:

()
2.2

1.2
1.2

2

2

=Δ=Δ
+Δ+=Δ+Δ

+=Δ

xk
xxkk

xk

x

xx

x
 5

Similarly: 2.22 =Δ=Δ yky 6

If the circle is divided up into octants in the way shown in Figure 10.16 then
starting in octant 1, at the top and moving to the right, the slope of the curved line
will vary from a horizontal tangent line to one at 45o to the horizontal. This can be
approximated by a point sequence on a grid using the simple eight-neighbour, line-
incrementing scheme used for straight-lines, selecting either a move in a horizontal
direction or in a downward diagonal direction for the next point depending on the
position on the circle. The curve following algorithm simply has to select the point
that lies closest to the true circle for each step taken.

1

 2

 3

 4

5

6

7

8

Figure 10.16 Labelling octants for circle interpolation

Circles and Thick Lines

380 10 Area Fill, Masks, Circles and Thick Line Interpolation

Starting with octant 1, the incrementing sequence can be defined in the following
way.

Figure 10.17 Select the nearest point using minimum k

Starting from position ‘a’ in Figure 10.17 the value of k is incremented using the
relationship to define the new distance from position ‘b’:

xab kkkktop Δ+==

and by the relationship to define the distance of the curve from position ‘c’:

yxac kkkkkbot Δ+Δ+==

In this case, moving from point ‘a’, ‘ktop’ is less than ‘kbot’ so point b is selected

and cell b painted, in the way shown. The process is repeated for the next point,
however, before incrementing the value of k, the two increments Δkx and Δky must
themselves be incremented to be applicable to the new position. The x increment is
automatically assumed for each step in this octant, the choice is therefore between the
two points ‘d’ and ‘e’. In the example shown point ‘e’ is the nearer of the two and is
shaded in accordingly.

 int x=0, y = radius,k=0, kx = 1, ky = -2*radius+2,ktop,kbot;
 while(x<=y){
 // Paint pixel (x, y) red.
 ktop = k+kx; kbot = k+ky;
 if(ktop <= -kbot){ k = ktop; ky = ky + 2; kx = kx + 2; x = x+1; }
 else{ k = kbot; ky = ky + 4; kx = kx + 2; x = x+1; y = y-1; }
 }

This gives a very simple incrementing algorithm for one octant. The pattern of
increments defined by this repeating loop can then be transferred to the other octants
by a process of reflection and translation, in a similar way to that employed
interpolating straight lines in different octant directions.

a b

c e

d

381

 f.writeString("please enter radius ");
 int radius = f.readInteger(); int range = 3* radius;
 int Cls = range, Rws = range;
 Tiles T = new Tiles(Cls,Rws,Color.white);
 Grid d = new Grid(f,T.tileColour,T.cols,T.rows);
 d.paintGridArray(); d.drawDualGrid(Color.black,Color.gray);
 int x=0, y = radius,k=0, kx = 1, ky = -2*radius+2,ktop,kbot;
 while(x<=y){
 d.paintInnerCell(x+range/2, y+range/2,0,Color.red);
 d.paintInnerCell(-x+range/2, y+range/2,0,Color.red);
 d.paintInnerCell(x+range/2,-y+range/2,0,Color.red);
 d.paintInnerCell(-x+range/2,-y+range/2,0,Color.red);
 d.paintInnerCell(y+range/2, x+range/2,0,Color.red);
 d.paintInnerCell(-y+range/2, x+range/2,0,Color.red);
 d.paintInnerCell(y+range/2,-x+range/2,0,Color.red);
 d.paintInnerCell(-y+range/2,-x+range/2,0,Color.red);
 ktop = k+kx; kbot = k+ky;
 if(ktop <= -kbot){ k = ktop; ky = ky + 2; x = x+1; }
 else{ k = kbot; ky = ky + 4; x = x+1; y = y-1; }
 kx = kx + 2;
 }

The circle and sectors of the circle are necessary elements in many drawings.
However, the full circle also makes an ideal link between line segments for drawing
thick “poly-line” arcs in the way illustrated diagrammatically in Figure 10.18. A
simple way of implementing thick line drawing is to pass the boundary points for the
two endpoint-circles and the rectangle representing the main body of each line
segment to the edge generating method used for polygon shading, then filling in the
resulting border with scan line segments. The selection of the minimum x values for
the left- hand edge and the maximum x values for the right hand edge removes the
redundant lines. An alternative is to generate the endpoint circles but only create the
top and bottom lines tangent to the two circles.

Figure 10.18 Thick poly-line arcs

Circles and Thick Lines

382 10 Area Fill, Masks, Circles and Thick Line Interpolation

class ThickLine{

public Point pa,pb,pc,p1,p2; public Shadings s = null;
public int ymin,len,r,incx,incy,dx,dy,x,y,kx,ky,k,ktop,kbot;
public int dk1,dk2,dk3,dk4,dk5,dk6,dk7,dk8, mink=10000000;
private DisplayWindow d=null; private TextWindow IO=null;
ThickLine(Point pp1,Point pp2,int w,DisplayWindow d,TextWindow f){

this.d = d; this.IO = f; r = w/2;
pa = new Point(2); pb = new Point(2); pc = new Point(2);
p1 = new Point(2); p2 = new Point(2); p1.c("<-", pp1); p2.c("<-", pp2);
if (p2.yi() > p1.yi()){ len = p2.yi()-p1.yi()+1+w; ymin = p1.yi()-r;}
else { len = p1.yi()-p2.yi()+1+w; ymin = p2.yi()-r;}
s = new Shadings(IO,len,ymin, false);
incx = (p2.xi()-p1.xi()); incy = (p2.yi()-p1.yi());
dk6= dk7 = -(dk2= dk3 = (p2.xi()-p1.xi())*r);
dk4 = dk5 = -(dk1=dk8=(p2.yi()-p1.yi())*r);
int x1=0; int y1 = r; kx=1; ky = -2*r+2; k=0;
while(x<=y){

x=x1; y=y1; ktop = k+kx; kbot = k+ky;
if(ktop <= -kbot) { k = ktop; ky = ky + 2; x1 = x+1; dy = 0;}
else { k = kbot; ky = ky+4; x1 = x+1; y1 = y-1; dy = -1;}
kx = kx+2; dx = 1;
dk1 = edgePnt(dk1, x, y, dx, dy); dk2 = edgePnt(dk2, y, x, dy, dx);
dk3 = edgePnt(dk3,-y, x, dy,-dx); dk4 = edgePnt(dk4, x, -y, dx,-dy);
dk5 = edgePnt(dk5,-x, -y, -dx,-dy);dk6 = edgePnt(dk6,-y, -x, -dy,-dx);
dk7 = edgePnt(dk7, y, -x, -dy, dx); dk8 = edgePnt(dk8,-x, y, -dx, dy);

}
pa.x("=",p1.xi()+pc.xi());pa.y("=",p1.yi()+pc.yi());
pb.x("=",p2.xi()+pc.xi());pb.y("=",p2.yi()+pc.yi());
d.line(pa.xi(), pa.yi(), pb.xi(), pb.yi(), null, s);
pa.x("=",p1.xi()-pc.xi());pa.y("=",p1.yi()-pc.yi());
pb.x("=",p2.xi()-pc.xi());pb.y("=",p2.yi()-pc.yi());
d.line(pa.xi(), pa.yi(), pb.xi() ,pb.yi(), null, s);

}
public int edgePnt(int dk,int x,int y,int dx,int dy){

if(dk<0){if(-dk<mink){mink = -dk; pc.x("=",x); pc.y("=",y);}
}else if(dk<mink) { mink = dk; pc.x("=",x); pc.y("=",y);}
pa.x("=", p1.xi()+x); pa.y ("=", p1.yi()+y);
pb.x("=", p2.xi()+x); pb.y("=", p2.yi()+y);
s.defineEdgePoint(pa);s.defineEdgePoint(pb);
return dk+incx*dx+incy*dy;

}
public void draw(Color cc){

if (r<1){ d.plotLine(p1,p2,cc);return;}
for(int i= 0; i<len; i++) { if(s.leftedge[i]<s.rightedge[i])

d.line(s.leftedge[i],i+ymin,s.rightedge[i],i+ymin,cc,null);}
}

}

383

This is done by finding the point on the boundary of an endpoint circle that lies
closest to the line, through the centre of the circle, which is normal to the axis of the
“thick” line. The end points of the tangent lines linking these circles are then
generated as symmetrical offsets from this point, before linking them by linear
interpolations. The code to implement this approach is given above; and the output it
produces for a thick poly-line, drawn line segment by line segment, is shown in
Figure 10.19.

Figure 10.19 Thick shaded poly-line

Shading more Complex Polygons

The algorithms decribed above depend either on having convex shapes or polygons
that can be treated as only having one left and one right side. In the general case it is
necessary to shade polygons with more complex shapes and even to handle polygons
with boundaries that self intersect.

One possibility is to take the more complex polygon and subdivide it into a set of
simpler pieces that can be shaded separately. Again there are several ways in which
this can be done. One is to triangulate the interior region of the polygon, another is to
subdivide the area into regions that have single left and right side sequences of edge
points that can be processed by the existing algorithms.

There are two test polygons that pose contrasting problems for these subdivision
shading algorithms. Shown in Figure 10.20 one is a spiral polygon and the other is a
zigzag shape where concave sections of the boundary interleave. There are also
polygons that contain holes which also create their own problems. Triangulation is an
important process that is returned to in a later chapter. At first sight it does not appear
to be a difficult task, certainly as a manual drawing exercise it is relatively easy. If
starting points such as those labelled A in Figure 10.20 that are stationary points are
identified -- where the boundary changes from a downwards direction to an upwards

Shading more Complex Polygons

384 10 Area Fill, Masks, Circles and Thick Line Interpolation

direstion relative to the coordinate axes -- then systematically following the boundary
to the left and to the right from these starting points, will allow vertexes to be cross
linked to give the required triangulation.

Figure 10.20 A simple visual triangulation strategy

Although it is easy, visually, to identify these starting points, it is difficult to
distinguish the type A stationary points from the type B stationary points illustrated
in Figure 10.20, using only local geometrical tests. The difference is a property of the
whole figure. Starting from one of these B classified points will lead to triangulation
cross links being made that cut across other parts of the polygon’s boundary, shown
by the red arrows in Figure 10.20.

Figure 10.21 Triangulating a more complex polygon

A

C

E D

B

K
J

H

G

S

F

O

N

M

L R

P

Q

T

U

11

17

1

3

5

7

9

13

15

19

12

2
4

6

10

14

16

18

8

20

A B
A

B

a b

385

One possibility working with local geometric properties is to order the boundary
vertices of a polygon in (y,x) order using a threaded list so both the boundary order
and the coordinate order are available for use at the same time. If horizontal lines are
placed through all the vertices then the points where they intersected other boundary
line segments can be calculated to create a sequence of strips in the way shown in
Figure 10.21a. Each of these strips is either a trapezium or a triangle. The trapeziums
can be triangulated by drawing in a diagonal. The threaded list can be used to
systematically walk through the boundary points but also to select the edges that the
new horizontal lines might cut in the way shown in Figure 10.22:

Figure 10.22 Generating trapezium strips across a polygon

Following the threaded-list pointers: take downward directed edges in turn and
process in the following way:

Take edge AB 1-2 there are no vertices between the ends of this line segment. 1-2.
Take edge AH 1-3 create point (a) for the line through point B2 between 1-3
Increment A->B
Take edge BC 2-5 create points (b) and (c) for the lines through H3 and E4 between 2-5
Increment B->H
Take edge HG 3-8 create points (d) (e) (f) (g) for lines through E4, C5, D6 and F7 between 3-8
Increment H->E
Take edge EF 4-7 create points (h) and (j) for lines through C5 and D6 between 4-7
Take edge ED 4-6 create point (k) for line through C5. between 4-6
Increment E->C
Take edge CD 5-6 there are no vertices between the ends of this line segment. 5-6
Increment C->D no downwards oriented line segments.
Increment D->F
Take edge FG 7-8 there are no vertices between the ends of this line segment. 7-8
Increment F->G no downwards oriented line segments.

A 1

H 3

E 4

B 2

G 8

D 6

C 5

F 7

a

b
c

d

e

f
g

h
j

k

Shading more Complex Polygons

386 10 Area Fill, Masks, Circles and Thick Line Interpolation

This process generates all the new vertex points needed to define the trapezium
strips shown in Figure 10.21a which can then be triangulated by inserting diagonals.
However there are many more triangles than are necessary. If the new point
generated by each vertex, as it is encountered, is compared with any previous point
generated for the same vertex, and the nearer point selected in the appropriate
direction (depending on the orientation of the current line segment), then only those
points needed to create the trapezium strips shown in Figure 10.21b will be retained:
thus giving a simpler triangulation.

This processing strategy using a threaded list to access vertices in coordinate order
will be discussed in a later chapter to calculate the intersection points in overlapping
polyline arcs. The structure of this triangulation of a polygon depends on the
coordinate axes chosen, again, in a late chapter triangulation techniques that give the
same result for a set of points whatever coordinate framework is used to represent
them, will be examined.

One reason for triangulating polygons is that many display processor boards
include triangle shading as a hardware or firmware primitive. Where the display
system processes triangles then further work is unnecessary however if the shading
has to be carried out in the program then if larger areas than triangles can be used it
should simplify the subdivision task. A first step in this direction would be to
subdivide complex polygons into regions that have single left and right-side
edgepoint sequences. A similar approach to the definition of trapezium strips can be
employed to this approach in the following way:

Figure 10.23 Subdivision based on horizontal lines through stationary points

Again the vertices will have to be sorted into (y,x) coordinate order, but only

subdivisions through stationary points are necessary to give the required regions.
When these subregions are shaded-in they will still have to have their boundary
points sorted from boundary order to coordinate order to define the shading scan
lines, albeit using a fast bucket sort into the left and right edge arrays. A
simpification to this algorithm can therefore be obtained by unifying the two sorting
stages into one. Using a “natural merge sort” will also take advantage of highly
ordered boundary sequences to give a fast and efficient process.

387

There are several ways the polygon fill algorithm can be extended in this way.
One is illustrated in Figure 10.23. In this case the shading scan-line end points are
calculated directly rather than selecting them from the boundary line’s pixel grid
points. The boundary line is still interpolated but only where it cuts the scan lines.
This is done by calculating boundary line x values for unit steps in y irrespective of
the boundary line segment’s slope. Each line segment is interpolated into a new
array, in polygon boundary order, but this is then merge sorted with a list of the
previous boundary points arranged in an array in y-x order. This final array is then
used to fill the complete polygon by taking pairs of points in turn as the ends of
shading scan lines. The principle is the same as before the points are created in
boundary order but are then sorted, not by the “bucket sort” provided by the left and
right edge arrays but by a “natural merge sort” to give points in the raster scan order
needed for subsequent scanline fill.

Figure 10.24 A general polygon network fill algorithm with overlaid boundaries

Shading more Complex Polygons

388 10 Area Fill, Masks, Circles and Thick Line Interpolation

Figure 10.25 Shading algorithm with (a) & without (b,c) redrawn edges

public class PolygonShading{ // general polygon fill
static TextWindow IO = new TextWindow(0,800,800,100);
static DisplayWindow dW=new DisplayWindow(IO,1,1,800,800,Color.white);

public static void main(String[] args){

IO.writeString("please enter the number of vertices ");
int num= IO.readInteger(); IO.readLine();
Polygon poly = new Polygon();
Point[] p = new Point[num+1];
p[0]= dW.getCoord();
for(int i=1;i<num;i++){
p[i]= dW.getCoord();
dW.plotLine(p[i-1],p[i],Color.black);
}
p[num]= p[0];
dW.plotLine(p[num-1],p[num],Color.black);
poly.p=p;
shade(poly,Color.green);
for(int i=0;i<num;i++){ dW.plotLine(p[i],p[i+1],Color.green);}

}
static void shade(Polygon p, Color cc){

Point[] scanArray = null,s=null;
s = scanArray = scan(p);
if(s!=null){

for(int i=0; i<s.length; i=i+2){
dW.plotLine(s[i],s[i+1],cc);

}
}else IO.writeString("no scan array");

}

a

b

c

389

static Point [] scan(Polygon p){
int i = 0, j=0, starty=0, endy=0, starti=0, endi=0, len=0;
if(p == null)return null;
Point[] changeArray = null , newArray = null, oldArray = null;
while(i+1 < p.p.length){

if(p.p[i].yi()!=p.p[i+1].yi()){
if(p.p[i].yi()<p.p[i+1].yi()){

starty = p.p[i].yi(); starti = j = i;
while((j+1<p.p.length)&&(p.p[j].yi()<p.p[j+1].yi())){j=j+1;}
endy = p.p[j].yi();endi = j;

}else if(p.p[i].yi()>p.p[i+1].yi()){
endy = p.p[i].yi();starti =j=i;
while((j+1<p.p.length)&&(p.p[j].yi()>p.p[j+1].yi())){j=j+1;}
starty = p.p[j].yi();endi = j;

}
changeArray = new Point[endy-starty];
for(int k = starti; k<endi; k++){

lineSegment(p.p[k], p.p[k+1], changeArray, starty);
} oldArray = newArray;
newArray = merge(oldArray,changeArray);
i= endi;

}
else i++;

} return newArray;
}
static Point[] merge(Point[] oA, Point[] cA){

if (oA==null)return cA;
if (cA==null)return oA;
Point[] nA = new Point[oA.length+cA.length];
int i=0,j=0,k = 0;
while(((i<cA.length)||(j<oA.length))){

int t = 0;
if((i<cA.length)&&(j<oA.length))t=1;
if((i>=cA.length)&&(j<oA.length)||((t==1)&&(compare(oA[j],"<=",cA[i])))){

nA[k] = new Point(2); nA[k].x("=",oA[j].xd());
nA[k].y("=",oA[j].yd()); nA[k].tag = oA[j].tag;
k=k+1; j=j+1;

}
t=0;
if((i<cA.length)&&(j<oA.length))t=1;
if((j>=oA.length)&&(i<cA.length) ||((t==1)&&(compare(cA[i],"<=",oA[j])))){

nA[k] = new Point(2); nA[k].x("=", cA[i].xd());
nA[k].y("=", cA[i].yd()); nA[k].tag = cA[i].tag;
k=k+1;i=i+1;

}
} return nA;

}

Shading more Complex Polygons

390 10 Area Fill, Masks, Circles and Thick Line Interpolation

static void lineSegment(Point p1,Point p2, Point[] array,int start){
double xx = 0.0; int x,y,x1,y1,x2,y2;
if(p1.yi()==p2.yi())return;
double incr = ((double)p1.xi()-p2.xi())/(p1.yi()-p2.yi());
if(p1.yi() < p2.yi()){

y1=p1.yi(); y2=p2.yi(); xx = (double)(x = p1.xi());
}else{

y1=p2.yi(); y2=p1.yi(); xx = (double)(x = p2.xi());
}
for(y = y1-start; y < y2-start; y++){

array[y] = new Point(2); array[y].x("=",x); array[y].y("=",y+start);
x=(int)(xx = xx + incr);

}
}
public static boolean compare(Point a,String str, Point b){

if(str == "<="){
if(a.yi()<b.yi())return true;
else if(a.yi()==b.yi()){

if(a.xi()>b.xi())return false;
else if(a.xi()==b.xi()){ if(a.tag>=b.tag)return true;else return false;}
else return true;

}return false;
}
if(str == ">="){

if(a.yi()>b.yi())return true;
else if(a.yi()==b.yi()){

if(a.xi()<b.xi())return false;
else if(a.xi()==b.xi()){ if(a.tag <= b.tag) return true;else return false;}
else return true;

}return false;
}return false;

}
}

In the case of the simple convex polygons, the left edge of the polygon and the
outer pixel, in a left edge line sequence, is determined by a single test selecting the
minimum x value, similarly for the right hand edges by selecting the maximum x
value for each scan line. As long as there is only one point for each boundary line to
scan line intersection, when multiple left and right edge sequences have to be
processed, then selecting left point and right point pairs along scan lines generates the
shading shown in Figures 10.24 and 25. In Figure 10.26 the same approach is shown
for a self-intersecting boundary line. This approach is suitable for shading a network
of polygon areas where no boundary line is drawn in to define edges. Where a
complete boundary line is needed or an existing boundary line needs to be fully
shaded over, then it has to be redrawn after shading. This is because scan lines
defined in this way start and end on points midway along any horizontal sequence of
pixels which occur in a boundary line sequence.

391

Figure 10.26 Self- intersecting boundaries with (b) & without (c) redrawn edges

If a shading algorithm is required that will automatically cover existing boundary
lines, then identifying the outer pixels in a line sequence and identifying left and right
edges has to be carried out separately. This is done in the following program by
dividing up the boundary line between stationary points to give sequences of line
segments in upwards or downwards directions. The left edge for the upward
sequences can then be identified and similarly the right edge of the downward
sequences, by selecting the minimum and maximum x values for each y value, as
before. These sequences of points can then be merge sorted as they are created to
give a final set of points in raster scan order. Pairing up these points gives the result
shown in Figure 10.27.

Figure 10.27 A polygon shading algorithm to cover boundary edges

a

c

b

Shading more Complex Polygons

392 10 Area Fill, Masks, Circles and Thick Line Interpolation

Figure 10.28 Pairing boundary points for inlets allows edges to break through

Unfortunately, there are problems with this algorithm when hanging-edges, spurs
or narrow inlets are encountered. Although hanging edges can be detected and
removed, narrow spurs and inlets cannot, and they are easy to generate automatically
for example, if a polygon is scaled to a smaller size relative to the pixel grid. In
Figure 10.28 two lines A and B are shown that form the right edge and the left edge
respectively, of an inlet. In 11.28a the two lines are shown separately. In 10.28b they
are shown superimposed with their common points shown in purple. The outer edge
points for A as a right edge are shown with a yellow circle, the similar outer points of
B which is a left edge are shown by a green circle. When these are ordered and paired
up, it can be seen that these points can swap over where the lines overlap allowing
the boundary line points to break through.

A different approach is needed to cope with this problem, using a different
mechanism to identify the inside region of the polygon that is to be shaded in.

A

B

a

b

c

393

Figure 10.29 A spur and inlet fully covered using the winding number algorithm

The new approach is based on a value called the “winding number”, which will be
explored more fully in a later chapter. The method consists of allocating a number to
each scanline intersection point with the boundary, and then controlling the selection
of the points that will be used as the endpoints of shading scanlines, by the value of a
running total adding these allocated values together as the scan line is traversed from
left to right in ascending values of x.

For the simple case: pairing intersection points, it can be seen that by giving the
left edge intersection points the value of 1 and the right edge intersection points the
value of –1, the shading scan lines will exist where the running total is 1. The benefit
of this approach is illustrated in Figure 10.29, where this technique is applied to a
narrow spur and inlet. It becomes possible to implement a shading algorithm that will
cover both the polygon interior and the boundary line without edge line points
breaking through. What is more the same approach will allow the points inside a
boundary line to be selected for shading without overwriting the boundary.

1 -1
1

1
-1

-1
-1

1
1

1

-1

1
-1

1 -1

-1

1

1
-1

1

1
1

1
1

1

0
0

0
0

0
0 a

b

Shading more Complex Polygons

394 10 Area Fill, Masks, Circles and Thick Line Interpolation

static void shade(Polygon p, Color cc){

Point[] scanArray = null, s=null;
Point p1=null,p2=null;
s = scanArray = scan(p);
if(s!=null){

int count =0; int i=0;
while(i<s.length){

count = 0; int y = s[i].yi();
do{

if((count==0)&&(s[i].tag >0)){p1= s[i];}
else if((count+s[i].tag ==0)&&(p1!=null)){

p2=s[i]; dW.plotLine(p1,p2,cc); p1=null;
}count=count+s[i].tag; i++;

}
while((i<s.length)&&(s[i].yi()== y));

}
}else IO.writeString("no scan array");

}
static Point [] scan(Polygon p){

int i = 0, j=0, starty=0, endy=0, starti=0, endi=0, len=0;boolean up = true;
if(p == null)return null;
Point[] changeArray = null , newArray = null, oldArray = null;
int n=1, m=0;
while(p.p[n].yi()==p.p[m].yi()){m = n; n = incr(n,p.p.length-1);}
if(p.p[n].yi()<=p.p[m].yi())

while(p.p[n].yi()<=p.p[m].yi()){ m = n; n = incr(n,p.p.length-1);}
else while(p.p[n].yi()>p.p[m].yi()){ m = n; n = incr(n,p.p.length-1);}
int start = m;
do{

if(p.p[n].yi()>p.p[m].yi()){
up=false; starty = p.p[m].yi(); starti = m;
while((p.p[n].yi()>=p.p[m].yi())){ m=n; n=incr(n, p.p.length-1);}
endy = p.p[m].yi();endi = m;

}else if(p.p[n].yi()<p.p[m].yi()){
up=true; endy = p.p[m].yi(); starti = m;
while(p.p[n].yi()<=p.p[m].yi()){ m=n; n=incr(n, p.p.length-1);}
starty = p.p[m].yi(); endi = m;

} changeArray = new Point[endy-starty+1];
int k = starti; j=incr(k,p.p.length-1);
do{

lineSegment(p.p[k], p.p[j], changeArray, starty,up);
k=j; j=incr(j,p.p.length-1);

}while(k!=endi);
oldArray = newArray; newArray = merge(oldArray,changeArray);

}while(m!=start);
return newArray;

}

395

static void lineSegment(Point p1,Point p2, Point[] array, int start,boolean up){
int len=0, miny=0; Shadings s = null;
if(! up){

len = p2.yi()-p1.yi(); miny = p1.yi();
s = new Shadings(IO,len+1, miny,false);
s.shadingEdge(p2.xi(), p2.yi(), p1.xi(), p1.yi());
for(int i=0;i<s.length;i++){

int j= miny+i-start;
if (array[j]!=null){

if((array[j].xi()!=0)&&(array[j].xi()<s.rightedge[i]))array[j].x("=",s.rightedge[i]);
}else{ array[j] = new Point(2); array[j].x("=",s.rightedge[i]); }
array[j].y("=",i+miny); array[j].tag= -1;

}
}else{

len = p1.yi()-p2.yi(); miny = p2.yi();
s = new Shadings(IO,len + 1, miny,false);
s.shadingEdge(p1.xi(), p1.yi(), p2.xi(), p2.yi());
for(int i=0;i<s.length;i++){

int j=miny+i-start;
if (array[j]!=null){

if((array[j].xi()!=0)&&(array[j].xi()>s.leftedge[i]))array[j].x("=",s.leftedge[i]);
}else{ array[j]= new Point(2); array[j].x("=",s.leftedge[i]); }
array[j].y("=",i+miny); array[j].tag= 1;

}
}

}
static int incr(int index, int bound) {return (index+1)%bound; }

The modified procedures to implement this algorithm are given above. Again the

first step is to separate the boundary into left-hand sections and right-hand sections
by subdividing the boundary at stationary points. Notice that this is done by including
any horizontal steps into the current sequence whether it is going up or down. Each
line interpolation sequence for boundary line segments is then treated as though it
were a convex area so that its left and right edge points can be extracted into two
arrays. In this case where the line is part of a left hand edge only the leftmost points
are kept and they are merge sorted into a larger array that will ultimately be used to
shade the whole polygon. Similarly where a line is part of a right-hand sequence only
the rightmost points are kept and merge sorted into the final array.

The left edges are tagged with a value of 1, and the right edges tagged with the
value of –1. The final array of points is in raster scan order so points can be accessed
in x ordered sequences for each value of y. Starting with a running total of 0, as each
point is processed its tag value can be added to this total. When it becomes 1 then a
new shading line can be started and when it returns to 0 then the end point of the
shading line is defined. It is the way these values distribute themselves along a scan
line for the overlapping edges that make up a spur or an inlet shown in Figure 10.29
in a way that ensures boundary-points do not break through the shading.

Shading more Complex Polygons

396 10 Area Fill, Masks, Circles and Thick Line Interpolation

Figure 10.30 Polygon fill: inside edges

Figure 10.31 A polygon shading algorithm to fill between existing edges

leftMinx[y] -1 rightMaxx[y] +1

397

Figure 10.32 Polygon fill inside boundaries for spurs and inlets

If the right most point of the left edge of a polygon is incremented by one and the
left most point of a right edge of a polygon is decremented by one then the resulting
x values, for the same y value, define the interior scan line for shading a polygon
without over writing its boundary, in the way illustrated in Figure 10.30. This
approach is a simple extension of the program described above. If instead of taking
the leftmost edge points for a left edge, the rightmost points are taken rather than
discarding them, and their x values are incremented by 1, similarly if the leftmost
edge points from right edges are taken and their x values decremented by 1, then the
same scan fill algorithm will produce the result shown in Figure 10.31. What is more
the same arrangements of tags: 1 for the left edges and –1 for right edges gives the
correct behaviour for narrow spurs and inlets in the way illustrated in Figure 10.32.
This algorithm works for non self-intersecting polygon boundaries with spurs and
inlets demonstrated in Figure 10.33. It also works for polygons with self-intersecting
boundaries but only if they contain no spurs or inlets.

0
0

0
0

0
1

-1
1

1
-1

-1
1

1
-1

-1 a

b 1
1

1

-1 1
-1

-1
1

1
-1

1
1

-1
-1

1

Shading more Complex Polygons

398 10 Area Fill, Masks, Circles and Thick Line Interpolation

static void lineSegment(Point p1,Point p2, Point[] array, int start,boolean up){
int len=0, miny=0; Shadings s = null;
if(! up){

len = p2.yi()-p1.yi(); miny = p1.yi();
s = new Shadings(IO,len+1, miny,false);
s.shadingEdge(p2.xi(), p2.yi(), p1.xi(), p1.yi());
for(int i=0;i<s.length;i++){

int j= miny+i-start;
if (array[j]!=null){ if((array[j].xi()!=0)&&(array[j].xi()>s.leftedge[i]-1))

array[j].x("=",s.leftedge[i]-1);
}else{ array[j] = new Point(2); array[j].x("=",s.leftedge[i]-1); }
array[j].y("=",i+miny); array[j].tag= -1;

}
}else{

len = p1.yi()-p2.yi(); miny = p2.yi();
s = new Shadings(IO,len + 1, miny,false);
s.shadingEdge(p1.xi(), p1.yi(), p2.xi(), p2.yi());
for(int i=0;i<s.length;i++){

int j=miny+i-start;
if (array[j]!=null){ if((array[j].xi()!=0)&&(array[j].xi()<s.rightedge[i]+1))

array[j].x("=",s.rightedge[i]+1);
}else{ array[j]= new Point(2); array[j].x("=",s.rightedge[i]+1); }
array[j].y("=",i+miny); array[j].tag= 1;

}
}

}

Figure 10.33 Polygon with a spur and two inlets shaded without covering edge lines

Flood Fill Algorithms

An alternative approach to shading the interior points of a polygon is to start from a
point inside a polygon and then search the interior for non edge points. One
implementation of this approach has already been developed in chapter 4 in the maze
solving program. A small modification of the finite state maze solving code can be
used to fill a closed region in a polygon in the way illustrated in Figures 10.34 to 36.

399

Figure 10.34 Polygon flood fill using a modified space search algorithm

The advantage of this approach appears in interactive work on images. Identifying
a cell’s colour using the mouse can then be used to search out all contiguous cells
containing the same colour and modifying them to another colour. Like the maze
solving algorithm on which it is based it depends on having a boundary of colour
values that form a closed area, otherwise the fill operation escapes and can fill in
more than is required!

Figure 10.35 Polygon flood fill used to selectively shade a sub-area

Where a complex boundary intersects itself and the different areas generated by
the line need to be coloured separately then this approach is easier to apply than the
geometry based fill operations explored in the first part of this chapter.

Floodfill also has the added property that it can be used to fill in background
colours without overwriting foreground features – as long as they are a different
colour from the existing background.

This algorithm will also work on areas defined using other boundary interpolation
schemes as the following chapter will demonstrate.

Flood Fill Algorithms

400 10 Area Fill, Masks, Circles and Thick Line Interpolation

Figure 10.36 Overlayed polygons interactively flood filled

401

public class PolygonFill {

static TextWindow IO = null; static DisplayWindow dW = null;
static int rows = 0; static int cols = 0; static Shadings s = null;
public static void main(String[] args){

boolean newPolygon=true,newColour=true, finished = false;
IO = new TextWindow(10,810,1000,100);
dW = new DisplayWindow(IO,10, 10, 1000,800,Color.white);
String str ="",strr = "black";
Color cc = Color.cyan, lineColour = getColour(strr);
while(! finished){

if(newPolygon){
IO.writeString(" please enter the number of vertices: ");
int pnts = IO.readInteger();IO.readLine();
Point poly[] = new Point[pnts+1];
IO.writeString(" please enter vertices using the mouse \n ");
for(int i = 0; i<pnts;i++){

poly[i] = dW.getCoord();
if(i>0)dW.plotLine(poly[i-1],poly[i],lineColour);

}
poly[0].c("->",poly[pnts]= new Point(2));
dW.plotLine(poly[pnts-1],poly[pnts],Color.black);

}
if(newColour){

do{
IO.writeString(" please enter a colour: ");
str= IO.readString();IO.readLine();
if(str.equals(strr))IO.writeString("cannot use boundary colour: ");

}while (str.equals(strr));
cc = getColour(str); // convert string to Color

}
IO.writeString(" please identify the region using the mouse \n ");
Point seed= dW.getCoord();
s = new Shadings();
s.setText(IO);
s.floodFill(dW,seed.xi(),seed.yi(), cc,lineColour);
IO.writeString(" do you wish to finish? y/n: ");
str = IO.readString();IO.readLine();
if(str.equals("y"))break; else finished=false;
IO.writeString(" do you wish to change the colour? y/n: ");
str = IO.readString();IO.readLine();
if(str.equals("y")) newColour = true;else newColour=false;
IO.writeString(" do you wish to enter another polyon? y/n: ");
str = IO.readString();IO.readLine();
if(str.equals("y"))newPolygon = true;else newPolygon = false;

}
}

Flood Fill Algorithms

402 10 Area Fill, Masks, Circles and Thick Line Interpolation

public void floodFill(DisplayWindow dW,int xx, int yy, Color cc,Color edge){
pixel = new int [dW.c.b.width][dW.c.b.height];
for(int i=0;i<dW.c.b.width;i++){ for(int j=0;j<dW.c.b.height;j++) pixel[i][j]=0; }
state=0; savevalue=0; savedir=0; dir=0; cellcount=1;
int col = edge.getRGB(); int count=0; int alpha = 255; alpha = alpha << 24;
boundary = alpha | col;
x1 = x = xx; y1 = y = yy;
while(true){

switch(setstate(dW,cc)){
case 0: move(dW,null); pixel[x][y]=cellcount++; break;
case 1:case 2:case 3:case 4: checknext(); dir=(dir+1)%4; break;
case 5: dir=savedir; move(dW,null);

if((xx==x)&&(yy==y)){ if (++count==4)return; } break;
}nx = x+xincr[dir]; ny = y+yincr[dir];

}
}
private void move(DisplayWindow dW,Color cc){

int xx=x, yy=y; x=x+xincr[dir]; y= y+yincr[dir];
if (cc!=null) dW.c.setPixel(xx,yy,cc);

}
private int setstate(DisplayWindow dW,Color cc){

if((pixel[nx][ny]==0)&& !(dW.c.getPixel(nx,ny)==boundary)){
if(state != 0){x1=nx;y1=ny;savedirection = dir;}
state=0;

} else if(state<5){
if ((state==0)){ x2=x; y2=y;

switch(savedirection){
case 0: dW.plotRectangle(x1,y1,x2-x1+1,1,cc); break;
case 1: dW.plotRectangle(x1,y1,1,y2-y1+1,cc); break;
case 2: dW.plotRectangle(x2,y2,x1-x2+1,1,cc); break;
case 3: dW.plotRectangle(x2,y2,1,y1-y2+1,cc); break;

}
} state++; return state;

} else state =1;
savevalue=0; savedir=dir; return state;

}
private void checknext(){

if((pixel[nx][ny]<pixel[x][y])&&(pixel[nx][ny]>savevalue)) {
savevalue=pixel[nx][ny]; savedir = dir;

}
}

This approach also has difficulties with very sharp spurs: being unable to get to

pixels that are isolated from the main body of interior points by the angle at which
edge lines meet. In the next chapter a different interpolation sheme is introduced that
allows curved boundaries to be created, and this requires the shading process to be
revisited to give a more powerful general purpose approach.

11
Parametric Line
Interpolation &
Keyframe Infill
“Inbetweening”
Film Animation

Introduction

Figure 11.1 A linear inbetweening sequence transforming a rabbit to a fox

In this chapter an alternative form of interpolation is investigated. In the previous
chapters lines and areas were filled in on a grid: the number of new points depending
on the length of each line or the extent of each area. In this sequence of infill
operations the process is controlled by a parameter independent of the length of any
line. The application where this approach is appropriate is the inbetweening operation
used to generate cartoon animation sequences for film and video work. In Figure 11.1

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_11, © Springer-Verlag London Limited 2008

404 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

an example of this process is shown not only creating multiple images between two
given key-frames, but also illustrating a morphing operation changing one object into
another in smoothly changing steps.

Creating the effect of movement in an image requires objects to be moved in the
image frame in a time sequence. If the movement is to be seen as a smooth coherent
action this movement has to be incremental along a trajectory or path. If the frames in
an animation sequence showing a moving object are overlaid then each point of the
object will follow a linear path in the resulting multi-image. A simple example using
a moving triangle is shown in Figure 11.2.

Figure 11.2 An overlaid animation sequence for a moving triangle

The path followed by each triangle vertex is different and relatively complex, even
though the centre of gravity of the triangle follows a simple smooth path because the
object is being translated and rotated at the same time. The idea behind inbetweening
is that if such a movement can be broken down into steps, each step defined by a key-
frame drawing or image, then straight-line segments can approximate segments of the
trajectories lying between matching points without distorting the resulting motion too
much. New triangles can then be drawn in linking the new vertices located on these
straight-line segments. In this process however each trajectory line segment will have
to have the same number of subdivisions to produce the correct sequence of new
triangles. This form of interpolation can be provided by a parametric line equation
based on the coordinates of the end points of each line segment.

() () 21 ..1 ppp λ+−λ=λ

Whatever the length of the line, the parameter λ will place a point in the same
relative position along the line. If λ is 2

1 then the mid-point of each line will be

calculated.
Figure 11.2 shows a series of overlaid key frames for a moving triangle.

Because the triangle is a rigid body, in other words an object that is the same shape
and size in each frame, it is easy to identify the matching points. Since straight
edges stay straight, following the vertices of the triangle from frame to frame can
capture the motion sequence and then linearly interpolating the triangle edges in

Inbetweening Two Polylines 405

each frame, once the correct vertex positions have been identified completes the
sequence. In this case the simplest way to do this is to link matching points with
straight lines and then select points along these trajectory lines for the triangle
vertices: evenly spaced for uniform motion and unevenly spaced to give
acceleration or deceleration effects.

The use of straight lines will distort the “in-between” triangles to some extent, as
the correct trajectories shown in Figure 11.2 indicate. However a close spacing of the
key-frames can reduce the error to what ever level is necessary. If this approach is
used to animate three dimensional shapes and non-rigid objects this distortion
becomes less apparent because the shape-boundary in each frame is different and
cannot be compared directly in the way a simple shape like a triangle can. However
in these cases the identification of matching points becomes more difficult or in
many cases arbitrary.

A variety of semi-automatic schemes have been developed to cope with specific
subjects. Although these many alternatives can be considered to be a vocabulary of
special effects provided by an interactive cartoon generating systems. Animators
might expect to construct many of these for themselves, from more general
operations, tailoring them to their particular “content generation” tasks. Consequently
they lie outside the remit for this book, where the objective is to introduce the
operations needed to construct these effects. Two general aspects however, are of
interest, the first is the use and extension of the parametric interpolation process, the
second is the way the key-frame inbetweening approach can be used to morph from
one object to another, as illustrated in Figure 11.1.

The starting point for the illustration in Figure 11.1 is inbetweening from one
poly-line to another. This was then extended to give an inbetweening operation
between one closed single polygon-boundary to another. Closing the polyline to give
a polygon loop introduces an arbitrary choice, which is where in the boundary of
each polygon to place the starting point for vertex matching. There is also the choice
of which way the loop should be made to rotate about its contained area. Both of
which affect the resulting sequence of in between polygons. The final stage was to
include an area shading stage that could cope with a self-crossing or fragmenting
polygon boundary.

Inbetweening Two Polylines

If two polylines contain the same number of vertices then one approach is to match
up corresponding vertices and interpolate the in-between positions for these points in
the way outlined in Figure 11.2. However if there are a different number of vertices
then a different approach is called for. The approach implemented in these examples
is to scale the lines to a common length and then map the vertices of one polyline
onto the other. This gave two lines containing the same number of vertices that could
be matched with each other and used to give in between points in the same way used
in Figure 11.2. Unfold the boundary lines and scale them to match each other, map
the missing vertex points across, then transfer the new vertex points back to the other
boundary in the way shown in Figure 11.3

406 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

Figure 11.3 Mapping vertices from one polyline boundary to another

Figure 11.4 Polyline inbetweening

public class Animation{ // Polyline Inbetweening

static TextWindow IO = new TextWindow(0,500,1000,100);
static DisplayWindow dW = new DisplayWindow(IO,1,1,1000,500,Color.white);
public static void main(String[] args){

Color cc = Color.black;
Polyline a = new Polyline(IO,dW);
a.getPolyloop();
double alength = a.lengths();
IO.writeLongReal(alength,10,5); IO.writeLine();
Polyline b = new Polyline(IO,dW);

A

A

B

B

scale scale Insert new vertices and then cross-link matching vertices with straight lines

Inbetweening Two Polylines 407

b.getPolyloop();
double blength = b.lengths();
IO.writeLongReal(blength,10,5); IO.writeLine();
double[] c = new double[a.p.length];
for(int i=0; i<a.p.length; i++) c[i]= a.p[i].zd()*blength/alength;
double[] d = new double[b.p.length];
for(int i=0; i < b.p.length; i++) d[i] = b.p[i].zd()*alength/blength;
Polyline aa = match(a,d);
Polyline bb = match(b,c);
double q = 1.0/29.0, L = 0; //Polyline 29 spaces 30 vertices
Point np = new Point(2);Point lp = new Point(2);
Polygon op = null;
for(int n=0; n<30; n++){

Polygon p = new Polygon(aa.length);
np.x("=", aa.p[0].xd()*(1-L) + bb.p[0].xd()*L);
np.y("=", aa.p[0].yd()*(1-L) + bb.p[0].yd()*L);
p.p[0] = new Point(2);
p.p[0].x("=",np.xd()); p.p[0].y("=",np.yd());
for(int i=1;i<aa.length;i++){

p.p[i] = new Point(2);
lp.x("=", aa.p[i].xd()*(1-L) + bb.p[i].xd()*L);
lp.y("=", aa.p[i].yd()*(1-L) + bb.p[i].yd()*L);
p.p[i].x("=",lp.xd()); p.p[i].y("=",lp.yd());
dW.plotLine(np,lp,Color.white);
np.x("=",lp.xd()); np.y("=",lp.yd());

}
if(op!=null)shade (op,Color.white);
if(n%2==0)cc = Color.cyan; else cc = Color.red;
shade (p,cc);
op = p;
L=L+q;

}
}
static Polyline match(Polyline a,double[] d){

int i = 0; int j=0;int k=0;double ll=0.0;
Polyline aa = new Polyline(IO,dW);
aa.p = new Point[a.length+d.length];
while((i < a.length)||(j < d.length)){

int t=0;
if((i<a.length)&& (j<d.length)&& (((ll= a.p[i].zd()-d[j])*ll)<0.001)){

aa.p[k]= a.p[i];i++; j++; k++;
}else if((j>= d.length)|| ((i<a.length)&&(a.p[i].zd()< d[j]))){

aa.p[k]= a.p[i];i++; k++;
}else if((i>= a.length)|| ((j<d.length)&&(a.p[i].zd()> d[j]))){

double less = a.p[i-1].zd(); double more = a.p[i].zd();
double scale = (d[j]-less)/(more-less);
aa.p[k]= new Point(3);

408 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

aa.p[k].x("=",a.p[i-1].xd()+scale*(a.p[i].xd()-a.p[i-1].xd()));
aa.p[k].y("=",a.p[i-1].yd()+scale*(a.p[i].yd()-a.p[i-1].yd()));
aa.p[k].z("=",d[j]);
k++; j++;

}
}
aa.length = k;
return aa;

}
}

Curved Trajectory Lines

One of the possibilities that this form of interpolation offers is a transition from
straight-line in-between paths to curved trajectories. If the two end-points of the line
are augmented by a third point in the way shown in figure 11.5 then interpolation can
be carried out in two stages.

Figure 11.5 Two stage parametric line interpolation

Step 1:

() ()
() () 2 2.3.1

1 3.1.1

PPPb

PPPa

λ+λ−=

λ+λ−=

Step 2:
() () 3 ..1 PbPaP λ+λ−=

The locus or path followed by point P is a parabola. This can be shown by

substituting equations 1 and 2 into equation 3.

() () ()() () () ()()

() () ()
() ()

CBAP

PPPPPPP

PPPPP

PPPP

+λ+λ=

+−λ++−λ=

λ+λ−λ+λ−λ+λ+λ−=

λ+λ−λ+λ+λ−λ−=

2

2

2222

11322321

2.3.3.1.21

 2..1.3.1.1.1

P1

Pa

Pb

P

P3

P2

First stage

Second stage

λ: 0 1

409

Figure 11.6 Parabolic interpolation paths

Figure 11.6 illustrates the inbetweening obtained using this extension to the
interpolation algorithm. The change in the program to get curved paths involves
defining a control triangle. This is done in these examples by entering two direction
line vectors at the beginning and end of the path. This allows the third point of the
triangle to be calculated where these lines intersect. The interpolation of points is
then done in two steps instead of one.

The change in shape along the curved trajectory can still be obtained, in the way
shown in Figures 11.7. However, the objects moving along a curved path may not
reflect the curved motion, in Figure 11.8 they stay very upright, unless careful
changes in the key frames are used to rearrange the orientation of the object along its
path. The main draw back with this process even though it can give curved
trajectories, so reducing the number of key-frames needed, is that the movement
along the path is not at a uniform velocity. This is shown where more extreme curves
are generated in Figure 11.9. With straight-line interpolation it is reasonably easy to
define uniform or accelerating and decelerating movement. Where shallow
symmetrical curves are employed the effect is not so dramatic. The value of λ divides
up a line in a particular proportion.

Figure 11.7 Changing shape along a curved trajectory

Curved Trajectory Lines

410 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

public static void main(String[] args){ //animated morphing sequence
IO.writeString("please enter start direction: two points \n");
Point p1 = dW.getCoord(); Point p2 = dW.getCoord();
IO.writeString("please enter finish direction: two points \n");
Point p3 = dW.getCoord(); Point p4 = dW.getCoord();
double a1 = p1.yd()-p2.yd(), b1 = p2.xd()-p1.xd();
double a2 = p3.yd()-p4.yd(), b2 = p4.xd()-p3.xd();
int frames = 50;
Color cc = Color.black;
Polyline a = new Polyline(IO,dW);
a.getPolyloop(); // get object 1
double alength = a.lengths();
Polyline b = new Polyline(IO,dW);
b.getPolyloop(); // get object 2
double blength = b.lengths();
double[] c = new double[a.p.length];
for(int i=0; i<a.p.length; i++) c[i]= a.p[i].zd()*blength/alength;
double[] d = new double[b.p.length];
for(int i=0; i < b.p.length; i++) d[i] = b.p[i].zd()*alength/blength;
Polyline aa = match(a,d), bb = match(b,c);
double q = 1.0/(frames-1), L = 0;
Point np = new Point(2), lp = new Point(2);
Polygon op = null;
for(int n=0; n < frames; n++){

double x1 = aa.p[0].xd(), y1 = aa.p[0].yd();
double x2 = bb.p[0].xd(), y2 = bb.p[0].yd();
double c1 = -(a1*x1+b1*y1), c2 = -(a2*x2+b2*y2);
Polygon p = new Polygon(aa.length);
double x= b1*c2-b2*c1, y= a2*c1-a1*c2, w= a1*b2-a2*b1;
double cx=0,cy=0;
if(w!=0){ cx=x/w; cy=y/w;}
else IO.writeString("error division by zero \n");
dW.plotLine((int)x1,(int)y1,(int)cx,(int)cy,Color.green);
dW.plotLine((int)cx,(int)cy,(int)x2,(int)y2,Color.green);
double ax = x1*(1-L)+cx*L, ay = y1*(1-L)+cy*L;
double bx = cx*(1-L)+x2*L, by = cy*(1-L)+y2*L;
np.x("=", ax*(1-L) + bx*L); np.y("=", ay*(1-L) + by*L);
p.p[0] = new Point(2); p.p[0].x("=",np.xd()); p.p[0].y("=",np.yd());
if(n%2==0)cc = Color.cyan; else cc = Color.red;
for(int i=1;i<aa.length;i++){

p.p[i] = new Point(2);
x1 = aa.p[i].xd(); y1 = aa.p[i].yd();
x2 = bb.p[i].xd(); y2 = bb.p[i].yd();
c1 = -(a1*x1+b1*y1); c2 = -(a2*x2+b2*y2);
x= b1*c2-b2*c1; y= a2*c1-a1*c2; w= a1*b2-a2*b1;
if(w!=0){ cx=x/w; cy=y/w;}
else IO.writeString("error division by zero \n");

411

ax = x1*(1-L)+cx*L; ay = y1*(1-L)+cy*L;
bx = cx*(1-L)+x2*L; by = cy*(1-L)+y2*L;
lp.x("=", ax*(1-L) + bx*L); lp.y("=", ay*(1-L) + by*L);
p.p[i].x("=", lp.xd()); p.p[i].y("=", lp.yd());
dW.plotLine(np, lp,cc);
np.x("=",lp.xd()); np.y("=",lp.yd());

}shade (p,cc); // render object p
np.x("=", aa.p[0].xd()*(1-L) + bb.p[0].xd()*L);
np.y("=", aa.p[0].yd()*(1-L) + bb.p[0].yd()*L);
op = p;
L=L+q;

}
}

Figure 11.8 Changing shape along a curved trajectory

Figure 11.9 Skewed parabolic interpolation paths showing non-linear spacing

Curved Trajectory Lines

412 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

Even where the value of λ changes uniformly, in a curve it is applied to line
segments of different and changing lengths: the greater the difference in the lengths
of the control triangle the larger the effect. The task is to select the λ values that give
the required motion.

Equal Subdivisions of a Parametric Line

If equal steps along a curved path are needed then it is necessary to calculate the
length of the path. This is a relatively complex calculation if it needs to be repeated
many times.

() ()
() ()

() () ()[] () () ()[]

() ()
() ()
() ()

() ()

() ()

() ()

() ()
() ()

()
()

() ()

() ()
() () λ+++λ++λ=

λ+λ+λ++λ+λ=

λ+λ++λ=

+=

λ+λ=

λ+λ=

−≡+−≡

−≡+−≡

−++−λ=
λ

−++−λ=
λ

+λ−+λ+−=

+λ−+λ+−=

λ+λ−λ+λ+λ−=

λ+λ−λ+λ+λ−=

λ+λ−λ+λ+λ−λ−=

λ+λ−=

λ+λ−=

dDBCDABCAds

dDCDCBABAds

dDCBAds

dydxds

dDCdy

dBAdx

yyDyyyC

xxBxxxA

yyyyy
d
dy

xxxxx
d
dx

yyyyyyy

xxxxxxx

yyyy

xxxx

PPPPP

PPPb

PPPa

2 22222

2 222222

2 22

22

2

2

222

222

.2.

.2.2

length arc

.

.

13.2 ,23.21.2let

13.2 ,23.21.2let

13223.21.2

13223.21.2

1.132.23.21

1.132.23.21

23..21.21

23..21.21

2.3.13.1.11

2.3.1

3.1.1

413

()() ()
λ

+
+−++

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+
++λ=

+++++=+= ∫∫

d
CA

CDABCADB

CA

CDABCAds

cuauauauduau

...

ln.
22

ds match to

22

22222
2

22
22

22
2

2222

()() ()

()() ()

() ()

()() ()

() ()

() ()

()() ()
()

() ()

2

1

22222
22

22

2222

22222

22222
22

2

1

2

1

22222
22

22

22

22222

22

22222
22

22
22

2

1

22

22222
2

22
22

22

22

22222
2

22
22

22

222222

22
22

22

.2..ln

. .
2
1

.2...
2
1

.2..ln

.

.2

1

.2...
.2

1

...1

...1

ln.
22

 .

 ore theref.

λ

λ

λ

λ

λ

λ

λ

λ

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+++λ++λ+
+

+
++λ×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

+−++
+

+++λ++λ⎥⎦
⎤

⎢⎣
⎡

+
+

+λ

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+++λ++λ+
+

+
++λ×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+−++

+
+

+++λ++λ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+
++λ

+

=

+
+−++

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+
++λ

+
=

+
+−++

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+
++λ

+
=

+++++=+=

+=
λ+

+
++λ=

∫

∫

∫ ∫

∫∫

DBCDABCA
CA

CDABCA

CACA

CDABDBCA

DBCDABCA
CA
CDAB

ds

DBCDABCA
CA

CDABCA

CA
CDABCADB

CA

DBCDABCA
CA

CDABCA
CA

ds

du
CA

CDABCADB

CA

CDABCA
CA

ds

du
CA

CDABCADB

CA

CDABCA
CA

ds

cuauauauduuads

CA
d
du

CA

CDABCAu

Equal Subdivisions of a Parametric Line

414 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

This result is undefined where 22 CA + =0. If 3.221 xxx =+ and
3.221 yyy =+ where P3 is the mid point of a straight line the length of the path S is

undefined by this integral, but can be seen to be () ()22 1212 yyxx −+− . Setting
3.221 xxx ≠+ and 321 yyy == and substituting the values of A B C and D into this

formula gives a correct result, and also gives one way in which an accelerating or
decelerating movement can be created along a straight line path.

Once the length S has been calculated then the size of the equal intervals can be

calculated. The problem then becomes one of calculating the values of λ needed to
give this step size. If λ = 0 and λ = λ1 were used for the first interval to calculate the
distance S/n, where there are n equal steps required, an equation could be produced,
the solution of which would give the value of λ1. This value could then be used as
the starting value for the next interval of length S/n to give the next value λ2.
Solving these equations is a more complex task than finding the path length,
however, a numerical alternative is to calculate the values for λ needed to give the
required step lengths using a successive approximation technique.

() ()

()() ()
()

() ()

()
()
()
()

() ()

() ()

()

() () BAxxxxxxx

BA
A
B

A
BBA

A
BBBA

BA
A
BBA

A
Bds

BABA
A
ABds

yyD

yyyC

xxB

xxxA

DBCDABCA
CA

CDABCA

CACA

CDABDBCA

DBCDABCA
CA
CDAB

ds

 and for ngsubstituti 12 13.22321

2.
2
1 .

2
12.

2
1 .

2
1

 ..
2
1 ..

2
1

.2...
2
1

 valueszero thesubstitute

013.2

02321.2

13.2

2321.2

.2..ln

. .
2
1

.2...
2
1

221

0

2
2

2

1

2

1

22

1

2

1

222
2

2

1

2

1

22222
22

22

2222

22222

22222
22

2

1

−=−++−=

+=−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+λ+λ+λ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+λ⎥⎦

⎤
⎢⎣
⎡ +λ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+λ⎥⎦

⎤
⎢⎣
⎡ +λ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+λ+λ⎥⎦

⎤
⎢⎣
⎡ +λ=

=−=

=+−=

−=

+−=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+++λ++λ+
+

+
++λ×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

+−++
+

+++λ++λ⎥⎦
⎤

⎢⎣
⎡

+
+

+λ

=

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

∫

∫

∫

415

static int num=0;
static double x1=0,x2=0,x3=0,y1=0, y2=0,y3=0;
static double ABCD = 0, A2C2 = 0, B2D2 = 0, DD = 0, t = 0.5, e = 0;
public static void main(String[] args){

IO.writeString("please enter the number of control points \n"); num = IO.readInteger();
for(int i=0;i<num;i++){

IO.writeString("please enter control point\n"); cP[0][i]= dW.getCoord();
if(i>0)dW.plotLine(cP[0][i-1],cP[0][i],Color.green);

}
for(int i=0;i<num-1;i++){ dW.plotLine(cP[0][i],cP[0][i+1],Color.red); }
if(num==3){

Point P1= cP[0][0], P2= cP[0][1], P3= cP[0][2];
x1=P1.xd(); x2=P3.xd(); x3=P2.xd();
y1=P1.yd(); y2=P3.yd(); y3=P2.yd();
double A = 2*(x1-2*x3+x2), C = 2*(y1-2*y3+y2);
double B = 2*(x3-x1), D = 2*(y3-y1);
ABCD = A*B+C*D; A2C2 = A*A+C*C; B2D2 = B*B+D*D;
double Ll=0, Lr=1.0;
double result = span(Lr)-span(Ll);
double DD=result/9;
double q= subdivide(0,0,1, Color.red);

}
}
static double span(double L){

double S1= Math.sqrt(L*L*A2C2+2*L*ABCD+B2D2);
double S2= (A2C2*L+ABCD)/Math.sqrt(A2C2);
double S3= B2D2-ABCD*ABCD/A2C2;
double S4= Math.log(Math.abs(S2+S1));
double S5= (S2*S1+S3*S4)/2.0/Math.sqrt(A2C2);
return S5;

}
static Point node(double L){

Point np = new Point(2);
double ax = x1*(1-L)+x3*L, ay = y1*(1-L)+y3*L;
double bx = x3*(1-L)+x2*L, by = y3*(1-L)+y2*L;
np.x("=", ax*(1-L) + bx*L); np.y("=", ay*(1-L) + by*L);
return np;

}
static double subdivide(double LS,double LL,double LR ,Color cc){

double dd= distance(LS,LR);
if((D+t-e>=dd)&&(D-e<=dd)) { e = dd-DD; dW.plotRectangle(node(LR),4,cc);return LR;}
if(dd < D-e)return LS;
double L = (LL+LR)/2;
LS=subdivide(LS,LL,L,cc);
LS=subdivide(LS,L,LRcc);
return LS;

}

Equal Subdivisions of a Parametric Line

416 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

Figure 11.10 Recursive equal-subdivision of a curve to a given tolerance t

The relationship between λ and the spacing between points on a curve clearly
depends on the shape of the control triangle, and is relatively complex, if a given
number of equally spaced points is required. However, once the length of these
internal spans has been calculated the coordinates of their end-points can be
evaluated, within a given tolerance t, by moving sequentially along the line using a
binary subdivision algorithm applied to the values of λ in the way shown
diagrammatically in Figure 11.10.

From a given position on the line the space to the end of the line can be
recursively subdivided by taking the current value of λ and the value of λ at the end
of the line and locating the distance along the curve to the point given by the midway
value of λ between these two positions. Once the distance to the midway point is
within a given tolerance of the required distance from the starting point, it can be
taken as the end of the span and its position can then become the beginning of the
next subdivision step to define the next span. This algorithm makes it possible to
subdivide a curved path into an externally defined number of equal length spans in
the way illustrated in Figure 11.11. The error from the tolerance can be prevented
from accumulating by adding or subtracting it to the length of the next step.

e2

e1

e3

D

λ2

t

λ1 λ2

λ1

t

t

λ1 λ2

λ1

λ1

λ2

λ2

D−e

D+e

D−e

417

Figure 11.11 9 and 17 equal span subdivisions

Equal Steps along a Parametric Line

In many animation applications where a particular velocity is required, the span
lengths are determined by the frame rate and the speed of the moving object, and the
span lengths are independent of any given path length. Also where the span lengths
are relatively short, calculating the true distance along the curve can be replaced by a
straight-line approximation without incurring too great an error. Both approaches can
use the same approximation technique.

In Figure 11.12 equal length spans are constructed, except for the last span, which
is a remainder length: left over when the subdivision is complete.

Equal Steps along a Parametric Line

418 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

Figure 11.12 Equally space point symbols along curved paths

static Point subdivide(Point left,Point right,double LL,double LR,double D,double t){
double dx = (left.xd()-right.xd()), dy= (left.yd()-right.yd()), d = dx*dx+dy*dy;
if((D+t>=d)&&(D<=d)){dW.plotRectangle(right,4,Color.red);return right;}
if(d < D)return left;
double L = (LL+LR)/2;
Point np = node(L);
left=subdivide(left,np,LL,L,D,t);
left=subdivide(left,right,L,LR,D,t);
dx = (left.xd()-right.xd()); dy= (left.yd()-right.yd()); d = dx*dx+dy*dy;
return left;

}

Remainder span

Remainder span

419

Figure 11.13 Linking curves with tangent continuity at their junctions

Curved paths can be constructed in a piecewise manner shown in Figure 11.13.
This allows the remainder length from one “piece” of the path to be taken into the
next “piece” of the curved path, to give a smooth motion along the total route. The
two vectors used in the first example in Figures 11.9, are replaced by a sequence of
control points, shown linked together as a control polyline drawn in grey. In Figure
11.13 the control triangles for each piece of the curve are linked together in this
control polyline, so the edge of one triangle continues as a straight line into the next
triangle. As a result the control points for this new arrangement are the vertices of
this polyline and the midpoints of the polyline line-segments shown by green squares
in Figure 11.13.

Because these parametric curves are tangent to the sides of their control triangles,
this construction ensures that the resulting composite curve has tangent continuity at
the positions where the separate parabolic curves join. This also allows the sequential
subdivision into equal lengths to take the last span endpoint found in one curve
segment to be the starting point for the next span linking into the next curve-piece, so
keeping the spacing of points the same along the whole path.

Pixel Grid Parametric Line Interpolation

The uneven way that the parameter defined points occur along a curved line appeared
to make a simple grid based interpolation impractical. However, the approximation
process can be used in a slightly different way to interpolate curved lines onto a pixel
grid. The algorithms which give fixed distances between points can be modified to

Pixel Grid Parametric Line Interpolation

420 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

give grid based interpolation by changing the tests used to terminate the recursive
calls.

In this case the subdivision is continued until the point located, when converted to
the integer coordinates of the pixel grid, gives a point one-pixel space away from the
current point.

static Point subdivide(Point left,Point right,double LL,double LR){

int idx = (left.xi()-right.xi());
int idy= (left.yi()-right.yi());
int dix = idx*idx, diy=idy*idy;
if(((dix<=1)&&(diy==1))||((dix==1)&&(diy<=1)))

{dW.plotPoint(right,Color.black); return right;}
if((dix==0)&&(diy==0))return left;
Point np = new Point(2);
double L = (LL+LR)/2;
double ax = x1*(1-L)+x3*L;
double ay = y1*(1-L)+y3*L;
double bx = x3*(1-L)+x2*L;
double by = y3*(1-L)+y2*L;
np.x("=", ax*(1-L) + bx*L);
np.y("=", ay*(1-L) + by*L);
left=subdivide(left,np,LL,L);
left=subdivide(left,right,L,LR);
return left;

}

Figure 11.14 Parabolic curved line interpolation

421

Figure 11.15 Piece-wise curve interpolation

Sharp corners in a piecewise curve, can be created in the way shown in Figure 11.16.
by entering double points or control line segments with no length.

Figure 11.16 Piece-wise curve interpolation using double points

Double
Points

Pixel Grid Parametric Line Interpolation

422 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

static Point[][] cP = new Point[10][10];

static int num=0;

public static void main(String[] args){

IO.writeString("please enter the number of control points points \n");
num = IO.readInteger();
for(int i=0;i<num;i++){

IO.writeString("please enter control point\n");
cP[0][i]= dW.getCoord();
if(i>0) dW.plotLine(cP[0][i-1],cP[0][i],Color.green);

}
for(int i=0;i<num-1;i++){

dW.plotLine(cP[0][i],cP[0][i+1],Color.red);
 }
Point left= cP[0][0];
Point right=cP[0][num-1];
dW.plotRectangle(left,4,Color.green);
Point pp= subdivide(left,right,0,1);
dW.plotRectangle(right,4,Color.green);

 }

static Point subdivide(Point left,Point right,double LL,double LR){

int idx = (left.xi()-right.xi());
int idy= (left.yi()-right.yi());
int dix = idx*idx, diy=idy*idy;
if(((dix<=1)&&(diy==1))||((dix==1)&&(diy<=1))){

dW.plotPoint(right,Color.blue);
return right;

}
if((dix==0)&&(diy==0))

return left;
Point np = new Point(2);
double L = (LL+LR)/2;
for(int j=1;j<num;j++){

for(int i=0;i<num-j; i++){
cP[j][i]= new Point(2);
cP[j][i].x("=",(cP[j-1][i].xd()*(1-L) + cP[j-1][i+1].xd()*L));
cP[j][i].y("=",(cP[j-1][i].yd()*(1-L) + cP[j-1][i+1].yd()*L));

}
}
np= cP[num-1][0];
left=subdivide(left,np,LL,L);
left=subdivide(left,right,L,LR);
return left;

}

423

Higher Order Parametric Line Interpolation

The algorithm to generate the quadratic curve in Figure 11.5 can be generalised to
handle higher order curves in the way shown in Figure11.17 and illustrated in 11.18
to 20.

Figure 11.17 Third order curve interpolation for a cubic polynomial

Figure 11.18 Cubic, order-three curve

P1 P3

P4 P2

P1a
P3a

P2a

P1b

P2b

P1c

First stage

Second stage

λ: 0 1
Third stage

Second stage

Higher Order Parametric Line Interpolation

424 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

Figure 11.19 Order-eight curve

Figure 11.20 Order-nine curve

425

Figure 11.21 λ subdivision missing out a small loop

As curves get more complex and loops and cusps occur, further tests need to be
added to cover special cases that the initial form of the algorithm could miss. Where
sharp curves and loops are encountered, recursion returning after locating a new
point could move to a next λ position far enough along a curved loop to come back to
within a pixel width of the current point so missing out the whole loop in the way
illustrated in Figure 11.21

static Point subdivide(Point left,Point right,double LL,double LR){

boolean looptest = false;
int idx = (left.xi()-right.xi()), idy= (left.yi()-right.yi(); int dix = idx*idx, diy=idy*idy;
if((dix<=1)&&(diy<=1)) looptest = true;
double L = (LL+LR)/2;
Point np = node(L);
int jdx = (left.xi()-right.xi()), jdy= (left.yi()-right.yi());
int djx = jdx*jdx, djy=jdy*jdy;
if(looptest&&(djx<=1)&&(djy<=1)){ looptest = false;

if(((dix<=1)&&(diy==1))||((dix==1)&&(diy<=1))){
dW.plotPoint(right,Color.blue); return right;

}if((dix==0)&&(diy==0))return left;
}
left=subdivide(left,np,LL,L);
left=subdivide(left,right,L,LR);
return left;

}

Higher Order Parametric Line Interpolation

A

C D

B

E

λ/2 λ/4 3λ/ λ 0 λ/8

A B E C D

426 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

static Point node(double L){
for(int j=1;j<num;j++){

for(int i=0;i<num-j;i++){
cP[j][i]= new Point(2);
cP[j][i].x("=",(cP[j-1][i].xd()*(1-L) + cP[j-1][i+1].xd()*L));
cP[j][i].y("=",(cP[j-1][i].yd()*(1-L) + cP[j-1][i+1].yd()*L));

}
}return cP[num-1][0];

}

When a new point is found to be in a neighbouring pixel position, action is
postponed until the next subdivision shows whether the next subdivision of λ also
gives the same or a neighbouring pixel location. If it is a loop the point should lie
further away. Though this is still not a watertight solution, the chances of multiple
loops occurring, with exactly the correct spacing of pixel points with their
corresponding λ values to cause loops to be missed out, becomes very much smaller.
Adding more levels in the interpolation process gives smoother lines in a
mathematical sense. This is important in some Computer Aided Design contexts, but
a sequence of parabolic curved segments linked with tangent continuity is adequate
for many interactive drawing applications.

Antialiased Curved Lines

Figure 11.22 Locating curve-points on the pixel grid

The recursive subdivision of the values of λ place points on the curve in the positions
indicated by crosses in Figure 11.22. These can be truncated to give integer indexes
to the grid array shown by the red and green circles. Once the start point has been
placed then subdivision of the rest of the curve will eventually place a new point in a
pixel position (green circle) next door to the current pixel (red circle). This position
can take over the current pixel-point role and the subdivision can be continued. As
soon as a new point is located in the same grid cell as the current pixel: red cross in
Figure 11.22b, then recursive subdivision can be stopped and control returned to the
next level up in the recursive subdivision, shown in Figure 11.22c.

a b c

427

In this form this algorithm can miss out pixels containing small sections of the line
shown by the hollow circle in Figure 11.22c. This should be compared with the same
curve-grid relationship shown in Figure 11.22a.

Figure 11.23 Adjacent pixel cell patterns that might contain elements of the line

The difference depends on the way the subdivision of λ occurs for a particular
positioning of the curve and grid. Since the line will be represented by a sequence of
contiguous pixels this is not a major problem as long as the display resolution is high,
however further refinements are necessary to render antialiased lines.

The first problem is to identify all the pixel cells that the line passes through. The
recursive search identifies neighbouring pixels. This information can be used to
identify the different neighbourhood pixels that need to be tested to see if they
contain segments of the line. Given the coordinates of the current point and a next
point in the neighbouring pixel the integer indexes of the pixel array can be obtained
by rounding or truncating these values. The changes in these x and y values can then
be used to identify the patterns shown in Figure 11.23 where a is the current pixel, b
is the next pixel and c and d are the adjacent pixels which may contain segments of
the line.

//static int rows = 60, cols = 100;
//static Grid gd = null;
//gd= new Grid(IO,dW,a,cols,rows);
//gd.setGridBackground(Color.white);
//gd.paintGridArray();
//gd.drawGridLines(Color.black,Color.lightGray);
//Point left= subdivide(left,right,0,1,true); ----
static Point subdivide(Point left,Point right,double LL,double LR,boolean antialiased){

int[][] off = new int[][]{ //off sets from the next pixel b for the pixels c and d
{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,1,0,-1},{0,-1,0,1},
{0,0,0,0},{-1,0,1,0},{0,1,1,0},{-1,0,0,1},{0,0,0,0},{1,0,-1,0},{1,0,0,-1},{0,-1,-1,0}};
boolean looptest = false;
int ax=left.rx(), ay=left.ry(), bx=right.rx(), by=right.ry(); int cx=0, cy=0, dx=0, dy=0, j=0, k=0;

b a

b c d a

c d

a b

c

d

a b

c

d

a

b

c

d a

b

c

d

a

b c

d

a

b c

d

Antialiased Curved Lines

428 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

int idx = (right.rx()-left.rx()), idy= (right.ry()-left.ry()), dix = idx*idx, diy=idy*idy;
if((dix<=1)&&(diy<=1)) looptest = true;
double L = (LL+LR)/2;
Point np =node(L);
int jdx = (left.rx()-np.rx()), jdy= (left.ry()-np.ry()), djx = jdx*jdx, djy=jdy*jdy;
if(looptest&&(djx<=1)&&(djy<=1)){
looptest = false; j=0; //reset loop test
if(idx== 0)j=j+1; if(idx== -1)j=j+2; if(idx== 1)j=j+3;
if(idy== 0)j=j+4; if(idy== -1)j=j+8; if(idy== 1)j=j+12;
switch(j){ // select appropriate pixel pattern

case 5:return left;
case 6:case 7:case 9:case 13: case 10:case 11:case 14:case 15:

cx= bx+off[j][0]; cy= by+off[j][1];
dx= bx+off[j][2]; dy= by+off[j][3];
double A= left.yd()-right.yd(), B= right.xd()-left.xd();
double C= left.xd()*right.yd()-right.xd()*left.yd();
double db = Math.abs(A*bx+B*by+C), // distance of cell b from the line
double dc = Math.abs(A*cx+B*cy+C); // distance of cell c from the line
double dd = Math.abs(A*dx+B*dy+C); // distance of cell d from the line
double scale = (Math.abs(A)+Math.abs(B))/Math.sqrt(2)/(A*A+B*B);
if(antialiased){ //set true for both grid based and standard displays

double h= 1,s=0,b=1;
dc= dc*scale;
plotCell(dc, gd, cx, cy);
dd=dd*scale;
plotCell(dd, gd, dx, dy);
db=db*scale;
plotCell(db, gd, bx, by);

}else{ //set false for grid based displays only
gd.paintInnerCell(cx,cy,1, Color.green);
gd.paintInnerCell(dx,dy,1, Color.red);
gd.paintInnerCell(bx,by,1, Color.black);

}return right;
}

}
left=subdivide(left,np,LL,L,antialiased);
left=subdivide(left,right,L,LR,antialiased);
return left;

}
static void plotCell(double d,Grid gd,int x,int y){

double h= 1,s=0;
if(d<=1.0){

Color cc= Color.getHSBColor((float)h,(float)s,(float)d);
if(gd!=null)gd.paintInnerCell(x,y,1,cc); else dW.plotPoint(x,y,cc);

}else if(gd!=null) gd.paintInnerCell(x,y,1, Color.white);
else dW.plotPoint(x,y,Color.white);

}

429

Parametric Area Boundary Line Interpolation

The natural extension to a control polyline is a control polygon. If the control
polyline is closed in a loop then it is possible to generate a closed curve. The simplest
scheme, shown in Figure 11.24, is provided by parabolic curves linked with tangent
continuity. A smooth transition between curved segments is achieved by sharing each
control polygon’s first and last line segments between neighbouring curved arcs. This
is done for quadratic curves by entering a polygon, in the way shown in Figure 11.24,
then taking the mid points of its sides as the beginning and end points of a sequence
of control triangles.

Figure 11.24 Control triangles within a polygon to give a closed loop

Figure 11.25 A hand as a piecewise quadratic closed loop

Parametric Area Boundary Line Interpolation

430 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

Figure 11.26 Painting in the cells that might contain line segments

Figure 11.27 Antialiasing using the distance of pixel centres from the line

Using the patterns in Figure 11.23, Figure 11.26 shows a closed loop where the b
pixels are coloured black, and the c pixels coloured green and the d pixels coloured
red. The distance of the centres of these pixels from a locally estimated line position
is then used to calculate a greyscale value for the pixel to give the antialiased version
of the same curve shown in Figure 11.27.

431

Figure 11.28 Closed loops using control polygons: with and without antialiasing

Figure 11.28 shows that this gives a reasonably good result. However, an
alternative slightly more flexible approach to antialiasing these lines, is to calculate
the area of each pixel occupied by pieces of the line. The neighbouring pixel patterns
are again identified but then the proportion of the area of each pixel taken up by the
line sets the greyscale used to plot them. This allows the lines of different widths to
be drawn in Figure 11.29.

The area of the cell occupied by the line is calculated assuming the cell is a unit
square, giving it an area of 1, which will correspond to a fully black pixel. The cell is
then tested against the top and bottom edges of the line to calculate how much of the
cell is outside the line area. Each edge is tested against the vertices of the pixel cell
and this gives two generic patterns either a triangle or a trapezium. Sixteen
relationships between the line and the cell exist depending on whether a cell vertex is
inside or outside the line.

Parametric Area Boundary Line Interpolation

432 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

Figure 11.29 Changing line widths using the antialiasing algorithm

int j=0;
if((d[0])<0)j=j+1; if((d[1])<0)j=j+2; if((d[2])<0)j=j+4; if((d[3])<0)j=j+8;

Figure 11.30 Classifying the relationship between a line edge and the pixel cell

Cells with a J value of 1, 2, 4, 7, 8, 11, 13 and 14 all correspond to a triangular

pattern. The value of J is used as an index to a table giving the end-points of the
cell’s edge-lines that are cut by the line, which are then used to calculate the lengths
of the sides of the triangles. Where the pattern is a triangle the area of the triangle is
given by multiplying these lengths together and dividing by two. Cells with a J value
of 3, 5, 10 and 12 all correspond to a trapezium pattern. In a similar way J is used to

0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0

1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

J=8 J=9J=10J=11J=12J=13J=14 J=15

J=7 J=6J=5J=4J=3J=2 J=1 J=0

1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0

433

static void shadeCell(NTuple ln,double w,Grid gd,int xx,int yy){

double cell =1;
double [] d= new double[4];
double [] x= new double[]{xx-0.5,xx-0.5,xx+0.5,xx+0.5};
double [] y= new double[]{yy-0.5,yy+0.5,yy-0.5,yy+0.5};
double offset = w*Math.sqrt(ln.n[1]*ln.n[1]+ln.n[2]*ln.n[2]);
for(int i=-1;i<2;i=i+2){ //setting top and bottom edges of the line

for(int j=0;j<4;j++) d[j]=((ln.n[1]*x[j]+ln.n[2]*y[j]+ln.n[0]))*i+offset;
int j=0;
if((d[0])<0)j=j+1; if((d[1])<0)j=j+2; if((d[2])<0)j=j+4; if((d[3])<0)j=j+8;
switch(j){

case 0: break;
case 1: case 2: case 4: case 8: cell=cell-area(d,x,y,j,1); break;
case 7: case 11: case 13: case 14: cell=cell-1+area(d,x,y,j,1); break;
case 3: case 5: cell=cell-area(d,x,y,j,2); break;
case 10: case 12: cell=cell-1+area(d,x,y,j,2); break;
case 15: cell=cell-1;break;

}
}
if(cell>0)plotCell(1-cell,gd,xx,yy);

}
static double area(double[] d,double[] x,double[] y,int j,int n){

int [][]k=new int[][]
{{0,0,0,0},{0,2,0,1},{1,3,1,0},{0,2,1,3},{2,0,2,3},{0,1,2,3},{0,0,0,0},{3,1,3,2}};

if(j>7)j=15-j;
int [] i = k[j];
double d1=0,d2=0;
if(n==1){

d1= d[i[0]]*(x[i[1]]-x[i[0]])/(d[i[0]]-d[i[1]]);
d2= d[i[2]]*(y[i[3]]-y[i[2]])/(d[i[2]]-d[i[3]]);
return Math.abs(d1*d2/2);

}else if(j==3){
d1= d[i[0]]*(x[i[1]]-x[i[0]])/(d[i[0]]-d[i[1]]);
d2= d[i[2]]*(x[i[3]]-x[i[2]])/(d[i[2]]-d[i[3]]);

}else{
d1= d[i[0]]*(y[i[1]]-y[i[0]])/(d[i[0]]-d[i[1]]);
d2= d[i[2]]*(y[i[3]]-y[i[2]])/(d[i[2]]-d[i[3]]);

}return Math.abs((d1+d2)/2);
}

select the pairs of end points of the edge lines of the cell that are cut by the line. This
allows the length of the sides of the trapezium to be calculated, and adding these two
lengths together and dividing the result by two provides its area. In Figure 11.30, the
side of the line that is shaded yellow determines the area of the pixel that lies inside
the line. In case J=1 the triangle area lies outside the line’s edge, whereas the area
outside the edge of the line in the matching pattern given by J=14, lies on the other
side of the edge and is one minus the triangle area. The same applies to the matching

Parametric Area Boundary Line Interpolation

434 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

pairs of patterns given by J and 15-J classification values. Subtracting the outside
areas for the two edge lines of the curve determines the area of each pixel occupied
by the curve and hence the pixel’s greyscale.

Thick Parametric Lines

Where the resolution of the display is high then the need for this kind of antialiasing
treatment is less severe. In this context, for most applications, thick lines will replace
single pixel-wide lines. A simple approach to thick line rendering can be achieved by
plotting a series of overlapping squares over the pixel positions. This involves
duplicate pixel plotting but is simple to implement. There is however an upper limit
to the size of the squares used before the line can be seen to change width with
orientation. One solution to this difficulty is to change the square to a rectangle that is
adjusted so that its diagonal is perpendicular to the line and is set to the line width
required. Figures 11.31 and 11.32 show the differences between the two approaches.

Figure 11.31 Replace pixel points by overlapping squares

Figure 11.32 Replace squares by overlapping scaled rectangles

435

static Point subdivide(Point left,Point right,double LL,double LR,int j,Color cc){

boolean looptest = false;
int idx = (left.rx()-right.rx()), idy= (left.ry()-right.ry()), dix = idx*idx, diy=idy*idy;
if((dix<=1)&&(diy<=1)) looptest = true;
double L = (LL+LR)/2; Point np =node(L);
int jdx = (left.rx()-np.rx()), jdy= (left.ry()-np.ry()), djx = jdx*jdx, djy=jdy*jdy;
if(looptest&&(djx<=1)&&(djy<=1)){
 looptest = false;

if(((dix<=1)&&(diy==1))||((dix==1)&&(diy<=1))){
if (j==0)dW.plotPoint(right.rx(),right.ry(),cc);
else if(j>0) {

double A=left.yd()-right.yd(), B=right.xd()-left.xd();
double norm = Math.sqrt(A*A+B*B);
double w = j*Math.abs(A)/norm;
double h = j*Math.abs(B)/norm;
int xx = (int)(right.rx()-w/2.0);
int yy = (int)(right.ry()-h/2.0);
dW.plotRectangle(xx,yy,(int) w,(int)h,cc);

}
else dW.plotRectangle((int)(right.rx()+j/2.0),(int)(right.ry()+j/2.0),-j,-j, cc);
return right;}

if((dix==0)&&(diy==0))return left;
}
left=subdivide(left,np,LL,L,j,cc);
left=subdivide(left,right,L,LR,j,cc);
return left;

}

Infilling Areas “Inside” Parametric Line Boundaries

Once a closed boundary has been created then it is possible to apply an area fill
procedure to the shape. The same general approach explored in chapter 10 should be
applicable. Merge sorting the pixel sequence should provide the ordered pairs needed
to define scan lines. Again there are the options for filling in the areas that include or
exclude the boundary line, and the intermediate scheme where the ends of scan lines
are placed as close to the true boundary line as possible.

The most flexible and useful approach is to fill the area inside the boundary-line
since this allows the boundary to be rendered in a different colour or the same colour
as the interior. It also allows adjacent areas with shared edges to be filled in without
overwriting an existing boundary line should this be necessary. At the least it allows
the matter to be a choice depending on the application. Again it is the special cases
that need to be studied, since a simple application of sorting and pairing will break
down. Whether a particular pixel is the beginning or the end of an area-fill scan line
depends on its neighbours in boundary drawing order. Taking a point’s two
neighbours would seem to provide the minimum local information needed to process
a given pixel boundary point. However, area fill requires both global and local
properties to be taken into account.

j

j

j
h

w

Infilling Areas “Inside” Parametric Line Boundaries

436 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

Line Segment Orientation Patterns

j=0; if(ax<bx) j=j+1; if(ax==bx) j=j+2; if(ay<by) j=j+3; if(ay==by) j=j+6; switch(j){}

Figure 11.33 last point current point next point

Starting with the detail: the table in Figure 11.33 shows all the local relationships

that can exist between any three neighbouring pixels in a boundary. If these three
neighbouring points are treated as two line segments then there are eight orientations
for each line segment, giving 64 relationships that need to be analysed.

0

1

2

3

7

6

5

4

0 1 2 3 4 5 6 7 next

last

437

Figure 11.34 last point current point next point scan-line point

The directions of the lines are shown by the colour-code for the pixels given

below the table. The table is itself colour coded to show groups of relationships that
demand the same or a similar treatment. Given a clockwise rotation round the
“interior”, the pink block in rows and columns 0, 1, 2 correspond to left-hand
boundary pixels where the pale yellow block in rows and columns 3, 4, 5 contain the
right-hand boundary line pixels. The green blocks identify the pixel sequences that
will generate a single infill pixel on a scan line that will need special treatment.
Columns and rows 6 and 7 contain horizontal pixel sequences that will occupy the

last

+1

-1

+1 +1

+1

-1

-1 -1

-1 -1 -1

-1 -1 -1

-1

-1

-1 -1 -1 -1
-1

-1

-1

-1 -1

+1

+1
+1

+1

+1

+1

+1 +1

+1 +1 +1

+1 +1

+1

+1

+1

+1

0 1 2 3 4 5 6 7 next

0

1

2

3

7

6

5

4

Line Segment Orientation Patterns

438 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

same scan line. These also require different treatment to the standard infill operation.
The table given in Figure 11.34 shows the selection of boundary points needed to
define the infill scan lines that will provide full shading covering the interior of a
simple area and its boundary. Assuming a clockwise boundary order round an area’s
interior, the beginning and end points of infill scan lines are shown circled in blue.
When these points are sorted into coordinate or raster order from their boundary
order then they can be paired up to define infill scan-line segments. This is done by
the procedure called “shade(..)” in the code segment given below. This successfully
fills shapes of the form shown in Figure 11.35a.

Figure 11.35 Area fill over non self-crossing and self-crossing boundaries

boundary
edge-points
remaining
uncovered

a

b

439

static void fill(Point[] pnt,int[] dir, int cpnt, Color c1, Color c2){

int length = cpnt, jj=0;
Point [] boundary = new Point[length+2];
pnt[length]= pnt[0]; pnt[length+1]= pnt[1];
length=length+2;
for(int i=0;i<length;i++){ dW.plotPoint(pnt[i],Color.black); }
for(int i=2;i<length;i++){ // point order c--a--b

int cx = pnt[i-2].xi(),ax = pnt[i-1].xi(),bx = pnt[i].xi();
int cy = pnt[i-2].yi(),ay = pnt[i-1].yi(),by = pnt[i].yi();
int k=0;if(cx<ax)k=k+1;if(cx==ax)k=k+2;if(cy<ay)k=k+3;if(cy==ay)k=k+6;
int j=0;if(ax<bx)j=j+1;if(ax==bx)j=j+2;if(ay<by)j=j+3;if(ay==by)j=j+6;
if(((j<3)||(j==7))&&((k<3)||(k==6))){ // up

Point pt = new Point(2);
pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag= 1; jj++;

} if((j>2)&&(j<7)&&(k>2)&&(k!=6)){ // down
Point pt = new Point(2);
pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag= -1; jj++;

} switch(k*8+j){
case 24 : case 26 : case 40 :

Point pt = new Point(2);
pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag = -1; jj++;
pt = new Point(2);
pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag = +1; jj++; break; //down up

case 12 : case 13 : case 20 :
pt = new Point(2);
pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag = +1; jj++;
pt = new Point(2);
pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag = -1; jj++; break; //up down

}
}Point[] s = reorderBoundaryPoints(boundary,jj);
shade(s,Color.green); dW.getCoord();
shade(s,Color.white);
for(int i=0;i<length-2;i++){ dW.plotPoint(pnt[i],Color.white);}dW.getCoord();
shade(s,0,Color.pink); dW.getCoord();
for(int i=0;i<length-2;i++){dW.plotPoint(pnt[i],Color.black);}

}
static void shade(Point[] s,Color cc){

if(s!=null){
for(int i=0; i<s.length; i=i+2){ dW.plotLine(s[i],s[i+1],cc); }

}else IO.writeString("no scan array");
}

Line Segment Orientation Patterns

440 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

static void shade(Point[] s,int dummy,Color cc){

if(s!=null){
int i=0;int cnt = 0; int y1=0,y2=0; Point p1=null,p2=null;
while(i<s.length){

while((i<s.length)&&(cnt<=0)){
cnt=cnt+s[i].tag; p1=s[i]; y1=s[i].yi(); i++;
if(i<s.length) y2=s[i].yi();

}while((i<s.length)&&(y1==y2)&&(cnt>0)){
p2=s[i]; cnt=cnt+s[i].tag; i++;
if(i<s.length)y2=s[i].yi();

}if(p1.yi()==p2.yi())dW.plotLine(p1,p2,cc);
if(y1!=y2) cnt=0;

}
}else IO.writeString("no scan array");

}
static Point[] reorderBoundaryPoints(Point[]b,int jj){

int i = 0, j=0, starty=0, endy=0, starti=0, endi=0, len=0, num=0;
if(b == null)return null;
Point[] changeArray = null , newArray = null, oldArray = null;
while(i < jj){

if((i < jj)&&(b[i].tag<0)){
endi = starti = i;
while((i < jj)&&(b[i].tag<0)){dW.plotPoint(b[i++],Color.blue);}
endi = i; num = endi-starti;
changeArray = new Point[num];
for(int k=0;k<num;k++){changeArray[k]=b[starti+k]; }

}else if((i < jj)&&(b[i].tag>0)){
starti= endi = i;
while((i < jj)&&(b[i].tag>0)){dW.plotPoint(b[i++],Color.blue);}
starti = i; num = starti-endi;
changeArray = new Point[num];
for(int k=0;k<num;k++){ changeArray[k]=b[starti-k-1]; }

}
oldArray = newArray; newArray = merge(oldArray,changeArray);

}
return newArray;

}

If the aim is to cover all boundary as well as interior points of simple areas, the
classification of scan line end points given in Figure 11.34 is sufficient. This
selection of points is also adequate for an alternative infill strategy that gives the
“silhouette” shading needed for three-dimensional surface boundaries when they are
projected onto a display surface. An algorithm purely based on processing a pixel
sequence in boundary order cannot provide the on-off area fill algorithm for self
crossing boundary lines, without some of the boundary pixels from a previously
drawn boundary line showing through, in the way shown in Figure 11.35b and
11.36a.

441

The On/Off strategy provides the simplest way to fill a non self-crossing area
boundary. However, another approach is possible based on the orientation of the
boundary segments that are cut by each infill scan line. Where a boundary does not
cut itself the directions of these segments alternate along the scan line matching the
On/Off cycle. Where a clockwise rotation round an area is employed to define its
interior, the left edge cut by an infill scan-line will have an upward direction whereas
the end or right hand edge will be cut by an edge with a downward direction. In
contrast where the boundary intersects itself it is possible for an “off” step to align
with cutting an “up” edge segment and for “on” steps to correspond with “down”
segments, again assuming a clockwise order round the interior of the area.

Figure 11.36 On-Off and silhouette or winding number area fill

The silhouette or winding number approach adds up the number of “up” crossing
points and subtracts the number of “down” crossing points taken to reach each region
within a self-crossing boundary. Where this count is less than or equal to zero the
scan line is switched off where it is positive the infill line is switched on.

In Figure 11.34 the selected points have been given an “up” or “down” value of +1
or –1. If these tag values are carried with the points when they are sorted into raster
order, then it is possible to write a new “shade(..)” procedure also given above,

b

a

Line Segment Orientation Patterns

442 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

(overloading the function name), which by creating a running total of these tag values
along each scan line is able to implement this alternative approach. Where the total is
less than or equal to zero no line is drawn, when it is greater than zero the scan line is
filled in. The result of this approach is shown in Figure 11.36b for a pink shaded
shape. In Figure 11.36a the same shape with the same boundary is filled using the
previous On/Off algorithm. This illustrates that, when the boundary cuts itself,
boundary points can remain uncovered.

In order to get an On/Off algorithm that can cover the boundaries of a self-
crossing boundary, in a consistent way, requires a further extension to this counting
approach shown in the code segment given below. It is the treatment of horizontal
sequences of boundary pixels along a scan line that creates the problem with the
On/Off treatment of self-crossing boundary lines. The boundary order will
consistently select the end of such a horizontal sequence based on local boundary
order in a way that is suitable for the silhouette algorithm, where the selection in the
case of the On/Off approach has to depend on the context set up by the overall
arrangement of the boundary line. This global structure only emerges at the scan line
level after raster sorting the points.

Consequently both ends of horizontal boundary point sequences need to be
selected at the boundary order stage, as shown in Figure 11.37, and which end of
such a sequence is used to define scan infill lines must be left to the “shade (..)” fill
procedure. Selection in the “shade(...)” fill procedure can be done by extending the
counting procedure employed in the silhouette fill algorithm. When a horizontal
sequence of boundary points occurs following a simple sequence of up or down
points, the next step can be either up or down. It is only when the two end
relationships to the horizontal sequence are obtained that it is clear whether there is to
be a cut in the infill line. Consequently if each point triple in Figure 11.37, which
contains a horizontal pair is given a value of plus a half or minus a half, depending on
the third point, then in a scan line sequence: two half ups will give a full up-
intersection whereas an up and a down will indicate a horizontal tangent line.

static void shade(Point[] s,int dummy,Color cc){

if(s!=null){
int i=0;int cnt = 0; int y1=s[0].yi(),y2=0;
Point p1=null,p2=null;
while(i<s.length){

while((i<s.length)&&(y1==s[i].yi())&&(cnt%4<=0)){cnt= cnt+s[i].tag;i++;}
p1=s[i-1];
while((i<s.length)&&(y1==s[i].yi())&&(cnt%4>0)){cnt=cnt+s[i].tag;i++;}
p2=s[i-1];
if(p1.yi()==p2.yi()) dW.plotLine(p1, p2,cc);
if(i<s.length)y2=s[i].yi();
if(y1!=y2){ cnt=0;y1=y2;}

}
}else IO.writeString("no scan array");

}

443

static void fill(Point[] pnt,int[] dir, int cpnt, Color c1, Color c2){

int length = cpnt; int jj=0;
Point [] boundary = new Point[length+2];
pnt[length]= pnt[0];
pnt[length+1]= pnt[1];
length=length+2;
for(int i=0;i<length;i++){dW.plotPoint(pnt[i],Color.black);}
for(int i=2;i<length;i++){ // point order c--a--b

int cx = pnt[i-2].xi(),ax = pnt[i-1].xi(),bx = pnt[i].xi();
int cy = pnt[i-2].yi(),ay = pnt[i-1].yi(),by = pnt[i].yi();
int k=0;if(cx<ax)k=k+1;if(cx==ax)k=k+2;if(cy<ay)k=k+3;if(cy==ay)k=k+6;
int j=0;if(ax<bx)j=j+1;if(ax==bx)j=j+2;if(ay<by)j=j+3;if(ay==by)j=j+6;
if((j<3)&&(k<3)){ // up

Point pt = new Point(2); pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag= 2; jj++;

}if(((j<3)&&(k>5))||((j>5)&&(k<3))){ // up
Point pt = new Point(2); pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag= 1; jj++;

}if(((j>2)&&(j<6)&&(k>5))||((k>2)&&(k<6)&&(j>5))){ // down
Point pt = new Point(2); pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag= -1; jj++;

}if((j>2)&&(j<6)&&(k>2)&&(k<6)){ // down
Point pt = new Point(2); pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag= -2; jj++;

}
switch(k*8+j){
case 24 : case 26 : case 40 :

Point pt = new Point(2); pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag = -2; jj++;
pt = new Point(2); pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag = +2; jj++; break; //down & up

case 12 : case 13 : case 20 :
pt = new Point(2); pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag = +2; jj++;
pt = new Point(2); pt.n[1]=pnt[i-1].n[1]; pt.n[2]=pnt[i-1].n[2];
boundary[jj]= pt; boundary[jj].tag = -2; jj++; break; //up & down

}
}
Point[] s = reorderBoundaryPoints(boundary,jj);
for(int i=0;i<s.length;i++){

if((i>1)&&(s[i-1].tag==s[i].tag)&&(!compare(s[i-1],"<=",s[i]))){
Point temp =s[i-1]; s[i-1]=s[i];s[i]=temp;

}
}
shade(s,0,Color.pink);

 for(int i=0;i<length-2;i++){ dW.plotPoint(pnt[i],Color.black); }
}

Line Segment Orientation Patterns

444 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

Figure 11.37 last point current point next point scan-line point

To keep the tag values as integers, if the half values are given as one then the

standard cut values will have to be plus or minus two in the way shown in Figure
11.37. The “shade(..)” procedure by taking the running total modulo four can
generate an On/Off infill line. Drawing a line where this value is not zero and leaving
a space where it is zero gives the result shown in Figure 11.39a with the boundary
points totally over written and in Figure 11.39b where a new boundary has been
redrawn on top of the shading. Figure 11.38 illustrates the boundary order
relationships that can be used for a shading algorithm that simply fills in the area

last

next 0 1 2 3 4 5 6 7

+1 -1 +1 +1

+1 +1 +1

-1
-1

-1
-1

-1

-2 -2 -2

-2 -2 -2

-2 -2 -2 -1 -1

-1 -1

-1 -1

+1
+1

+1 +1

+1 +1

+2 +2 +2

+2 +2 +2

+2 +2 +2

-1 +1

+1 -1

+1 -1

-1 +1

-1 +1 -1 +1

0

1

2

3

7

6

5

4

445

Figure 11.38 last point current point next point scan-line end point

inside a boundary line, where there are no spurs or what are sometimes called
hanging edges. These occur where forward and backward boundary line sequences
coincide. The ends of spurs are indicated by the relationships colour coded yellow in
Figure 11.38. If hanging edges occur one approach is to treating them as line features
and remove them before shading the rest of the area, allowing them to be ignored in
the table as only occurring by error. Two coincident boundary lines in opposite
directions will not be apparent at the boundary order stage, except where they create
end spurs. These end spur relationships can be used to match up coincident points

next

last

0 1 2 3 4 5 6 7

0

1

2

3

7

6

5

4

Line Segment Orientation Patterns

446 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

leading up to and following from them, in a pre-processing step to remove them. End
spurs occur in the same group of relationships containing singleton boundary points.
When singleton boundary points are encountered two points have to be generated for
the scan fill stage developed above to operate correctly. For infill giving total cover
such an identical pair when it is outside the main area as a spur will cause a single
point to be painted in, but where the spur is inside it will cause the two points to be
painted on top of each other.

When the infill algorithm only aims to fill the internal areas of the shape this gets
more difficult. The cells in Figure 11.38 indicate two blue coded points are generated
for one directional ordering of boundary points but none for the other, but it is not
possible to tell which way the two lines in the spur relate to each other from the pixel
level information alone. The capability to shade only inside the boundary line is
important where, when shading a tessellated region, shared edges between tiles need
to be processed independently from the interior shading.

Figure 11.39 An On/Off infill algorithm for self-crossing boundaries

There is a different approach. The algorithms explored above remove sequences
of horizontal boundary points, only working with the beginning and end of such
sequences. If all boundary points are included in the data passed to the scan-line
shade() procedure, it is possible to use the different ordering of the points after raster
ordering to simplify the task. Because all the boundary points are passed to this stage
of the process it is easy to plot or not plot these points as needed, and to generate the
infill points between these points using the previous classification obtained from the
boundary order stage. In fact by changing the coding at this stage it is possible to
simplify the first stage in the way shown in Figure 11.40. The main blocks stay the
same. The change is to the blocks containing singleton corner points lying on a scan
line. This can be done because they are by definition boundary points and all
boundary points are treated in the same way in the new scan line shade() procedure.
With a tag value of zero where before they had two values which cancelled each
other out, they do not affect the running total along the scan line that is used to switch
the fill-line on or off. The major change to the program is that all the boundary points
have to be sorted into raster scan order not just change points.

a b

447

Figure 11.40 Alternative classification of boundary point sequences

static void shade(Point[] s,int dummy,Color cc,Color cb){

if(s!=null){
int i=0,j=0,cnt = s[i].tag;
Point sb=s[i],eb=s[i]; Point ss= new Point(2); Point es= new Point(2);
int liney = s[i].yi();i++;
while(i<s.length){

j=0;
if(s[i-1].xi()==s[i].xi())j=j+1; if(s[i-1].xi()==s[i].xi()+1)j=j+2;
if(s[i-1].xi()==s[i].xi()-1)j=j+3; if(s[i].yi()!=liney)j=j+4;
switch(j){

case 0:
dW.plotLine(sb,eb,cb);
if(cnt/2%2!=0){ // On/Off test

ss.n[1] = s[i-1].n[1]+1; ss.n[2] = s[i-1].n[2];
es.n[1] = s[i].n[1]-1; es.n[2] = s[i].n[2];
dW.plotLine(ss,es,cc);

}sb = eb = s[i]; cnt=cnt+s[i].tag; break;
case 1: case 2: case 3:

eb=s[i]; cnt = cnt+s[i].tag; break;
case 4: case 5: case 6: case 7:

dW.plotLine(sb,eb,cb);
cnt =s[i].tag; sb = eb = s[i]; liney = s[i].yi(); break;

}i++;
}
dW.plotLine(sb,eb,cb);

}
else IO.writeString("no scan array");

}

int tg=0;
if(j<3)tg=tg+1;
else if(j<6)tg=tg-1;
if(k<3)tg=tg+1;
else if(k<6)tg=tg-1;

j
k

+1 −1 0

+1

0

−1

+2

−2

0

0

+1

+1

−1

−1

0

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Line Segment Orientation Patterns

448 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

static void fill(Point[] pnt, int length, Color c1, Color c2){

int jj=0;
Point [] boundary = new Point[length+2];
for(int i=2;i<length;i++){ // point order c--a--b

int cx = pnt[i-2].xi(), ax = pnt[i-1].xi(), bx = pnt[i].xi();
int cy = pnt[i-2].yi(), ay = pnt[i-1].yi(), by = pnt[i].yi();
int k=0; if(cx<ax)k=k+1; if(cx==ax)k=k+2;
if(cy<ay)k=k+3; if(cy==ay)k=k+6;
int j=0; if(ax<bx) j=j+1; if(ax==bx) j=j+2;
if(ay<by)j=j+3; if(ay==by) j=j+6;
int tg=0;
if(j<3) tg=tg+1; else if(j<6) tg=tg-1;
if(k<3) tg=tg+1; else if(k<6)tg=tg-1;
boundary[jj]= pnt[i-1]; boundary[jj].tag=tg;
jj++;

}
boundary[jj]=boundary[0];jj++;
Point[] s = reorderBoundaryPoints(boundary,jj);
for(int i=0;i<length-2;i++){ dW.plotPoint(pnt[i],Color.gray);}
shade(s,0,c1,c2);

}

static Point[] reorderBoundaryPoints(Point[] b, int jj){

int i = 0, j=0, starty=0, endy=0, starti=0, endi=0, len=0;
if(b == null)return null;
Point[] changeArray = null , newArray = null, oldArray = null;
while(i < jj-1){

if((i < jj-1)&& compare(b[i],"<=", b[i+1])){
starti = i;
endi = i+1;
while((i < jj-1)&& compare(b[i],"<=", b[i+1])){ i++; endi = i; }
int num = endi-starti;
changeArray = new Point[num];
for(int k=0;k<num;k++){changeArray[k]=b[starti+k]; }

}else{
starti= i+1;
endi = i;
while((i < jj-1)&& compare(b[i],">=", b[i+1])){i++; starti = i; }
int num = starti-endi;
changeArray = new Point[num];
for(int k=0;k<num;k++){ changeArray[k]=b[starti-k-1]; }

}
oldArray = newArray;
newArray = merge(oldArray,changeArray);

}
return newArray;

}

449

Figure 11.41 Shaded self intersecting, curved, boundary loop

Figure 11.42 Winding number shaded self-intersecting polygon with spurs and inlets

Figure 11.43 On/off shaded self-intersecting polygon with spurs and inlets

The final version of this infill algorithm will process self-intersecting curved
boundary loops in the way shown in Figure 11.41. It will also handle all the
variations of polygon shading discussed in chapter 10. In Figure 11.42 a self-
intersecting polygon boundary is shaded using the winding number approach,
showing boundaries left uncovered and also covered. In Figure 11.43 the same
polygon is shown but filled in using the on/off approach, again with the boundaries
uncovered and covered.

Figure 11.44 Shaded, curvilinear, morphed, sequence

Line Segment Orientation Patterns

450 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

Figure 11.45 The rabbit and the fox

Figure 11.46 Shaded, curvilinear, morphed, rabbit to fox

Inbetweening control polygons, and then interpolating curved boundaries allows

the sequences shown in Figures 11.44 and 11.46 to be created. Comparing the images
in Figure 11.45 and 11.46 it can be seen that the mapping of polygon control points
from the rabbit to the fox and from the fox to the rabbit generates many more line
segments in the control polygons. This results in the curved sequences being shorter
and more straight-line sections appearing compared with the independently
interpolated shapes in Figure 11.45. However, it is possible to implement this
morphing operation in a variety of other ways using the elements developed in this
chapter. In many cases inbetweening images matching separately linked boundary
pieces can give a better control of a resulting morphed animation sequence.

The elements explored in this chapter make it possible to construct an animated
sequence from curved-boundary, shaded areas. However, the motion between key-
frames is limited to that determined by the interpolation process. To get a more
flexible range of movements more powerful mathematical structures need to be
introduced to provide the way the necessary spatial or geometrical operations can be
expressed in computer program statements.

451

Algebra: Formal Structures and Operations

The processes in this chapter depend on mathematical operations, which involve
structural changes to the data, obeying rules that ensure the resulting data still
represent correct information. A simple example, for an arithmetic expression, is

42 × : which by using a multiplication look-up table can be replaced by 8. In
algebraic expressions various swapping rules can be used depending on the context.

Where the order of operands does not affect the outcome an operation is said to
commute:

a . b = b . a

This is clearly true for addition and multiplication but is not true for subtraction
and division.

 45 54but 945 54 −≠−=+=+

In sequences of binary operators, where an operator is both left and right
associative the order of execution does not change the result:

(a . b) . c = a . (b . c).

This is true for addition and multiplication

 a + b + c : (3+5)+2 = 8+2 = 11 = 3+(5+2) = 3+7

but is not true for subtraction nor is it true for division

 a – b – c : (5-3)-2 = 2 – 2 = 0, but 5 – (3-2) = 5 – 1 = 4

 a / b / c : (12 / 6) / 2 = 2 / 2 = 1 but 12 / (6 / 2) = 12 / 3 = 4.

Using Equations

The relationship between variables where they are interdependent can often be
expressed by an equation. For example the relationship between the x value and the y
value of the coordinates of points lying on a line can be expressed by the line’s
equation. However, in order to use equations for programming it is necessary that
unknown variables are moved to one side of the equation and known variables and
values are moved to the other. This is a standard manipulation used to solve simple
equations.

A variable or value being used to multiply the right side of an equation can be
moved to the left side but the left side has to be divided by the variable rather than
being multiplied by it.

() () () ()85 . 85 −=
−

→−=− y
x

xxyx

When processing an equation, by definition, the same operation must to be carried

out to each side of the equation for the relationship it represents to remain true.

Using Equations

452 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

Dividing both sides by the variable implements this rule. However a variable
multiplied by its reciprocal, in other words divided by itself, gives unity, which
multiplies to leave the right side of the equation with the variable removed.

() () () () () ()85 1 . . 81 . 5 . 85 −=
−

→−=−→−=− y
x

x
x

xy
x

xxyx

The reciprocal of a variable is its inverse relative to the multiply operator. The

same ideas apply to addition. There are two ways of viewing the relationship between
both multiplication and division, and addition and subtraction. In this case the
addition of the inverse value involves adding the negated variable. This gives zero
when combined with the original variable, and so adding zero for addition is
equivalent to multiplying by one in the case of multiplication.

Consider the equation:

xxxxxx =→=→−=−→−=− 7 321 241239)42.(639

This apparently complicated way of presenting these operations allows the process
to be generalised to manipulate equations that contain matrix elements.

Matrix Operations

A matrix is an array of values that can be operated on in a similar way to simple
variables that only have a single value. Two matrixes that have the same structure
and size can be added together:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

hdgc

fbea

hg

fe

dc

ba

They can also be multiplied together:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

hdfcgdec

hbfagbea

hg

fe

dc

ba

....

....

Each row in the first matrix is multiplied by each column in the second matrix,

where the row-column multiplication follows the following rule:

[] dbca
d

c
ba .. +=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×

Notice that the row column order is important:

[]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

dbcb

daca
dc

b

a

..

..

453

Matrix multiplication does not commute. This is illustrated in the next chapter by
the way the order in which rotation matrices are multiplied cannot be reversed, and
still obtain the same outcome

[] [] [] []ABBA . . ≠

This directional convention in carrying out the internal multiplication operations
obeys the following pattern:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

•

•

•

•

•

•

•

•

•

•

•

•

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

••••

••••
×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

•

•

•

•

•

•

Matrix Equations

The equation of a line through the origin of the coordinate system can be expressed
by the matrix equation:

[] 0.. . =+=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ybxa

b

a
yx

The equation of a line that does not pass through the origin can be handled in a

similar way by introducing the homogenous coordinate. This will be discussed more
fully in the next chapter, however, in this context it consists of converting the two
dimensional coordinate column matrix into a three dimensional matrix by adding a
third element of 1 in the way shown in the equation:

[] 0..

1

=++=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

× cybxay

x

cba

Formally this merely ensures the two matrixes match so they can be multiplied
together.

Manipulating Matrix Equations

Given an equation of the form:

[] []YX
dc
ba

yx
A

=⎥
⎦

⎤
⎢
⎣

⎡
 .

Where the values of a, b, c, d, X and Y are known how can x and y be evaluated? If

[A] could be treated as a simple variable, then dividing both sides of the equation by
[A] would transfer the unknowns to one side of the equation. Matrix division does not

n

m

m n

k k

Manipulating Matrix Equations

454 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

exist, but an equivalent operation can be expressed as the multiplication by an inverse
matrix to obtain the same reordering of the equation.

[] [] [] []

[] []
1

111

 .

 .
10
01

−

−−−

⎥
⎦

⎤
⎢
⎣

⎡
=→

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
→⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

dc
ba

YXyx

dc
ba

YXyx
dc
ba

YX
dc
ba

dc
ba

yx

Rearranging matrix equations requires the idea of an inverse of a variable relative

to an operator. Expressing operations in terms of a standard set of algebraic
operations allows a series of simple procedures to be written to spatially rearrange
objects represented by sets of points.

The algebraic properties of the matrix-structure, allows it to be used to manipulate
other entities than point coordinates. This is a consequence of a duality of form in the
representation of points and other spatial objects. For example, in two dimensions
using homogeneous coordinates the point and the line, as data structures are 3-tuples.
The three numbers that define the coefficients of a line’s equation not only can be
used to represent a line but support similar operations to those applied to point
coordinates. This can be illustrated by the relationship between the linear
combination of the 3-tuples representing these two spatial objects.

Figure 11.47 Dual interpolation of points and lines

In the case of two points this operation, linearly combining their coordinates,
creates new points interpolated on the straight line between the original points, in the
case of two lines, a linear combination of their coefficients creates a new line passing
through the intersection point where the two original lines cross. A similar dual
relationship occurs in three dimensions, only in this case, the duality of structure and
operations link points and planes: both represented by 4-tuples. The application of
this form of interpolation or inbetweening has already been introduced in this
chapter. It is also the basis for constructing more complex shapes by sweeping lines
and areas through space to create new areas and volumes respectively. The
application of this approach to volume building will be explored in a later chapter.

λ

1−λ

A1

A2

A

() 2 . 11 . AAA λ−+λ=

1−λ

λ

P2

P1

P

() 2 . 11 . PPP λ−+λ=

455

The Determinant of a Matrix

Another important operation that can be carried out on a square matrix is to calculate
its determinant. This pattern of calculations has a variety of applications again
explored in the next chapter. A two dimensional matrix when treated as a determinant
expresses the following expansion:

cbda
dc

ba

dc

ba
..

det
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

This pattern is extended for a three dimensional matrix in the following recursive

or nested way:

hg

ed
c

kg

fd
b

kh

fe

khg

fed

cba

khg

fed

cba

..a.
det

+−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

→
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

where

hfakea
kh

fe
a. −=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
 gfbkdb

kg

fd
b. −=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
 gechdc

hg

ed
c. −=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

An important property of this operation is that the determinant of the product of
two matrices is the product of the determinants of the individual matrices.

[] [] [] []

()() ()()

[]

()() hebcfgdafgbchedafgehbcad
hg

fe

dc

ba

hebcfgdafgbcheda

gdhbechbgdfaecfahdgbfcgbhdeafcea

gdechbfahdfcgba.e
hdfcgdec

hbfagba.e

hg

fe

dc

ba

hg

fe

dc

ba

hg

fe

dc

ba

BABA

............. .

............

........................

.........
....

...
 .

 . .

dimensions in two

 . .

−−+=−−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−+=

+++−+++=

++−++=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=

The order in which rows and columns are entered into a matrix affect the value of

its determinant. Swapping two rows or two columns negates the value of the
determinant.

The Determinant of a Matrix

456 11 Parametric Line Interpolation & Keyframe Infill “Inbetweening” Film Animation

2 1

2...............

1...............

DD

Dgbfhafgceiaehcdibd
hg

ba
f

ig

ca
e

ih

cb
d

ihg

cba

fed

Dgechdcgfbidbhfaiea
hg

ed
c

ig

fd
b

ih

fe
a

ihg

fed

cba

−=∴

=−++−−=+−=

=−++−−=+−=

Where a point is interpolated between two other points on a straight line its

elements are the linear combination of the two original point coordinates. If these two
points and their interpolated value are placed in a matrix then the determinant of the
matrix is zero. This property can be used to show that three points are not linearly
independent but lie on a line.

() ()

() () () ()

()() ()()
()() ()()

0
2.22..21..22.22..21..2

2.12..11..12.12.12..11..121

2.11..22.11..2
2.11..12.12.11..121

2.11.2.11.

22

12.11.

12
1

12.11.

12
.1

1211.211.

122

111

 2

1

=
−λ+λ−+λ−λ+

+λ−λ+−−λ+λ−=

λ−+λ−λ−+λ+
λ−+λ+−λ−+λ−=

λ−+λλ−+λ
+

λ−+λ
−

λ−+λ
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

λ−+λλ−+λ

≡
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

xyxyxyyxyxyx
xyxyxyxyyxyxyx.yx

xxyyyx
xxyxyyyx.yx

yyxx

yx

xx

x
y

yy

y
x

yyxx

yx

yx

p

p

p

In a similar way the determinant of the three sets of line equation coefficients

from lines that pass through a common point is also equal to zero.

()() ()() ()()
0

1.1.1.

 2

1

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

λ−+λ=λ−+λ=λ−+λ=

≡
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

fckebhdag

fed

cba

A

A

A

In the next chapter further mathematical operations that can be used to move and

manipulate the shape of object made up from collections of points and lines are
examined further

x

y

Right Handed System

Origin

z

P

12
Geometry, Algebras,
Co-ordinate Systems,
and Transformations

Introduction

The task in this chapter is to explore the way the formal structure of a language, or
mathematical algebra system can be used to represent geometry; in other words
spatial properties, and support spatial operations on them. Attempts to do this can be
traced at least as far back in history as the early Egyptian civilisation on the banks of
the Nile, possibly even earlier. There appears to have been two motivating forces to
this development in Egypt. Firstly, the desire to maintain coded records and laws, by
an educated priestly civil service, and secondly the need to use these records to re-
establish accurate property boundaries for land, that was periodically inundated by
river flooding, often totally removed existing boundary markings. Among other
things, this provided a continuing, sound basis for tax gathering. How could the
correct spatial structure of land ownership be specified in non-ambiguous statements
acceptable in a legal document that would allow it to be correctly reinstated
whenever required? Even when limited to a primitive tool such as a measuring line,
it was possible to define complex relationships between sets of points by defining
each point using a collection of measurements from fixed landmarks in the
environment that were not changed by the flooding.

Representing Point Locations

If a single point landmark is given then simple geometry indicates that one
measurement can determine a circle of points. Two landmarks allow two
measurements to define two circles. Where these intersect, if they do, it is possible to
define two points. A third landmark, appropriately placed, gives three distances, and
this permits a location to be unambiguously specified. This scheme is illustrated in
Figure 12.1 and uniquely defines a point on a surface by three numbers. It is self

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_12, © Springer-Verlag London Limited 2008

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

evident that these measurements must be ordered and the order must be related to a
defined sequence of landmarks in a reference list. This reference framework sets up
a co-ordinate system. It can be considered as a form of abstract jig. Standard
sequences of measurements relative to such a jig or framework can be use to
represent a variety of geometric entities, such as circles, lines, and triangles and also
to establish their spatial relationship to each other on a surface. The simplest of these
geometric entities the point and sets of points will be discussed in the rest of this
chapter. Different frameworks clearly require the list of measurements taken from
them to be interpreted in different ways to give the same information. It is interesting
to notice in the first example for the co-ordinate system given in Figure 12.1 that for
a given point, the three values of its co-ordinate measurements are not independent.

 1 1
2

3

1

2

1

3

2

r
s

t

(r,s,t)

a b

c d

Figure 12.1 Locating a point relative to landmarks

Once the first two distances have been defined the third cannot be just any value.
It is there to select between the two possible positions shown in Figure 12.1b. To
uniquely define a point using this scheme all three values need to be present.

However, the three values in this scheme can be normalised by manipulating the
identity:

tsrtsr ++=++

0.1
)()()(

=
++

+
++

+
++ tsr

t
tsr

s
tsr

r

0.1''' =++ tsr

458

Representing Point Locations

The values of r, s and t are clearly always positive, because they are lengths of
measuring lines laid out in any direction, consequently the values of r', s', and t' in
this normalised form each lie in the range 0.0 to 1.0 units. From any two of these
normalised values the third can be calculated. Normalising these values permits a
position to be recorded using only two numbers. However, comparing two location
using this normalised representation can become difficult, generally requiring the
original three measurements to be recalculated using the original landmark geometry
in a process which makes the approach less useful.

Given a more sophisticated set of geometrical tools, an alternative measurement
scheme base on a triangle of landmarks can be set up. If each side of the triangle is
laid out as a straight line, then the measurements to an undefined point can be made
perpendicular to these lines in the way shown in Figure 12.2. This approach also
gives a triple of three measurements, but a triple that has slightly different properties.
The first is that each measurement must have a direction relative to its associated
triangle-edge. This can be expressed by making the measurement positive or
negative: the direction into the triangle being conventionally taken as the positive
direction.

s

B

A C
E

D F

(0,1,0)

(0,0,1) (1,0,0)

(r,s,t)
r t

B

A C
H

G J

(0,1,0)

(0,0,1) (1,0,0)

(r,s,t) s
r

t
P P

Figure 12.2 Triangular frame of reference

The three co-ordinate elements are still not independent of each other. The three
values when appropriately scaled can also be made to add up to 1.0. If r is scaled by
dividing JP by FC, and similarly s by dividing HP by EB and t by dividing GP by
DA, then the new co-ordinate values (r', s', t') sum to unity.

0.1''' =++ tsr

This property can be demonstrated by observing that JP is the perpendicular
height of the triangle APB, and FC is the perpendicular height of the triangle ABC.
Both these triangles have the same base AB, so dividing the area of these triangles
will give the same ratio defining the scaled value of r. However, if the areas of
triangles APB, BPC and CPA are added together they give the area of ABC.

459

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

 ABCCPABPCAPB Δ=Δ+Δ+Δ

ABCHPCAADBCJPAB Δ=++ 2
1

2
1

2
1

0.1
... 2

1
2
1

2
1

=
Δ
Δ

=
Δ

+
Δ

+
Δ ABC

ABC
ABC

HPCA
ABC

GPBC
ABC

JPAB

0.1
.
.

.

.
.
.

2
1
2
1

2
1
2
1

2
1
2
1

=++
EBCA
HPCA

DABC
GPBC

FCAB
JPAB

 0.1=++
EB
HP

DA
GP

FC
JP

This establishes a system for defining the location of a point called baricentric

co-ordinates. These co-ordinates have a variety of valuable properties.

B

A

C

(0,1,0)

(0,0,1)

(1,0,0)

(r,s,t)

s

r

t

P

Figure 12.3 Independent co-ordinates

The simplest is again the fact that the third number of the three used to define a

point in a plane, in this scheme, is unnecessary. Each co-ordinate measure defines a
line in space parallel to the corresponding baseline of the reference triangle and
where these lines intersect defines the required point. Only two lines, which are not
co-linear or parallel, are needed for this task.

460

Representing Point Locations

X

P
(x,y)

y

Origin

(0,0)

Y
x

Figure 12.4 Two-dimensional Cartesian system

The minimum number of measurement values necessary to determine the position
of a point in space is considered to be a property of the space itself. On a surface it is
two, in 'real' space it is three. This property is called the dimension of the space.

If the reference triangle used to define baricentric co-ordinates is set up as a right
angle triangle then a Cartesian co-ordinate system is generated. The two dimensional
form of this co-ordinate system is shown in Figure12.4. Again in this case only two
ordered numbers are needed to define a point position in a plane. The advantages of
this system are that each co-ordinate pair represents a unique point, and the two
numbers can be modified independently of each other in useful ways that are easy to
visualise and are therefore effective for defining points in a formal language
environment.

The ability to measure distances, and even to set up parallel lines a specific
distance apart was established early in geometric work. Flexible ways of measuring
and using accurately defined angles proved more difficult, however, once these
became possible an alternative co-ordinate system emerged, the polar co-ordinate
system.

Origin

(0,0)

α

(r,α)
P

Figure 12.5 Two-dimensional polar co-ordinate system

In a two dimensional space, given a base line and a pivot point on this line, any
other point can be defined in the following way. Join the pivot point to the new point
and measure the length of the line, then measure the angle by which this line is

461

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

rotated from the original baseline. The co-ordinate for the new point is the number
pair giving the distance and the angle, as illustrated in Figure 12.5.

Three Dimensional Spaces

z x

y

LEFT HANDED AXES

x,y,z Origin

x

z

y

x z

y

RIGHT HANDED AXES

Origin x,y,z

x

z

y

Figure 12.6 Three-dimensional Cartesian co-ordinate systems

Each of these schemes can be extended to define points in three-dimensional space.
The main difference being that, to define a point position, a minimum of three numbers
is needed. Figure 12.6 introduces a new problem encountered in the higher
dimensional space. There are two spatial relationships possible between three axes of
measurement. The first giving a right-handed system and the second giving a left-
handed system. This naming arises from the following convention. If co-ordinate
elements are taken in the order in which they are written down, the first one
corresponding to the index finger of the hand then the other two will take on the
rotational order given by the second finger and thumb, of either the left or the right
hand. The two alternative arrangements are shown in Figure 12.6. Polar co-ordinates in
three dimensions can also be implemented in several ways. The simplest form is the
spherical polar system shown in Figure 12.7a. However, there is also an in-between,
hybrid form shown in Figure 12.7b, called a cylindrical, polar co-ordinate system.

Coordinates and Vectors

Coordinates can be used to represent points in space. They can also be used to
represent a different but related mathematical object the vector. A vector has
direction and magnitude. A point can be located by moving a defined distance in a

462

given direction from a starting point as specified in a polar coordinate or two
distances in directions at right angles in a Cartesian coordinate. The movement is
distinct from the result. The data structure is the coordinate, but two types immerge, a

Figure 12.7 Three-dimensional Polar co-ordinate systems

point and a vector, the difference depending on the operations that are permitted on
the structure. A similar distinction was made between absolute coordinates and
relative coordinates in Chapter 4. The absolute coordinate gave a point-position the
relative coordinates defined movements from this base to their final point locations
defining a symbol or an image. The objective was a means for replicating an image
in a display space. Adding two points together makes no sense however adding two
movements together is totally reasonable and was implemented by adding the
absolute and relative coordinate sequence to relocate an image in multiple positions.

() ()

() () 1coscos

cos cos

,

22

2

22

2
22

2222

22

222

=
+

+
+

=β+α

+
=β

+
=α

≡+=

+=

yx

y

yx

x
yx

y

yx

x
yxyxd

yxd

Figure 12.8 Distance of a point from the origin

Converting a vector in Cartesian coordinate form to Polar coordinate form
involves calculating the distance of a point from the origin of the axes system being
employed using Pythagoras’ theorem in the way shown in Figure 12.8 for the two
dimensional case.

d

x

y

α
β

X

Y

Origin

(x, y, φ)

y

x

φ

Cylindrical Polar
System

Origin θ

r

φ

Spherical Polar
System

φ

(r, θ, φ)

Coordinates and Vectors 463

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

Converting a vector in Cartesian coordinate form to Polar coordinate form in the
three-dimension case is obtained by applying Pythogoras’ Theorem to the sides of the
triangles shown in Figures 12.9.

 1)cos()cos()cos(

1

)cos(

)cos(

)cos(

,,

222

222

222
222

222

222

222

222

222

222

=γ+β+α

=
++
++

=++

=
++

=γ

=
++

=β

=
++

=α

≡++=

+=

+=

zyx
zyxCBA

C
zyx

z

B
zyx

y

A
zyx

x

zyxzyxd

zed

yxe

Figure 12.9 Distance of a point from the origin and its direction cosines

Point Translation: Adding and Subtracting Vectors

There are two ways of viewing the calculation to find the length of a line defined by
two end point coordinates. The simplest where Cartesian coordinates are being used,
is to apply Pythagoras directly to the x and y spans of the line using coordinate
geometry. The second is to move the origin to coincide with one of the points and
then treat the other transformed point as a vector, whose magnitude or length can be
calculated in the way already shown in Figure 12.9.

Figure 12.10 Adding and subtracting vectors

 y

x

β

α

X

Z

Y

γ

 z e

d

c = a + b = (x1+x2,y1+y2)

b = (x2,y2) b = (x2,y2)

c = (x1,y1) a = c - b
 = (x1-x2, y1-y2)a = (x1,y1)

464

Vectors can be moved around in space. They have magnitude and direction but no

fixed position. If two coordinates representing two vectors are added together in the
way shown in Figure 12.10, the result is a new vector which can be obtained by
moving one of the original vectors so that as a line its starting point matches the end
point of the other, and its end point gives the new vector as a line linked to it from the
origin. If vectors are represented by oriented-lines, then subtraction is implemented
by linking the second line in the opposite direction in the way shown for a = c - b.

Factoring Vectors

These relationships allow a single vector to be factored into two equivalent vectors in
orthogonal directions in the way shown in Figure 12.11 parallel to the axes. This
introduces an alternative way of representing vectors and vector operations based on
unit vectors.

Figure 12.11 Factoring a vector into two equivalent vectors

The Unit Vector

Where a Cartesian coordinate represents a vector, dividing through by its magnitude
will isolate its direction component. This gives a unit vector in the same direction.

Figure 12.12 Unit vectors

u = (1,
x
y1tan−)

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

++
=

2222 yx

y,
yx

xu

v = (⎟
⎠
⎞

⎜
⎝
⎛+ −

x
yyx 122 tan ,)

v = (x, y)

(r, θ)

θ

(1, θ)

The Unit Vector 465

a = (x, 0)

v = a + b = (x, y) = (x, 0) + (0, y)

b = (0, y)
(x, y)

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

If a vector is factored into components parallel to the coordinate axes, these
vectors can in turn be converted into unit vectors multiplied by a scalar representing
the magnitude of the vector. This creates a new notation for representing vectors. If
the unit vectors are represented by the letters i, j and k in the x, y and z directions,
then the vector (x, y, z) can be represented by (x.i + y.j + z.k). This provides a way of
linking vector multiplication operations to standard arithmetic, algebraic operations.

Vector Multiplication: Dot and Cross Products

There are two standard forms of multiplication operation that can be applied to
vectors, the first called the dot product, the second called the cross product.

The dot product is defined as: ()() ()2.12.12,2.1,1. yyxxyxyxba +==
If two vectors a and b represented by (x1.i + y1.j,) and (x2.i + y2.j,) are multiplied

together treating i and j as simple variables the result will be:

()() jiyxijyxjjyyiixxjyixjyix ..1.2..2.1..2.1..2.1.2.2..1.1 +++=++

Replacing the products of i and j: i.i= 1, j.j = 1, and i.j = j.i = 0 gives:

2.1.2.1..1.2..2.1.2.1.2.1 22 yyxxjiyxjiyxjyyixx +=+++

The dot product of unit vectors provides a way of calculating the angle between
the two vectors in the way shown in Figure 12.13. This demonstrates i.i = cos(0) =
1, and i.j = cos(90) =0.

()

()

() ()

()

2211
2.12.1

22.11

2.12.1

..2
2.1.22.1.2cos

21212211

cos..2

cos...2

2222

222222

222

222

,yx . ,yx
yyxx

yxyx

yyxx

ABAC
yyxx

yyxxxxyx

CBACABABAC

ABACACABCB

+
=

++

+
=

+
=θ

−−−−+++=

−+=θ

θ−+=

Figure 12.13 The dot product gives the cosine of the angle between two unit vectors

The dot product can be expressed in matrix format as the product of a row and
column matrix:

[] []2.12.1
2
2

.11 yyxx
y
x

yx +=⎥
⎦

⎤
⎢
⎣

⎡

A

C

B

θ

0,0

x2,y2

x1,y1

466

Rotating Points and Vectors

Similarly for the cross product: if two vectors a and b represented by (x1.i + y1.j,)
and (x2.i + y2.j,) are multiplied together treating i and j like simple numerical
variables where jixxjxix ×=× .2.1.2.1 , the result will be:

() () jiyxijyxjjyyiixxjyixjyixba ×+×+×+×=+×+=× .1.2.2.1.2.1.2.1.2.2.1.1

Replacing the products of i and j: 0=× ii , 0=× jj , kji −=× , kij =×

()kyxyxjiyxijyxjjyyiixx .1.22.1.1.2.2.1.2.1.2.1 −=×+×+×+×

where k is a unit vector orthogonal to the plane containing i and j.

The cross product gives a way of calculating the area of the parallelogram formed
by adding two vectors in the way shown in Figure 12.14.

 The area of the polygon

() ()

()
() 21.22.1 OAB of Area Hence

21.22.1

2
2.21.2.21.11.12.1.22.2

2
21.2.2

2
1.1

2
12.2.1

2
2.2

yxyx

yxyx

yxyxyxyxyxyx

yyxyxyyxyx

BCFEOBEACFD OADOACB

−=

−=

−−−++
=

+
−−

+
+=

+++=

Figure 12.14 Area of the triangle OAB defined by two vectors OA and OB

This demonstrates that the cross products of unit vectors has the magnitude of 0

when the vector is multiplied with itself, and 1 or -1 when multiplied by a unit vector
at right angles to itself. The magnitude of the cross product can be calculated in
matrix format, by the determinant of the matrix containing the two vectors.

[]1.22.1
22
11

yxyx
yx
yx

−=

Changing the order of the rows in the determinant changes the sign of the result,

this matches the relationships kji −=× , kij =× , and a corresponding change in the
related geometric orientation and rotation.

Rotating Points and Vectors

The best choice of co-ordinate system will be determined by the application, and the
spatial properties it needs to represent. Consider the problem of rotating a vector or a

x2,y2

x1,y1

x1+x2, y1+y2

0,0

O

A

B

C

D E F

467

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

point or a set of points about the origin of the co-ordinate system. In the case of
polar co-ordinates the problem is simple. The representation of the rotation can be
achieved simply be adding on the angle of rotation to each coordinate’s directional
angle. However, if the same task is to be undertaken using Cartesian coordinates,
then the task becomes more difficult.

β
α

P2

P1

(x1,y1)

(x2,y2)

(r,0)

21).cos(1).sin(

 21).sin(1).cos(

1)(sin

1)(cos

2)sin().cos()cos().sin(

2)sin().sin()cos().cos(

2)sin(

2)cos(

yyx

xyx

r
y

r
x

but
r

y
r

x
r

y
r

x

=α+α∴

=α−α∴

=β

=β

=βα+βα∴

=βα−βα∴

=β+α

=β+α

Figure 12.15 Rotating a point using Cartesian co-ordinates

Given a point defined in a rectangular Cartesian Co-ordinate system as (x, y) how
can this point be moved to another position? In general by changing the values of the
coordinate’s (x, y) elements. The question is how. The answer must depend on the
nature of the movement. Since the coordinate is a position specified relative to an
origin and a set of axes, the simplest operations will be defined relative to this
framework. One example is moving a point round the origin, in other words rotate
the line linking it to the origin by an angle α. In other words rotate the vector.

In Figure 12.15 if the initial position of the point is given as P1, and its rotated
position by P2. Then from this diagram the trigonometric relationships shown on the
right can be set out between the co-ordinates (x1, y1) and (x2, y2). The final pair of
these relationships can be rewritten in matrix form to give:

[] []2y2x
)cos()sin(
)sin()cos(

.1y1x =⎥
⎦

⎤
⎢
⎣

⎡
αα−
αα

 or ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
αα
α−α

2y
2x

1y
1x

.
)cos()sin(
)sin()cos(

This provides a framework for specifying a series of similar operations defined

relative to the origin in the following way. If α is set to be 900 then the point can be
rotated relative to the origin by 900, by substituting into the matrix the sines and
cosines of 900, 1800, 2700, 3600: either 0.0, 1.0 or –1.0, in the following way.

468

A

[] [] []1122
01
10

.11 xyyxyx −==⎥
⎦

⎤
⎢
⎣

⎡
−

Rotate 90

B

[] [] []1122
10

01
.11 yxyxyx −−==⎥

⎦

⎤
⎢
⎣

⎡
−

−

Rotate 180

C

[] [] []1122
01
10

.11 xyyxyx −==⎥
⎦

⎤
⎢
⎣

⎡ −

Rotate 270

D

[] [] []1122
10
01

.11 yxyxyx ==⎥
⎦

⎤
⎢
⎣

⎡

Rotate 360

These rotation-based operations must be distinguished from reflection operations.

Reflections require matrix entries that cannot be obtained by substituting the sine or
cosine of a single angle into the matrix. Reflections about the x-axis, the y-axis and
diagonally can be obtained by using matrix operations of the form:

1

[] [] []1122
10
01

11 yxyx.yx −==⎥
⎦

⎤
⎢
⎣

⎡−

-x xReflect →

2 [] [] []1122
10

01
11 y xyx .yx −==⎥

⎦

⎤
⎢
⎣

⎡
−

-y yReflect →

3

[] [] []1122
01
10

11 xy yx . yx ==⎥
⎦

⎤
⎢
⎣

⎡

y xReflect →
x yReflect →

4

[] [] []1122
01
10

11 xyyx.yx −−==⎥
⎦

⎤
⎢
⎣

⎡
−

−

-y xReflect →
-x yReflect →

The effect of these matrix, reflection operations is to change the signs of x and y

values or to swap them over. Reflection transformations were employed in the line
interpolation algorithms in Chapter 9 though not implemented as matrix operations.
These examples show that rotations can be obtained from pairs of reflection
operations, but reflections cannot be obtained using matrix rotations.

Rotating Points and Vectors 469

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

Rotations:
A, B, C, D

First
reflection

A: second
reflection

B: second
reflection

C: second
reflection

D: second
reflection

1 4 2 3 1
2 3 1 4 2
3 1 4 2 3

Sequence of
Equivalent
Reflections 4 2 3 1 4

Multiple Rotations

[] [] 22
)cos()sin(
)sin()cos(

 . 11 yxyx =⎥
⎦

⎤
⎢
⎣

⎡
αα−
αα [] []11

10
01

 . 11 yxyx =⎥
⎦

⎤
⎢
⎣

⎡

A rotation of 0 radians is the same as a multiplication by the identity matrix.

Two successive rotations about the same axis are given by multiplying the two
matrices together

[p1] = [p0]. [R(α)]

[p2] = [p1].[R(β)] = [p0].[R(α)].[R(β)]

alternatively in expanded form:

[] []22
)cos()sin(
)sin()cos(

.
)cos()sin(
)sin()cos(

.11 yxyx =⎥
⎦

⎤
⎢
⎣

⎡
ββ−
ββ

⎥
⎦

⎤
⎢
⎣

⎡
αα−
αα

where:

() ⎥
⎦

⎤
⎢
⎣

⎡
βα−βαβα+βα−
βα+βαβα−βα

=

⎥
⎦

⎤
⎢
⎣

⎡
ββ−
ββ

⎥
⎦

⎤
⎢
⎣

⎡
αα−
αα

)sin().sin()cos().cos()sin().cos()cos().sin(
)sin().cos()cos().sin()sin().sin()cos().cos(

)cos()sin(
)sin()cos(

 .
)cos()sin(
)sin()cos(

 ⎥
⎦

⎤
⎢
⎣

⎡
++−
++

=
β)cos(αβ)sin(α
β)sin(αβ)cos(α

giving: [R(α)].[R(β)] = [R(α+β)]

or, if the coordinate is given in column vector form:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
αα
α−α

⎥
⎦

⎤
⎢
⎣

⎡
ββ
β−β

2
2

1
1

 .
)cos()sin(
)sin()cos(

 .
) cos() sin(
) sin() cos(

y
x

y
x

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
++−
++

2
2

1
1

 .
β)cos(αβ)sin(α
β)sin(αβ)cos(α

y
x

y
x

470

Rigid Body Movement: Rotation and Internal Angles

[] ()[] ()[] ()[] ()[] [][]
[] ()[] ()[] [] ()[] ()[] [][]TTT

TTTT

PPP

PP

 .R αR . R . αR .

 .R .R R . αR . Thus

β+α=β+=β

αβ=β

Rigid Body Movement: Rotation and Internal Angles

If a rigid object is represented by a set of points and the object is moved relative to
the coordinate framework then all internal distances between pairs of points have to
stay the same, as do the angles and areas defined by all point triples.

For simple rotation by an angle α about the origin the angles between pairs of
points can be shown to be the same by the following algebraic sequence:

The points v1 and v2 treated as vectors will be rotated to () 1.vR α and () 2.vR α
Calculating the angle between these two vectors using their dot product in a

matrix format gives:

() () ()[] ()[]

[] ()[] ()[] []

[] []
() 2 . 1 .cos 2 . 1

2 .1

2 . . .1

2.12 . 1

vvvv

vv

vRRv

vRvRvRvR

T

TT

T

α=→

→

αα→

αα→αα

This depends on the inverse rotation in other words the reverse rotation being

produced by inserting a negative angle into the forward rotation matrix, which in turn
is equivalently to transposing the forward rotation matrix since:

()[] ()[] ()[] 1−α=α=α− RRR T

() ()
() ()

() ()
() ()⎥⎦

⎤
⎢
⎣

⎡
αα−
αα

=⎥
⎦

⎤
⎢
⎣

⎡
α−α−
α−−α−

cossin
sincos

cossin
sincos

Multiplying the rotation matrix by its inverse or transpose gives the unit matrix,

which is equivalent to no rotation.

()[] ()[] ()[] ()[] []10. ==α−α=αα RRRR T

() ()
() ()

() ()
() ()

cossin
sincos

 .
cossin
sincos

=⎥
⎦

⎤
⎢
⎣

⎡
αα−
αα

⎥
⎦

⎤
⎢
⎣

⎡
αα
α−α

() () () () () ()

() () () () () () ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

α+ααα−αα
αα−ααα+α

10
01

sincossin.cossin.cos

sin.cossin.cossincos 22

22

471

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

Rigid Body Movement: Rotation and Internal Distances

Distances between rotated points must also remain the same for a rigid body. This
can be demonstrated in the following way

Figure 12.16 Distances between rotated sets of points

The distances d(.) between the pairs of points (p1, p2) and (pa, pb) are calculated
using Pythagoras in the way described above.

() () () () ()

() () () () ()

() () ()

() () ()

() ()

() ()
() ()pbpadppd

pbpapppRpR

pbpapp

pbpRpapR

pbppap

kkrbrrar

pbpakpbparbrapbpad

ppkpprrppd

r

ybyaxbxaybyaxbxayaybxaxbpbpad

yyxxyyxxyyxxppd

,2,1 :lyConsequent

 .2 .12 .1

. and between angle theas same thebe will2 and 1between angle The

2 and 1

 gives angle same by the 2 rotating and , gives 1 Rotating

21 so 2 and 1but

..22..2,

2.1.212.1.2212,1

 :origin thefrom distance same thekeep torotated ispoint Each

..2,

2.12.12212112122,1

2222

222

222

2222222

2222222

=

==αα

=α=α

===

−=−+→

−=−+→

+−+++=−+−→

+−+++=−+−→

Rotating the pair of points does not change the distance between the points. If

angles and distance are maintained then areas should also be maintained.

R(α) pa

pb

p2
p1

472

Rigid Body Movement: Rotation and Internal Areas

If distances and angles are conserved by the rotation operation then it is natural to
expect triangulated areas formed by any three points, to stay the same. The way the
algebra supports this intuition can be shown in the following way.

Figure 12.17 Calculating the area of a triangle using trapeziums

() () () () () ()

() () ()[]

[] products cross vector 312312 .
2
1

1.33.13.23.22.11.2.
2
1

2
31.31

2
23.23

2
12.12

 Area

pppppp

yxyxyxxyyxyx

yyxxyyxxyyxx

ACDFBCDEABEFABC

×+×+×→

−+−+−→

+
++

+
++

+
+→

−+=

Figure 12.18 Calculating the area of a triangle using vectors

x2, y2

x3, y3 x1, y1

A

B

C

F E D
x

y

A P1

x2, y2

x3, y3

x1, y1

B

C

x

y

P3

P2

Rigid Body Movement: Rotation and Internal Areas 473

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

Figure 12.19 Rotating a triangle

[]

[]

 .
2
1

 .
2
1

.......
2
1 B area

handshort
3
1

2
3

1
2

.
2
1

tsdeterminan
33
11

22
33

11
22

.
2
1

1.33.13.23.22.11.2.
2
1 A area

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++→

−+−+−→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++→

−+−+−→

pc
pa

pb
pc

pa
pb

ycxc
yaxa

ybxb
ycxc

yaxa
ybxb

yaxcycxaycxbxcybybxayaxb

p
p

p
p

p
p

yx
yx

yx
yx

yx
yx

yxyxyxxyyxyx

However:

()[] ()[]

()[] () ()
() () () ()

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=α+α=
αα
α−α

=α

α⎥
⎦

⎤
⎢
⎣

⎡
=α⎥

⎦

⎤
⎢
⎣

⎡
=

3
1

2
3

1
2

2
1

2
1 Hence

1sincos
cossin
sincos

tsdeterminan ofproduct .
1
2

 .
1
2

22

p
p

p
p

p
p

pc
pa

pb
pc

pa
pb

R

R
p
p

R
p
p

pa
pb

Consequently the area of the triangle is unaffected by rotation.

α

Rotate R(α)

p3

p2

p1
pc pa

pb

474

Rigid Body Movement: Translation and Internal Areas

Figure 12.20 Translating a triangle

[]

() () () ()
() () () ()
() () () ()

[]1.33.13.22.32.11.2.
2
1

3.1...1.3.1.33.1

2.3...3.2.3.22.3

1.2...2.1.2.11.2

.
2
1

1 . 33 . 1

3 . 22 . 3

2 . 11 . 2

.
2
1

33

11

22

33

11

22
.

2
1

 .
2
1 .

2
1 B area

1.33.13.22.32.11.2.
2
1

33

11

22

33

11

22
.

2
1

3

1

2

3

1

2
.

2
1 A area

yxyxyxyxyxyx

xytyxtytxtytxtxytyxtyxyx

xytyxtytxtytxtxytyxtyxyx

xytyxtytxtytxtxytyxtyxyx

ytyxtxytyxtx

ytyxtxytyxtx

ytyxtxytyxtx

ytyxtx

ytyxtx

ytyxtx

ytyxtx

ytyxtx

ytyxtx

ycxc

yaxa

ybxb

ycxc

yaxa

ybxb

pc

pa

pb

pc

pa

pb

yxyxyxyxyxyx

yx

yx

yx

yx

yx

yx

p

p

p

p

p

p

−+−+−→

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−+++−+

−−−+++−+

−−−+++−

→

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−+++

++−+++

++−++

→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++
+

++

++
+

++

++
→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++→

−+−+−→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++→

Consequently the area of the triangle is also unaffected by translation.

p3

p2

p1

pc

pb

pa
Translate t

Rigid Body Movement: Translation and Internal Areas 475

 12 Geometry, Algebras, Co-ordinate Systems, and Transformations

Rigid Body Movements

Rigid bodies represented by point sets defined as vectors can be rotated about the
origin using matrices. Though, this gives a fairly restricted set of options, combining
this with translation gives the necessary capability to move rigid-objects about,
anywhere in a coordinate space. Because translation cannot be executed as a 22×
matrix operation it has to be executed as an independent step. However including
translation (equivalent to changing the origin) considerably extends the ways in
which matrix transformations can be used in the construction and display of
geometric objects in synthetic scenes.

Rotating Objects about Arbitrary Points

Figure 12.21 Rotation about an arbitrary point

The example in Figure 12.21 shows the rotation about an arbitrary point.

() ()
() () ()

[] () ()
() () []

() () () 1 1,101,011,1

againback origin theTranslate

1,1
cossin
sincos

 . 11

by Rotate

1,101,011,1

y0x0, to0,0 fromorigin theTranslate

PYXybyxbxbybx

bybxaa,yx

ayaxyyxxyx

≡=++→

=⎥
⎦

⎤
⎢
⎣

⎡
αα
α−α

α

=−−→

Further Matrix Based Object Transformations

Other transformations on sets of point can be implemented by different matrix
operations: Rigid object transformations exclude reflections. If this restriction is
relaxed then the geometry associated with congruent triangles results. Rigid object

p3

p2

p1

P3

P2

P1

p3a

p2a

p1a

Translate Origin

Rotate

Translate Back
p3b

p2b

p1b

476

matrix transformations have determinants of value 1 whereas reflection matrix
transformations have determinants with a value of –1. However, in both these cases
the distances between corresponding point-pairs before and after transformation stay
the same and corresponding triangle-areas stay the same size.

If the distance requirement is relaxed but the same angles between lines are
maintained, the geometry associated with similar triangles results.

Transforming Triangles to Similar Triangles

Keep angles the same but allow distances to be transformed.

[] []

scaling and Reflection

0

0
 .

directionsy andin x equally Scaling

a.x, a.y
a

a
yx, =⎥

⎦

⎤
⎢
⎣

⎡

[] []

[] []
0

0
 .

0

0
 .

a.x, a.y
a

a
yx,

a.y, a.x
a

a
yx,

−=⎥
⎦

⎤
⎢
⎣

⎡−

=⎥
⎦

⎤
⎢
⎣

⎡

[] []

[] []
0

0
 .

0

0
 .

a.ya.x,
a

a
yx,

a.ya.x,
a

a
yx,

−−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

[] () ()
() ()

() () () ()[] []

[] () ()
() () [] () ()

() ()

() () () ()[] []

[] () ()
() () [] () ()

() ()

() () () ()[] []xayayaxx, a.aya.

aa
aa

yx
a

a
yx,

yaxaxayy, a.axa.

aa
aa

yx
a

a
yx,

yxxyy, x

yx,

′′=α−αα−α=

⎥
⎦

⎤
⎢
⎣

⎡
α−α

αα−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
αα
αα

′′=α−αα+α=

⎥
⎦

⎤
⎢
⎣

⎡
αα
α−α

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
αα
αα

′′=α−αα+α=

⎥
⎦

⎤
⎢
⎣

⎡
αα
αα

.. .sin..cos.sin..cos

sin.cos.
cos.sin.

 . ,
0

0
 .

cossin
sin-cos

 .

Reflection and Scaling Rotation,

.. .sin..cos.sin..cos

cos.sin.
sin.cos.

 . ,
0

0
 .

cossin
sin-cos

 .

 Scaling andRotation

 .sin.cos.sin.cos

cossin
sin-cos

 .

Rotation

Transforming Triangles to Similar Triangles

Each of these transformations can also be combined with rotations to give changes

that still retain similar-triangle relationships within a set of points.

477

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

Affine Transformations

If the rules are relaxed further, to allow angles to change, but ensuring straight lines
transform to straight lines, but internal distance-ratios for points on lines are kept the
same before and after the transformation, the result is an Affine geometry.

Transformations, which maintain distance ratios within straight lines give an
Affine geometry. These transformations include unequal scaling in the x and y
direction also the shear transformation where new x values are a function of both the
original x and y values and new y values can similarly be a function of both the
original x and y values. One way to illustrate this relationship is the way the
intersection points, between two line pairs, before and after the transformation,
correspond. If the second intersection point is calculated in two ways: by
transforming the first intersection point found by calculating the crossing point for
the first two lines, and also by calculating the intersection point for the transformed
lines, the result should be the same point.

Figure 12.22 Affine transformations

Transforming the intersection point with a scaling operation:

[] [] []0,0 0.,0.
0

0
 . 0,0 YXybxa

b
a

yx ==⎥
⎦

⎤
⎢
⎣

⎡

Calculating the intersection points for the lines before and after scaling:

() () () ()
() () () ()

() () () ()
() () () ()431221. 34

1.22.1 . 433.44.3 . 210

431221. 34
1.22.1 . 343.44.3 . 120

-yy . -xx-yy xx
yxyxyyyxyxyyy

-yy . -xx-yy xx
yxyxxxyxyxxxx

−−
−−−−−

=

−−
−−−−−

=

p1 p4

p3

p2

P1

p0 P0

P4

P3
P2

478

() () () ()

() () () ()

() () () ()[]
() () () ()[] 0.

431221 34..
1.22.1 . 343.44.3 . 12..

431221. 3.4.
1..2.2..1. . 3.4.3..4.4..3. . 1.2. 0

2
xa

-yy . -xx-yy. xxba
yxyxxxyxyxxxba

-b.yb.y . -a.xa.x-b.yb.y xaxa
ybxaybxaxaxaybxaybxaxaxaX

=
−−

−−−−−
=

−−
−−−−−

=

() () () ()

() () () ()

() () () ()[]
() () () ()[] 0.

431221. 34..
1.22.1 . 433.44.3 . 21..

431221 3.4.
1..2.2..1. . 4.3.3..4.4..3. . 2.1. 0

2
yb

-yy . -xx-yy xxba
yxyxyyyxyxyyba

-b.yb.y . -a.xa.x-b.yb.y. xaxa
ybxaybxaybybybxaybxaybybY

=
−−

−−−−−
=

−−
−−−−−

=

This demonstrates the way the distance ratios are kept constant but angles change.

Combining Transformations: Matrix Concatenation

Multiplying these primitive matrices can combine these simple transformations into a
single more complex transformation.

[] [] []

[] []

[] []

[] [] []

[] [] [] [] [] []

[] [] []() [] [] [] [] [] []() []

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

====

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
==

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==

−−−

−

−

10
01

01

10
 .

0
0

or

10
01

01
10

 .
01
10

01
10

 . 10

01
 .

0
0

 .
01
10

Reflection .Scaling . Scaling . Reflection .

01

10

01
10

 . 10

01
 ReflectionScaling

10
01

 10

01
 .

0
0

 Scaling . Scaling

10
01

01
10

 .
01
10

 Reflection . Reflection

0
0

0

0
 .

01
10

 Scaling . Reflection

1111-

1-11-

1-11-

1-

1-

b

a
a

b

b

a
b

a

ITTTITTTTT

TT

b

a

b

aT

b

a
b

a

a
b

b
a

T

RRRRRSSR

Combining Transformations: Matrix Concatenation 479

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

A useful property of this process is that each of these basic transformations can be
inverted or reversed by a simple change to its matrix entries. This allows the inverse
operation of a more complex transformation to be composed, in the way shown
above, for a combined scaling and reflection operation, simply by combining its
inverted primitive components. Unfortunately, including a translation operation in
such a combination is not possible because the translation operation cannot be
represented in the form of a two by two matrix.

Combining translation with these matrix operations in two dimensions is relatively
simple for a single transformation applied to one object. However, where hierarchical
movements are required, for example animating cartoon characters, where arms and
legs require combinations of rotations about different rotational axes, each object
point has to be operated on by mixed sequences of matrix and translation operations.
Where the number of points is large these sequences can involve a large amount of
duplicated computation. For an application such as real-time animation any reduction
in the steps needed to move objects about in a display space must be sought. In three
dimensions this build up of calculations in a complex sequence of transformations
becomes even more of a limitation.

A solution in two dimensions is algebraically to change to working in three
dimensions, and for three dimensions to move to four dimensions. This allows
translation to be expressed as a matrix operation, which in turn allows all the
components of complex movements or transformations to be concatenated into a
single matrix before being applied to the set of points representing an object.

Three-dimensional Operations

Three-dimensional objects can be represented by sets of three dimensional point
coordinates. These can also be treated as three-dimensional vectors. Operations on
both can be expressed and executed using matrix multiplications. Most of the two-
dimensional algebraic operations presented above can be extended, naturally into
three-dimensional equivalents.

3D Vector Sums and Products

The cosine of the angle between two three-dimensional unit vectors is given by their
dot product.

Figure 12.23 Cosine of an angle between two unit vectors

θ O

A

B

480

() ()

()

() () ()

()212121
2

2
2

2
2

2
2

1
2

1
2

1

2
21

2
21

2
21

2

2
222

222111

2

but

1 since .
2
11

..2
cos

,, and ,,

nnmmllnmlnml

nnmmllAB

OBOAAB
OBOA

ABOBOA

nmlOBnmlOA

++−+++++=

−+−+−=

==−=
−+

=θ

==

() ()()

212121

212121

2
2

2
2

2
2

2
1

2
1

2
1

 . . .

22.
2
11cos so

1 however

nnmmll

nnmmll

nmlnml

++=

++−−=θ

=++=++

Using the alternative representation of vectors the dot product in three dimensions

can be evaluated as follows:

() ()

()

()
ba
ba

baba

 j . k i . k . j and i k . k j . j i . i

bababa

kkbajkbaikba

kjbajjbaijbakibajibaiiba

kbjbibkajaiaba

kbjbibbkajaiaa

 .
 . cos

cos. .

01 since

 . . .

...

... ...

33211

332313

322212312111

321321

321321

=θ

θ=

======

++=

+++

+++++=

++++=

++=++=

The cross product can be presented in the same way:

() ()

kbakbajbajbaibaiba

kkbajkbaikba

kjbajjbaijbakibajibaiiba

kbjbibkajaiaba

......

122113312332

332313

322212312111

321321

−++−−=

×+×+×+

×+×+×+×+×+×=

++×++=×

3D Vector Sums and Products

The direction ratios of a point coordinate (a, b, c) are given by l: m: n where l =

a/d, m = b/d and n = c/d and 222 cbad ++= , in other words (l, m, n) is a unit
vector. If OA and OB represent unit vectors then:

481

2

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

() ()
ba
ba

baba

bbb
aaa
kji

ba

jk i ji kij k ik jki j kj i

 .
 sin therefore sin . .

 , , , , since

321

321

×
=θθ=×

=×

−=×=×−=×=×−=×=×

The volume of a tetrahedron defined by three vectors, in other words with one

vertex at the origin, can be calculated by the determinant of the three vectors
representing the remaining points in a similar way that the area of a triangle is
defined by the determinant of two, two-dimensional vectors.

Figure 12.24 Volume defined by three vectors

If the vectors are added together then a parallelepiped is generated.

Figure 12.25 Adding three vectors

Z

O

B

C

A X

Y

O C

B
A

D

E
F

G

482

Step 1
OCDAEFGB

Step 2

Step 3

Step 4

Figure 12.26 Parallelepiped volume

O
C

A
B

D

E F

G

K

O
C

B
G

H

J
A

D

E
F

L

O H

A L M N

O H

M
N B

P Q

J

O

M

B

P R S

O

M
B

P

H

J

O

R

S T

U

H

J
B

HJOHOROHURSTJB ××= of volume

OCDAEFGBOHURSTJB
of volume

=

O

C

B

G H J

3D Vector Sums and Products 483

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

Transforming and subdividing the volume in the way shown in Figure 12.26 can
be used to calculate the volume of the parallelepiped generated when three vectors
are added together. Figure 12.26 shows that the volume of a parallelepiped can be
calculated by the area of one face, times the perpendicular distance to its opposite
matching face. This is demonstrated be cutting wedges from one side of the figure
and adding them to the other side to change the parallelepiped into a cuboid. The
matching calculation can be carried out as follows:

The area of the base facet, which is a parallelogram, is given by OHOB×

Figure 12.27 ba ×

In vector notation ≡×OHOB ()θsin . . ba

() ()

() ()

() () ()

() () () [] 1

 . . sin . .

,, and ,,, if

 .
 . 1 . . cos1 . . sin . .

2
212121

2
2

2
2

2
2

2
1

2
1

2
1

22

222111

2
2

zzyyxxzyxzyx

bababa

zyxbzyxa

ba
ba-bababa

++−++++=

−=θ

==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=θ−=θ

Alternatively the area can be given by ba ×

() () () []

[] []

()212121212121

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

2
2121

2
2121

2
2121

22

11

22

11

22

11

222

111

..........2

......

gives 2or 1either Expanding

2

 . . .

yyxxzzxxzzyy

yzzyzxxzzyyx

xyyxzxxzyzzy

yx
yx

k
zx
zx

j
zy
zy

i
zyx
zyx
kji

ba

++

−+++++

−+−+−=

+−==×

O

C

B

GH J

θ a

b

Area

484

The vector ba × is perpendicular to the base so the perpendicular height is given by:

Figure 12.28 Vector ba ×

() ()

()

()

 . ,,

 .

 .
 .

 . .

area Baseheightlar Perpendicu

 Volume

 .
. . cos . height lar Perpendicu

333

222

111

222

333

111

222

111

333

3

3

3

22

11

22

11

22

11

3

3

3

22

11

22

11

22

11

3

3

3

222

111

zyx
zyx
zyx

zyx
zyx
zyx

zyx
zyx
zyx

z
y
x

yx
yx

zx
zx

zy
zy

z
y
x

yx
yx

k
zx
zx

j
zy
zy

i
z
y
x

zyx
zyx
kji

cba

ba
cba
cbac

OBOH OROADCGBEH

cba
cbaccOR

=−==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

×=

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×
×

=

×=

××=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×
×

=φ=

 bcacbacbacba . . but . . ×−=××=×

This is matched by the way a determinant changes sign if two adjacent rows or two
adjacent columns are swapped over.

O C

B

A

c

b

a

ba × R

φ
θ

3D Vector Sums and Products

The volume changes its sign depending on the rotational order in which the three
vectors are combined.

485

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

The area of a triangle is half the area of the parallelogram generated by adding two
vectors together. The volume of a tetrahedron is one sixth of the volume of the
parallelepiped generated by adding three vectors, and this can be demonstrated by the
following partition of the parallelepiped into six tetrahedra of equal volumes

Volume OADCGBEF = OABC + DEFG + ADCGBE

Volume ADCGBE = CADE + CAEB + CDEG + CEGB

Volume CADE = CAEB = CDEG = CEGB same base and vertical heights

Volume OABC = CAEB same base and vertical heights

Volume OABC = DEFG congruent volumes

Therefore

Volume OADCGBEF = 6. OABC

Figure 12.29 Subdividing the parallelepiped into six equal tetrahedral volumes

Volume ABCD = OBAC + OBCD + OCAD − OBDA

Figure 12.30 The volume of a tetrahedron as the sum of four tetrahedral volumes

E F

O

B

C

A
D

G

O

C

D

A

B

This result can then be extended in the same way used for the free standing

triangle to give the volume of a tetrahedron with none of its vertices at the origin, by
adding up four volumes linked to the origin in the way shown in Figure 12.30.

486

The sign of the tetrahedral sub-volumes is determined by the orientation of each

triangular facet relative to the origin. Where the origin lies inside the facet the
vertices will be in anticlockwise order viewed from the origin and the volume will be
positive. Where the origin lies outside the facet the vertices will be in a clockwise
order viewed from the origin and the volume will be negative. The algebraic sum of
these values leaves a positive value for the tetrahedron ABCD

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+++=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+++=

222

444

111

444

333

111

333

444

222

333

222

111

2

4

1

4

3

1

3

4

2

3

2

1

4321

 .
6
1

 .
6
1 n volumetetrahedro

:sum by thegiven is volume theP and P,P,Pon tetrahedrafor cesfour vertiGiven

zyx
zyx
zyx

zyx
zyx
zyx

zyx
zyx
zyx

zyx
zyx
zyx

P
P
P

P
P
P

P
P
P

P
P
P

Extending this approach, gives an algorithm for calculating the volume of any

polyhedron in any location, in a similar way to that used to calculate the area of a
polygon from adding up a sequence of triangular areas.

Figure 12.31 The area of a polygon and the volume of a polyhedron

In figure 12.31 if each of the boundary line segments for the polygon
ABCDEFGH is taken in an anticlockwise order and linked in sequence to the origin
then five anticlockwise triangles are created and three clockwise triangles. The sum
of the anticlockwise triangles will be positive and give the area of OABCDEF, and
the sum of the clockwise triangles will give the green area of OFGHA as a negative
value. Adding them together will give the yellow area of ABCDEFGH. Similarly for

O

B

C

D

E
F

G

H

A

O
B

C

D

E

F

A

3D Vector Sums and Products 487

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

the volume ABCDEF, four tetrahedral volumes OEDF, OFDB, OFBA and OEFA
with negative values are created and four tetrahedral volumes OEAC, OECD, OCAB
and ODBC with positive volumes, which when added together give the resulting
volume of the polyhedron ABCDEF.

Rigid Body Transformations

Three-dimensional objects can be rotated in the same way that two-dimensional
objects are, using a transformation matrix. The only difference is that the primitive
rotation operation that is simple to reverse and can be used to build more complex
transformations is defined about a coordinate axis rather than the origin. This
requires three matrices to be defined for rotations, one about each of the coordinate
axes, and they have to be combined together to get general results.

()

() () ()
() ()

() ()
() ()

()
() ()

() ()

() ()

() ()

()
() ()
() ()

() ()
() ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
γ+γ
γ−γ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
γγ
γ−γ

≡γ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

β−β

β+β
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ββ−

ββ
≡β

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

α+α
α−α=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

αα
α−α≡α

υϕυϕ

z
yx
yx

z
y
x

zR

xz
y

xz

z
y
x

yR

zy
zy

x

z
y
x

xR

R

.cos.sin
.sin.cos

 .
100
0cossin
0sincos

 ,

axis Zabout the Rotating

.sin.cos

.cos.sin
 .

cos0sin
010

sin0cos
 ,

axis Y about the Rotating

.cos.sin
.sin.cos .

cossin0
sincos0

001
 ,

axis X about the Rotating

, : axisan and anglean requires dimensions in threerotation specify To

This presents the programmer with the same difficulty encountered by the
draughtsman using descriptive geometry in chapter 1 when trying to create
projections of objects in predetermined orientations. An object’s elevation drawing
could be rotated (using tracing paper) to represent a rotation of the object about an
axis perpendicular to the drawing surface, and a sequence of such rotations
(perpendicular to orthogonal elevation planes), can, in theory, be coupled together to
get the required orientation of the object relative to the elevation planes used for the
drawings. A sequence of rotation matrix multiplications is similarly capable of
placing an object in any required orientation relative to the coordinate axes.
However, defining the rotation angles needed to achieve the predefined result can be
difficult to calculate.

The rotation of an elevation drawing corresponds to an object’s rotation about the
axis perpendicular to an axes plane, the elevation planes in Figure 1.12 correspond

z

y x

z

y x
z

y x

488

directly with coordinate axes planes. Difficulties arise because rotating about one
axis by an angle alpha followed by rotation about a second orthogonal axis by an
angle beta does not produce the same result that these rotations would give in
reversed order. In algebraic terms the multiplication of two rotation matrices do not
commute, their order matters.

In practice, rotation tends to be defined relative to some given axis that has little to
do with the coordinate system being employed. This requires translation so the axis
passes through the origin of the coordinate system, followed by two rotations to place
the rotation axis along a coordinate axis round which the required rotation can then
be executed, followed by two inverse rotations and reverse translation to place the
axis back in its original position. The combination of these seven transformations
applied to the object points gives the required result. In this case the initial and final
translation can be handled as vector addition or subtraction, and the in between
rotations can be concatenated into a single matrix in the following way:

Rotation about an Arbitrary Axis Through the Origin

Figure 12.32 Rotation about an arbitrary axis

The first step in Figure 12.39 is to rotate the target axis about the Z coordinate-axis.

() ()
2222

sin cos :axis Zabout the rotate
yx

y

yx

x

+
=α

+
=α

Rotation about an Arbitrary Axis Through the Origin 489

(x, y, z)

Q

R

P’
P”

P

γ θ

α

X

Z

Y

Y
r
θ

Z

X
α

γ

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

[]
Q

A

P z
yx

yx

yx

x

yx

y
yx

y

yx

x

zyx
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+

+
→

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++

+

−

+

0

100

0

0

 .
22

22

2222

2222

The second step is to rotate the target axis about the Y-axis to line it up with the
X-axis:

() ()

[]R
B

r

r
zyx

r
yx

r
z

r
z

r
yx

z
yx

yx

r
yx

r
z

00

00

0

010

0

 . 0

sin cos :axis Y about the rotate

222

22

22

Q
22

22

22

→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++
→

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−
+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+

+

+
=θ=θ

The third step is to calculate the required rotation about the target axis (now lined

up with the X-axis). Once this has been done the two rotations to move this axis to
line up with the X-axis have to be reversed to give the final orientation of the object.

[] [] [] () ()
() ()

[] [] []" . .
cossin0
sincos0

001
 . . . ' 11 PABBAP

D

→
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γγ
γ−γ −−

The five concatenated matrices [] [] [] [] [] 11 −− A. B . D . B . A give the rotation about
the axis through the origin defined by the vector [x, y, z], for each point in the object.

Evaluating a Reflection Ray

Figure 12.33 Reflection ray

()321 rrrR

()321 lllL

()321 nnnN

θ
θ

I

490

A similar operation which also requires an axis to be rotated in order to line it up

with one of the coordinate axes is the calculation of the reflection ray from a mirror
surface given the incident ray. If the incident-ray, the normal to the surface, and the
reflection ray are represented by unit vectors: L, N and R. This allows the calculation
to be made treating the point where the ray strikes the surface to be the origin.

Figure 12.34 Rotate the reflection axis to be along the X axis

The angle of incidence equals the angle of reflection, and the incident ray the
normal and the reflection ray lie in a plane perpendicular to the surface. Rotating the
normal to lie along the X-axis can be done using the forward and backward
transformation.

Rotations to align the normal with the X axis and return to the original orientation:

[] []

[] [] [] [] [] [] [] [] [] [] 111

2
2

2
12

2
2

1

23
2

2
2

1

13

2
2

2
1

1
2

2
2

1

1

321

1

2
2

2
13

2
2

2
1

23
2

2
2

1

1
2

2
2

2
1

13
2

2
2

1

1
1

100

010

001

 . .

:ray reflection thegives plane axes in the ray vectorincident theof Reflection

 . .

0

0

 .

 .

−−− ≡
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

−

+

−

++

−
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

−

+

+

−

+

−

=

ABEBALCCLR

RYZL

nn
nn

nn

nn

nn

nn

n

nn

n

nnn

C

nnn

nn

nn

nn

nn

nn

nn

nn

nn

C -

If these axes were not through the origin, for example, if they were defined by a
line segment (p1, p2) then an initial translation of p1, p2 and any associated set of
points, to place p1 at the origin, followed by the rotation or reflection, followed by a
translation returning the new origin back to p1, would be necessary.

O

()321 lllL

()321 rrrR

X

Z Y

θ θ

()321 nnnN

Evaluating a Reflection Ray 491

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

Homogeneous Coordinates

Complex mixtures of translation and rotation can create calculation sequences that
make it impossible to reduce the matrix operations to a single matrix. However, it is
possible to express translation as a matrix operation by representing two-dimensional
operations in three dimensions and similarly three-dimensional operations in four. In
order to express a 2D translation as a matrix operation it is represented by a
movement in 3D space for a point (x, y, z). This movement is projected back onto a
plane parallel to the x-y axes plane through the z = 1 point on the z-axis, in the way
shown in Figure 12.34.

Figure 12.35 Homogeneous coordinates

The way this works for translation using three-dimensional matrices is as follows:

[] []

[] []

⎥
⎦

⎤
⎢
⎣

⎡
Δ+Δ+→

Δ+Δ+→
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ΔΔ

Δ+Δ+→
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ΔΔ

1

..

1

010

001

or

1

1

010

001

1

1

1

1

1

11111111

1111

y
z
yx

z
x

zyzyxzx

yx

 . zyx

yyxx

yx

 . yx

(0, 0, 0) (0, 0, 1)

X
Z

Y

z
x

z
y

Z X

Y

⎟
⎠
⎞

⎜
⎝
⎛

z
y

z
x

Z = 1 plane

(x, y, z)

492

The convention is to represent the extra dimension by the symbol w. This gives

two-dimensional coordinates (w, x, y) or (x, y, w) and for three-dimensional
coordinates (w, x, y, z) or (x, y, z, w).

The other matrix transformations can be extended to work within this framework.
This includes reflections, various forms of scaling, shear and rotation. The extension
provides translation, projection, and uniform scaling as new operations. Each of
these basic matrices can be inverted by a simple change in the matrix entries, in the
ways given below. This allows the composition of more complex transformations by
concatenating the appropriate sequence of simpler transformation matrices into a
single matrix in the way already discussed.

Homogeneous Reflections

Reflection about the line y=x;

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100

010

001

100

001

010

 .

100

001

010

 where

11

 .

100

001

010

x

y

 y

x

Reflection about the line y= −x;

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

100

010

001

100

001

010

 .

100

001

010

 where

11

 .

100

001

010

x

y

 y

x

or

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− 100

010

001

100

001

010

 .

100

001

010

 where

1

11

 .

100

001

010

x

y

x

y

 y

x

Reflection about the y axis.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

100

010

001

100

010

001

 .

100

010

001

 e wher

11

 .

100

010

001

y

x

 y

x

Reflection about the x axis

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

100

010

001

100

010

001

.

100

010

001

 ere wh

11

 .

100

010

001

y

x

 y

x

or

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

100

010

001

100

010

001

 .

100

010

001

 where

1

11

 .

100

010

001

y

x

y

x

 y

x

Homogeneous Reflections 493

12 Geometry, Algebras, Co-ordinate Systems, and Transformations

Scaling Along Each Axis

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100

010

001

100

010

001

 .

100

00

00

 where

1

.

.

1

 .

100

00

00

b

a
b

a

yb

xa

 y

x

 b

a

Uniform Scaling

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

100

010

001

00

010

001

 .
100

010

001

 where

1

11

 .
100

010

001

ss

s.y

s.x

s

y

x

 y

x

s

Shear
In the x direction

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ +

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100

010

001

100

010

01

.

100

010

01

 where

11

 .

100

010

01 aa

y

ayx

 y

x

a

in the y direction

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100

010

001

100

01

001

.

100

01

001

 where

1

.

1

 .

100

01

001

bbyxb

x

 y

x

 b

Combining the two

100

01

01

100

01

001

 .

100

010

01

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

b

a

b

ab

a

or

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100

01

01

100

010

01

 .

100

01

001

b

a

ab

a

 b

shear in both directions

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

−−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100

010

001

100

01

01

.

100

0
1.

1
1.

0
1.1.

1

 where

1

.

1

 .

100

01

01

b

a

baba
b

ba
a

ba
yxb

ayx

 y

x

 b

a

combining shear and scaling in the appropriate amounts gives a rotation

494

Rotation

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−
−

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100

010

001

100

0

0

.

100

0
....

0
....

 here w

1

..

..

1

 .

100

0

0

dc

ba

bcad
a

bcad
c

bcad
b

bcad
d

ydxc

ybxa

 y

x

 dc

ba

() () () () ;1sincos.. then sin and cos If 22 =α+α=−α=−=α== bcadcbda

() ()
() ()

() ()
() ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

α+α

α−α

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

αα

α−α

1

cos.sin.

sin.cos.

1

 .

100

0cossin

0sincos

yx

yx

 y

x

() ()
() ()

() ()
() ()

() () () () () ()
() () () () () ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

α+ααα−αα

αα−ααα+α

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

αα−

αα

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

αα

α−α

100

010

001

100

0sincossin.cossin.cos

0sin.cossin.cossincos

100

0cossin

0sincos

 .

100

0cossin

0sincos

22

22

Parallel Projections onto Axes Planes

Projections along with translations are the main extensions provided by using
homogeneous coordinates. Simple projections give two-dimensional images from
three dimensional scene models in the following way as projections on the axes
planes. In practice this can be implemented merely by ignoring one of the coordinate
values.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1

0

1

 .

1000
0100
0010
0000

1

0

1

 .

1000
0100
0000
0001

1
0

1

 .

1000
0000
0010
0001

z
y

z
y
x

z

x

z
y
x

y
x

z
y
x

Parallel Projections onto Axes Planes

The following matrix will carry out a rotation for two-dimensional points, by an

angle α, and the inverse operation can again be obtained by using −α instead of α.

495

496 12 Geometry, Algebras, Co-ordinate Systems, and Transformations

More complex three-dimensional projections such as perspective will be the
subject of a later chapter where the problem of rendering three-dimensional scenes is
explored in greater depth, as well as the task of constructing sequences of
transformations to give smooth three-dimensional trajectories.

Example Using Matrix Operations to Animate a Sequence

Once a curved shape is input then it can be rotated about a point on the screen by first
setting the point to be the origin then rotating the object’s control polygon about this
point then returning the object to its original coordinate framework in the way
illustrated in Figure 12.36.

Figure 12.36 Rigid body rotation about an arbitrary point

Where the object needs to be kept upright then further steps in building the

transformation matrix are necessary shown in Figure 12.37. Firstly the object is rotated
forwards by the angle alpha about its centre then the whole figure is rotated back about
the main centre of rotation by the same angle, so keeping the figure upright.

Transf2D TT = Tb.mult(Rf.mult(Tf.mult(Sb.mult(Rb.mult(Sf)))));

Figure 12.37 Rotation translation and scaling in combinations

class Transf2D{
double [][] t = new double[3][3];
Transf2D(){

for(int i=0;i<3;i++){ for(int j=0;j<3;j++){ if(i==j)t[i][j]=1.0;else t[i][j]=0.0;} }
}
public Transf2D setScales(double x,double y,double s,Transf2D m){

if (m==null) m=new Transf2D();
t[0][0]= x; t[1][1]= y; t[2][2]= s; m.t[0][0]=1/x; m.t[1][1]=1/y; m.t[2][2]=1/s;
return m;

}
public Transf2D setShear(double a,double b,double c,double d,Transf2D m){

if (m==null)m=new Transf2D();
t[0][0]= a; t[0][1]= b; t[1][0]= c; t[1][1]= d; double D= c*b-a+d;
m.t[0][0]=-d/D; m.t[0][1]=b/D; m.t[1][0]=c/D; m.t[1][1]=-a/D;
return m;

}
public Transf2D setTranslate(double x,double y,Transf2D m){

if (m==null) m=new Transf2D();
t[0][2]= x;t[1][2]= y; m.t[0][2]= -x; m.t[1][2]= -y; return m;

}
public Transf2D setRotate(double alpha,Transf2D m){

if (m==null) m=new Transf2D();double a,b,c,d;
a = Math.cos(alpha); b = Math.sin(alpha);
t[0][0]= a;t[0][1]= -b; t[1][0]= b; t[1][1]= a;
m.t[0][0]= a; m.t[0][1]= b ; m.t[1][0]= -b; m.t[1][1]= a; return m;

}

a b

Example Using Matrix Operations to Animate a Sequence 497

498 12 Geometry, Algebras, Co-ordinate Systems, and Transformations

public Transf2D mult(Transf2D m){
Transf2D n = new Transf2D();
for (int i=0;i<3;i++) for (int j=0;j<3;j++){

n.t[i][j] = 0;
for(int k=0;k<3;k++){ n.t[i][j] = n.t[i][j]+this.t[i][k]*m.t[k][j]; }

}return n;
}
public Point premult(Point p){

Point m = new Point(2);Point tmp = new Point(2);
tmp.n[0]=p.n[1];tmp.n[1]=p.n[2];tmp.n[2]=p.n[0];
for (int i=0;i<3;i++){

m.n[i] = 0; for(int k=0;k<3;k++){ m.n[i] = m.n[i]+this.t[i][k]*tmp.n[k]; }
}
Point s = new Point(2); s.n[0]=m.n[2]; s.n[1]=m.n[0]; s.n[2]=m.n[1]; return s;

}
}

public static void main(String[] args){
Polyline aa = new Polyline(IO,dW); aa.getPolyloop();
Polygon a = new Polygon(); a.p = aa.p; a.length=aa.length;
Polygon b = new Polygon(a.length);
IO.writeString("please enter the centre of rotation \n"); Point p = dW.getCoord();
IO.writeString("please enter the centre of object \n"); Point q = dW.getCoord();
Transf2D Tf = new Transf2D();
Transf2D Tb = Tf.setTranslate(-p.xd(),-p.yd(),null);
Transf2D Sf = new Transf2D();
Transf2D Sb = Sf.setTranslate(-q.xd(),-q.yd(),null);
IO.writeString("please enter the nuber of rotations \n");
int n= IO.readInteger(); IO.readLine();
double apha =0; double scale =1, dscale = 0.1; double dangle = 2* Math.PI/n;
for(int i= 0; i<n; i++){

Transf2D Scf = new Transf2D();
Transf2D Scb = Scf.setScales(scale,scale,1,null);
Transf2D Rf = new Transf2D();
Transf2D Rb = Rf.setRotate(alpha,null);
Transf2D TT = Tb.mult(Scf.mult(Rf.mult(Tf.mult(Sb.mult(Rb.mult(Sf))))));
for(int k=0; k<a.length;k++){

b.p[k]= TT.premult(a.p[k]);
if(k>0)dW.plotLine(b.p[k-1],b.p[k],Color.lightGray);

}
int nn= b.length*2-1;
Point boundary [][] = new Point[nn][];
Point[] bnd = boundaryFill(b,boundary,Color.black);
if(i%2==0)cc=Color.green;else cc=Color.blue;
fill(bnd, cc, Color.black);
alpha = alpha + dangle; scale = scale + dscale;

}
}

 13
Spatial Relationships
Overlap & Adjacency:
Point to Line to Area

Introduction
To write intelligent programs that are more than a series of simple commands it is
necessary to make commands conditional on data values and relationships between
data values. For graphics programming and many spatial modelling tasks, it is
necessary to make actions depend on spatial relationships, and to provide tests for
them. In this chapter the relationships of overlap and adjacency or neighbourliness
between spatial objects are examined. Since spatial objects are often represented by
complex data structures, such relationship tests usually have to be implemented as
sub-programs. Clearly such programs will depend on the nature of the data structure
representing the objects even where the abstract objects, for example polygons, are
the same. For this reason the main spatial relationships reflecting the primary
differences in the structures involved, are set out in the table given below. The more
detailed study of algorithms that follow, are based on the specific data structures
commonly used to represent these objects in practice.

Table 13.1 Basic spatial relationships

Objects Point

Line Area Volume

Point Point on Point Point in Line Point in Area Point in
Volume

Line Line on Line Line in Area Line in
Volume

Area Area on Area Surface in
Volume

Volume Volume on
Volume

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_13, © Springer-Verlag London Limited 2008

500 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

Point on Point

There are two essential relationship tests that are important when working with
points. The first is “the same as”, the second is “near to”. Where co-ordinates
represent points from the same co-ordinate space, then they are the same points if
their co-ordinates are equal. For Cartesian co-ordinates this is the relatively simple
test:

if((x1==x2)&&(y1==y2)&&(z1==z2)){ }.

Using a Mouse to Select a Point on the Screen

The point-to-point test occurs repeatedly in geometry programs. However, perhaps its
most common occurrence is where a mouse or pointing device is used to select a
point on the display screen. A pointing device is a piece of hardware that generates a
co-ordinate, which is used to display a cursor, either an arrow or cross hairs on the
display screen. Moving or adjusting the pointing device changes the co-ordinate and
the system then moves the cursor to reflect the change. This allows the user to
interactively define a point on the display surface. However if the pointer is to be
used to select an object on the display screen this point co-ordinate has to be matched
with an element of an object displayed at that point. To do this the co-ordinate of the
pointing device needs to be compared with the co-ordinates of points in the object’s
display file. When a match is found then the object in question can be selected.

With modern high-resolution displays the task of locating a particular point object
on the screen becomes very difficult. In such cases a “near to” test is more
appropriate. This test measures the distance between a potential target point and the
input, test point, and when the distance is below some threshold size, the target point
is selected.

There are various measures and approximations used for the distance between a
test and target point. The natural choice for true distance uses Pythagoras’ Theorem.

() ()22 0101 yyxxd −+−=

if(d < Δ) {P1 is near to P0}

or to save calculating square roots

if(Δ 2>((x1-x0)2+(y1-y0)2))
 {P1 is near to P0}

d
Δ

p0

p1

Figure 13.1 Pythagorean distance between target and test points

The exception to this rule occurs where homogeneous co-ordinates are used, in

which case the comparisons (x1/w1 == x2/w2), (y1/w1 == y2/w2) etc. must be used.

Matching Multiple Points 501

However, Manhattan distances can also be used for this test to save calculating a
square root when checking large display files.

d = |(x1-x0)|+|(y1-y0)|

In this case the x and y distance components can be positive or negative,
consequently the final distance that is compared to the threshold size has to be the
sum of two absolute values. This approach essentially involves testing the target
point to see if it lies inside a small square box surrounding the test point. If a box of
sides 2Δ is set up round a test point p0 the left and right edges of the box will be xa =
x0-Δ, xb = x0+Δ, and the top and bottom edges will be ya = y0-Δ and yb = y0+Δ.
This allows a single test to check whether the target point lies in the box surrounding
the test point in the way shown in Figure 13.2

Figure 13.2 Manhattan “point near to point” test

Matching Multiple Points

Matching single points is a relatively straightforward task. However when two large
files or lists of points need to be matched up then the pair by pair checking is not the
most efficient way of executing the task. If the two lists of points are joined together
and then the collection sorted, matching points will end up as neighbours in the
sorted list. Also instead of an)(2nO task as a worst case, an O(n.log(n)) operation
results. If independent points were being processed this could be done using a
standard sorting algorithm. However, where the points occur in a data structure
representing a more complex object then the sorting operation has to be carried out
using a linked-list sorting algorithm so the points can be kept in their original
positions in the initial data structure.

The simplest example of this operation is the chaining of line segments into
polyline arcs. Many processes generate output in the form of unordered straight-line
segments represented by the pair of end points for each line segment. Where these
line segments join up in the final drawing, it is efficient to chain them together in a
polyline representation. This however, means matching corresponding line segment
end points so that the duplicate co-ordinates can be removed.

Δ

xa=x0-Δ

ya=y0+Δ

xb=x0+Δ

yb=y0-Δ

x1 x0

y0

y1
p1

p0

Δ

if(((xa-x1)*(xb-x1)<0)&&((ya-y1)*(yb-y1)<0)){ }

y

x

502 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

public class ListOfTuples extends List {

public ListOfTuples(){ super.comparable = true; }
public NTuple mid(TextWindow tW){

ListElement ref = this.start; if (ref == null) return null;
NTuple v = (NTuple)ref.object;
NTuple min=new NTuple(v.dimension); NTuple max=new NTuple(v.dimension);
NTuple midTuple = new NTuple(v.dimension);
for(int i=0;i<v.dimension; i++)

{min.n[i] = Double.MAX_VALUE; max.n[i] = Double.MIN_VALUE; }
while(ref != null){

v = (NTuple)ref.object;
if(v.dimension!= 0){

for(int i=0;i<v.dimension; i++){
if(v.n[i]<min.n[i])min.n[i]=v.n[i]; if(v.n[i]>max.n[i])max.n[i]=v.n[i];

}ref = ref.right;
}

}boolean test = true;
for(int i=0;i<v.dimension;i++){

if(min.n[i]!=max.n[i]) test = false;
midTuple.n[i]= (min.n[i]+max.n[i])/2.0;

}if (test)midTuple=null;
return (NTuple)midTuple;//(Comparable)midTuple;

}
public ListOfTuples joinTo(ListOfTuples b){

if(this.start==null)return b; if(b.start==null)return this;
ListOfTuples a = new ListOfTuples(); a.start = this.start; a.finish = b.finish;
this.finish.right= b.start; b.start.left = this.finish; return a;

}
public ListOfTuples sortn(TextWindow tW){

this.setLength(); NTuple test = this.mid(tW);
if(test== null)return this; if (this.start == this.finish) return this;
ListElement ref = this.start; ListOfTuples leftList = new ListOfTuples();
ListOfTuples rightList= new ListOfTuples();
while(ref!=null){

if(((NTuple)ref.object).compareTo(test)<0){
leftList.push(ref.object);
leftList.start.link1 = ref.link1; leftList.start.link2 = ref.link2;

}else{
rightList.push(ref.object);
rightList.start.link1 = ref.link1; rightList.start.link2 = ref.link2;

}ref = ref.right;
}if (leftList.start==null) return rightList = rightList.sortn(tW);
if (rightList.start==null)return leftList = leftList.sortn(tW);
leftList = leftList.sortn(tW); rightList = rightList.sortn(tW);
return leftList.joinTo(rightList);

}
}

Matching Multiple Points 503

public class NTuple extends ComparableObject {

public double[] n = null;
public int dimension= 0;
public NTuple(){}
public NTuple(int dim){

this.dimension = dim; this.n = new double[dim];
}
public int compareTo(Object b){

for(int i=0; i<this.dimension; i++){
if(this.n[i]> ((NTuple)b).n[i])return +1;
if(this.n[i]< ((NTuple)b).n[i])return -1;

}return 0;
}

}

In the code given above a class called ListOfTuples is defined as an extension of
the class List. This class allows a double linked list to be built from NTuple objects.
Point objects are themselves extensions of NTuple objects: an NTuple simply being
an array of double values such as a homogeneous coordinate or the coefficients of a
line or plane equation. These elements are made “comparable objects” so they can be
ordered using standard Java methods. However, to provide the linked, ordered list
requires the methods defined in the class ListOfTuples, given above. The extreme
NTuple values are established for a collection of NTuples then a central pivot “mid”
element is set up and used to divide the collection into two collections: smaller or
larger than the mid element. These in turn are recursively processed in the same way
until singleton elements form each subset, at which point the recursive return links
the sub-lists back into an ordered list.

p1 p2 p3 p4 p5 p6 p6 p1 p4 p5 p2 p3

p1 p2 p3 p4 p5 p6 p6 p1 p4 p5 p2 p3

p2 p3 p4 p5 p6 p1 p1

Sort
vertex
points

Chain
through
matching
points

Remove
duplicate
points

Figure 13.3 Chaining line segments together using co-ordinate sorting

504 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

p1

p6

p3

p4

p5

p2

Figure 13.4 Ordered threaded list through the vertices of a polygon boundary

If the points in a set of line segment pairs are ordered in the way shown in Figure
13.3. Then by starting with the line segment containing the smallest point and linking
to the line segment containing the point matching its other end, and by repeating the
process for the subsequent line segments, a polyline arc can be threaded together, in
the way illustrated in Figure 13.4, to give a closed polygon boundary.

Point on Line

The nature of the point on line test, as with all these relationship tests, depends on
how the point and line are represented. Where the line is represented by a line-
equation and the point by a co-ordinate then the line is in effect infinite in extent. If
in contrast the line is only a line segment represented by its two end points, then
linear interpolation between its two end points is the implicit representation of only
part of an infinite line so the test has to be different.

The basic idea underlying the point to line tests is calculating the distance of the
point from the line. If the distance is zero then the point is on the line, if the distance
is less than some threshold value then the point is near the line. However because
points and lines are approximated in raster display systems, the second approach
usually has to be adopted with a threshold related to pixel dimensions. Where this is
too fine a measure, for example when pointing to a line in a high-resolution display,
then the threshold can be increased to a multiple pixel dimension.

If the test is for an infinite line then there is one step to the test, however for the
line segment there are two steps. The common step for both is measuring the
perpendicular distance of the point from the infinite line. The extra step for the line
segment is locating the point within the neighbourhood of the segment. This second
step applies the same box test used for testing the nearness of two points with a
Manhattan metric, but uses a different definition of the box. The test box is set up as
the min-max box for the line extended in each direction by the threshold distance.

505

(x2-x1)+2Δ

p1

p2

p0

(y2-y1)+2Δ

Δ

Δ

Δ

Δ

pa

pb

y

x

Figure 13.5 Box envelope test for point to line segment tests

The test becomes: if (((xa-x0)*(xb-x0)<0)&&((ya-y0)*(yb-y0)<0)) { } to test
whether the point p0 is within the extended box around the line segment. Where xa =
x1-Δ and xb = x2+Δ, and ya = y1-Δ and yb = y2+Δ.

Where the test point lies inside the box envelope round the line segment the next
step is to calculate the perpendicular distance of the point from the line. Where the
line segment is given as a pair of end points then the properties of determinants
provide a way to obtain the distance of the test point from the line.

p1
p2

p0

A

C

C

B
B A

Triangle Area = A + B - C

y

x

Figure 13.6 Calculating the area of a triangle

Point on Line

506 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

In Figure 13.6 the area of the triangle can be calculated by adding the area of
trapezium A to the area of trapezium B then subtracting the area of trapezium C from
the result. Where the area of a trapezium is given by multiplying its base times the
average of its height, the formula for the area of the triangle can be expressed as a
determinant containing the triangle’s vertex points.

()() ()() ()()
()

()
() ()()

 2
 1
 1

 .
2
1

21221210210

2122102012010

2
112112220020

022211011000

2,1,0

2/12.12 ;2/02.02 ;2/10.10

1y2x
1y1x

y0x0

/.yx.yxxx.yyy.x

/.yx.yx.yx.yx.yx.yx

/
.yx.yx.yx.yx.yx.yx

.yx.yx.yx.yx.yx.yx

CBApppeaTriangleAr

yyxxCyyxxByyxxA

=

−+−−−=

−++−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−−−

++−−+
=

−+=

+−=+−=+−=

If the test point and the two line-segment end-points are entered into a 33× matrix

as homogeneous co-ordinates the determinant of the matrix gives twice the area of
the triangle defined by the points. Where the determinant value is zero then the
triangle area is zero, in other words the test point p0 lies on the line through p1 and
p2. If the determinant is zero it indicates that its rows or columns are not linearly
independent. If the determinant is partially expanded then its relationship to the
equation of the line through p1 and p2 can be demonstrated.

()

()

()2121
22
11

 21
12
11

21
12
11

 :where

22
11

12
11

 .0
12
11

 0
 122
 111
 100

 0

.x-y.yx
yx
yx

c

xx
x
x

b

-yy
y
y

a

cb.y0 a.x00

yx
yx

x
x

y
y
y

.x
yx
yx
yx

==

−−=−=

==

++=

+−==

If the line through points p1 and p2, is defined by the equation: a.x + b.y + c = 0

obtained in this way. The dot product of the equation coefficients (a, b, c) and the

507

homogeneous co-ordinate (x0, y0, 1) of the test point will give twice the area of the
triangle formed by the test point and the line segment. However, if the coefficients of
the equation are normalised the result will be the perpendicular distance from the test
point to the line. Dividing the area of the triangle by its base length can show the
reason why the coefficients of the line equation need to be normalised to give this
distance.

p1

p2

p0

h

b

Figure 13.7 Calculating the
perpendicular height of a triangle

() ()()
()

() ()

22

2222

0.0. height Triangle

)/2BaseLengthheight Triangle(area Triangle

2121

:Length Base

2/0.0.
2/0.

: Triangle of Area

ba
cybxa h

bayyxxb

cybxa
x2.y1x1.y2.y0x2x1xy2y1

+

++
=

×=

+=−+−=

++=
−+−−−=

The combination of the two steps gives the test area shown in Figure 13.8, for a

point p0 and line (p1, p2). The calculation of a square root can be avoided by
squaring both sides of the equation.

if(Δ∗Δ > (a.x0+b.y0+c)*(a*x0+b.y0+c)/(a*a+b*b)) {point is near the line}

(x2-x1)+2Δ

p1

p2

p0 (y2-y1)+2Δ

Δ

Δ

Δ

Δ

pa

pb

y

x

Δ
Δ

d

Figure 13.8 Nearness neighbourhood for a line segment to point test.

Point on Line

508 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

Point in Area Relationship Tests

There are various approaches to testing whether a point lies inside a polygon or not,
partly dependent on the nature of the polygon and partly dependent on the way it is
represented.

The simplest scheme, which can be used for polygons represented by polyline
boundaries where the boundary does not cross itself, is the semi-infinite line test.

A

A

B

B Av

Av

Ah Ah

Bv

Bv

Bh Bh
Pa

Pb

Figure 13.9 Semi-infinite line tests for point in polygon

If a line is taken out from the test point to infinity, or as far as is necessary to be
clear of the polygon boundary then if the line cuts the boundary once or an odd
number of times then the point is inside the polygon. Otherwise if the line does not
cut the boundary or cuts it an even number of times then the point lies outside the
polygon. In Figure 13.9 the simplest line to work with is the straight line. If oblique
lines are used then it will be necessary to calculate the intersection points between the
test lines such as A/A or B/B with each line making up the polygon boundary to see
if it lies within its segment length. However if either vertical or horizontal test lines
Av/Av or Bv/Bv or Ah/Ah or Bh/Bh are used then these tests can be simplified.

For vertical or horizontal test lines the only boundary segments which need to be
considered are those which lie directly above or below the test point, or directly to
the left or right sides of the point. These segments can be identified using a vertical
line by a single conditional test of the form:

if ((p1.x()-p0.x())*(p2.x()-p0.x()) < 0) // then the segment p1,p2 needs to be selected

509

A

A

B

B

Pa

Pb

Figure 13.10 Vertical semi-infinite-line point-in-polygon testing

In figure 13.10 where the number of line segments (p1, p2) with both p1.y and

p2.y greater than p0.y selected by this test, is odd, it classifies the point p0 as inside
the polygon, and for an even number it indicates the point p0 lies outside the
polygon. The actual co-ordinate of each crossing point, in these cases, does not need
to be calculated. The equivalent approach can be implemented for horizontal test
lines.

As usual, there are special cases that need to be handled to make this algorithm
robust. The boundary segment test given above will miss cases where test lines pass
through boundary segment end points. However, if these are included in the test:

if ((p1.x()-p0.x())*(p2.x()-p0.x()) <= 0) // then the segment p1,p2 needs to be selected

then double counting can occur in a way which will give false results for the point-in-
polygon test. There are six ways in which this can occur for the vertical line testing
procedure:

a b c e d f

Figure 13.11 Vertical semi-infinite line point in polygon testing

The first two cases in Figure 13.11, cases a and b, are equivalent to a single

crossing point, while the remaining cases must be treated as no crossing point or two
crossing points. If a boundary line segment is co-linear with a test line then it will
also be selected by the modified test given above, adding even further to the
complexity of the counting task.

p1

p2

p0

Point in Area Relationship Tests

510 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

Considering the horizontal test-line example, shown in Figure 13.12, it is clear
that all these awkward cases could occur in the same polygon.

Figure 13.12 Horizontal semi-infinite line through polygon boundary vertices

A further complication occurs to spoil the initial simple implementation of this

algorithm where a boundary line segment is not totally above or totally below the test
point. When the test point lies inside a boundary-line-segment’s min-max box-
envelope, neither testing y values alone will be able to determine whether such line
segments lie above the test point or below the test point, for vertical test lines, nor
will testing x values determine whether line segments lie to the left or to the right of a
test point for horizontal test lines.

In these cases it is necessary to test the boundary line segments in a different way
to determine on which side a test point lies. This can be done using the orientation of
the boundary line segment relative to the test point, employing a determinant to
calculate the area of the triangle created by the three points, the test point and the two
end points of the line segment. The sign of the determinant of the three points will
give the required relationship.

p1

p2

pb

pa

pa, p1, p2

pb, p1, p2

Figure 13.13 Points lying inside a boundary line segment box envelope

y

x

511

In Figure 13.13 it can be seen that changing a point p0 from one side of the line
segment to the other causes the same order in the boundary list (p0, p1, p2), to
change the geometry from a clockwise order to an anticlockwise order. This is
matched by a change in the sign of the determinant from negative to positive.

() ()

() ()
() () () ()

()() ()()21.1021.10
21.121.121.021.0

1.12.11.12.121.021.0

2.12.121.021.0

 122

 111

 100

xxyyyyxx
xxyyyxxxyyyx

yxxyyxyxxxyyyx

xyyxxxyyyx

yx

yx

yx

−−−−−=
−+−−−−−=
+−−+−−−=

−+−−−=

0
3
6

1
4
7

2
5
8

(x0 :x1)

j = 0 ;
i f(x0 < x1)j = j+1 ;
if(x0= = x1)j = j+2 ;
if(x0 < x2)j = j+3 ;
if(x0= = x2)j = j+6 ;
switch (j) {. .. }

2 : (x0 :x2)

1 : (x0 :x2)

0 : (x0 :x2)

Table 13.2 Point line relationships:

x2

x1

x2

x1

x1

x0

x2

x2

x1

x0

x2

x0

x1

x2

x0

x1

x1

x0

x2

x2

x1

x0

x1

x2

x0

x1

x2

x0

x2

x1

x0

x1

x2

x0

A program to implement these ideas can be written in the following way. The

relationship between the test point and each boundary line segment is classified by a

8 8
7 6

5 4 4 3

0 01 2

j = 0;

if(x0 < x1) j = j+1;

if(x0 == x1) j = j+2;

if(x0 < x2) j = j+3;

if(x0 == x2) j = j+6;

x0 x0

Point in Area Relationship Tests

512 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

switch variable j, which is then used to handle the general and the special cases in an
appropriate way. A similar classification can be set up for the relationship between
the test point’s y value and the boundary line-segment end-point y-values. However,
it is simpler to handle the y relationships within each of the x-relationship cases given
in table 13.2. These cases form three groups. For cases 2 and 5 the count increment
has to be +1 or –1 as long as (y1 > y0); also for cases 6 and 7: where (y2 > y0). By
incrementing the count in a way that depends on the direction in which the boundary
meets the test line, the different cases shown in Table 13.2 can be handled in a self-
consistent way. By making the increment 1 unit, where the test line passes through a
boundary line segment’s end point, and making its contribution –1 if the next
segment changes direction and does not complete the crossing, its effect can be
removed. For cases 1 and 3, as long as both y values are above the test point y value
the count can be incremented or decremented by 2 depending on whether (x1 < x2)
or (x2 < x1). Where the test y value lies between the y values of a segment’s end
points, then the determinant test given above has to be applied to decide the
relationship, which is relevant. This means that the final count value has to be
divided by 2 and then an odd-even test will determine whether the test point lies
inside the polygon or not.

Public boolean contains(Point pp, boolean boundary){ // point in polygon test

double x0, x1, x2, y0, y1, y2, k; int inc = 1, val=0;
if(this.length == 0) return false;
x0 = pp.xd(); y0 = pp.yd();
for(int i = 0; i < this.length –1; i++;){

x1 = p[i].xd(); y1 = p[i].yd(); x2 = p[i+1].xd(); y2 = p[i+1].yd();
if(x1 < x2) inc = 1; else inc = -1;
j=0;
if(x0 < x1) j=j+1;
if(x0 == x1) j=j+2;
if(x0 < x2) j=j+3;
if(x0 == x2) j=j+6;
switch (j){
case 2:case 5:

if (y1 > y0) val = val+inc; else if (y1 == y0) return (boundary); break;
case 1: case 3:

if ((y0<y1)&&(y0<y2)) val = val+inc+inc;
else { k = ((x0-x1)*(y0-y2)-(x0-x2)*(y0-y1))*inc;

if(k<0.0) val = val+inc+inc; else if(k==0.0) return(boundary);
} break;

case 6: case 7:
if (y2> y0)val = val+inc; else if (y2 == y0) return boundary; break;

case 8: if ((y0 – y1)*(y0 – y2)<=0) return boundary;
}

}
if((val / 2) % 2 == 0) return false; // AA
return true;

}

513

The extra Boolean parameter “boundary” is included to allow any point lying on
the boundary to be selectively classified as inside or outside the polygon depending
on the nature of the application.

Figure 13.14 “Semi-infinite line” point in polygon with a non self-crossing boundary

Figure 13.15 “Semi-infinite line” point in polygon with a self-crossing boundary

If this algorithm is applied to a polygon with a self-crossing boundary then it may
not always give the required result. Where a polygon folded in three dimensions is
projected onto a display surface it is possible for its boundary to become self-
crossing. It would be convenient to be able to interactively select such a projected
polygon using a point in polygon test. An alternative approach, which makes this task
possible, is to use a winding number algorithm rather than the semi-infinite line
algorithm.

Point in Area Relationship Tests

514 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

Figure 13.16 Points lying inside a self-crossing boundary line

The winding number can be measured by the angle a line following a point on the

boundary sweeps out pivoting about the test point. In Figure 13.17 it can be seen that
for a simple convex polygon where the point is inside it, the angle is 2π, but where
the point lies outside the polygon some of sweep is clockwise some is anti clockwise
giving positive and negative angles adding up to 0. Calculating angles is
computationally expensive, however this approach can be simplified to a process,
which counts the number of revolutions more directly.

Figure 13.17 Boundary angle sum subtended at the test point

If all the vertices of the polygon are translated to make the test point lie at the

origin of the co-ordinate system, each boundary point can be classified by the
quadrant of the co-ordinate system, which it lies within. The simplest way to do this
is to use the signs of the x and y values of the point’s co-ordinate. The rotations can
then be counted by the number of complete quadrant sequences that a point passes
through, following the boundary from its beginning to its end.

If a boundary point starts in quadrant 1 then progresses to quadrant 2, through 3
and 4 back to 1 again then one rotation can be counted as shown in Figure 13.18. The
difficulty with this process occurs when a boundary segment passes diagonally from
quadrant 1 to quadrant 3, or from quadrant 2 to quadrant 4, or the reverse.

Outside

Outside Inside

Inside

Inside

Inside

Inside

Σ angles =2π

Σ angles = 0

515

2π

0 1

2

3

2

3
4

4

1

1
2

3

2

2

3

3

2

Figure 13.18 Winding number approach using quadrants

These cases correspond to the semi-infinite line algorithm where a test point lies
within the min-max box envelope of a boundary line segment. It is not possible
without an extra test to tell on which side of the line the test point lies. In the case of
the winding number count a step from 1 to 3 has to be tested to determine whether
the sequence is 1, 2, 3 or is the reverse rotation 1, 4, 3. Both of these cases can be
resolved by the same determinant-based calculation.

Above

Below

1

4 3

2
 1-2-3

1-4-3

Figure 13.19 Tests needed to define which side of a test point a line segment lies

It is not necessary to write a different program to implement this approach.
Treating the boundary line segments as moving in a positive or negative direction to
solve the special cases shown in Figure 13.11 depends on the same information that
is employed using the quadrant classification approach.

All that needs to be changed in the previous code is the final test. Changing code
AA to BB will produce the required change of behaviour.

if((val / 2) % 2 == 0) return false; //AA
return true;

if(val == 0) return false; //BB
return true;

Point in Area Relationship Tests

516 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

Figure 13.20 Point in polygon using the semi-infinite line algorithm

Figure 13.21 Point in polygon using the winding number algorithm

In figure 13.21 the result of a change to the winding number approach can be seen.
This algorithm is useful for hidden line removal tests, the boundary given in this
display represents the outer edge of a projection of a torque shaped ring. The area
where the ends of the torque overlap is “inside” the projected image of the object,
whereas points in the centre of the ring lie outside the object in its image.

Line on Line

The most common relationship test between two lines is probably to determine
whether they intersect or not. This test is usually between two line segments and is
executed in two steps. The first step tests the lines to see if they are in the same

517

neighbourhood by testing their box envelopes to see if they overlap. The second step,
if they do, then calculates the intersection point.

Figure 13.22 Overlapping box envelopes

There are a variety of ways of
programming the overlapping box
test. One approach is to take the
extreme points of one box and see if
they lie between the extreme points
of the other box. This allows the
point-in-box test given above, to be
used as a building block. The test
has to be applied both in the x-axes
and y-axes directions. Three
separate point-in-box tests are
needed in each direction to cover
the four relationships shown in
Figure 13.23.

cd

ab ab ab ab

cd cd cd

4 1 2 3

Figure 13.23 Extreme point relationships for overlap

if(((a-c)*(b-c)<=0)||((a-d)*(b-d)<=0)||((c-a)*(d-a)<=0)){overlap exists}

The first two point in box tests cover the first three relationships in Figure 13.23

however an extra test is needed to cover the final relationship shown in case 4.

p0

p2

p4 p1

p3

p0

L2

L0

L1

Figure 13.24 Dual linear relationships: points and lines

The second step, finding the intersection point of two line segments, involves

calculating the equations of the two lines and then solving the resulting pair of

Line on Line

518 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

simultaneous equations. Programming this task can becomes complicated by the
special cases dealing with vertical lines, parallel lines and other conditions that can
create divide by zero errors, if the steps of the algorithm are not carefully planned.
However, a robust approach can be built up round the use of homogeneous co-
ordinates, determinants, and the duality of points and lines in two dimensions. In
Figure 13.24 p0 will be linearly dependent on p1 and p2 as well as p3 and p4, so the
two determinants containing these line end points and p0 will be zero.

020.20.2 0
44
33

 0.
14
13

 0.
14
13

010.10.1 0
22
11

 0.
12
11

 0.
12
11

 0
144
133
100

4
3
0

 0
122
111
100

2
1
0

=++≡=+−

=++≡=+−

====

cybxa
yx
yx

y
x
x

x
y
y

cybxa
yx
yx

y
x
x

x
y
y

yx
yx
yx

p
p
p

yx
yx
yx

p
p
p

Similarly, in the dual arrangement, the arbitrary line L0 will linearly depend on

the other two lines L1 and L2 passing through the same point p0.

;0/0 ;0/0 00

22
11

 0

22
11

 0

22
11

 0

00.00.00.0 0
22
11

 .0
22
11

 .0
22
11

 .0

 0
222
111

c000

2
1
0

wyywxxwIf

ba
ba

w

ca
ca

y

cb
cb

x

wcybxa
ba
ba

c
ca
ca

b
cb
cb

a

cba
cba

ba

L
L
L

==≠

=

−=

=

=++≡=+−

==

This means that the final intersection point p0 can be calculated by converting the

homogeneous co-ordinate back to a conventional two-dimensional co-ordinate by
dividing through by w0. The advantage of this approach is that this is the only
division in the whole sequence. If w0 is zero, then it can be trapped, and it indicates
that the point lies at infinity. This occurs when the original line segments are parallel
or co-linear, or if either of the line segments is of zero length.

519

Once the intersection point has been calculated it still has to be tested for being
within the length of each line segment. Though the envelopes of the lines overlap the
lines themselves may not intersect, as Figure 13.22 illustrates.

An alternative approach which initially appears to involve more calculations, but
which provides a more versatile sequence of steps, can be constructed as follows.
Each end point is classified as inside or outside the other line segment -- treated as an
infinite oriented line. Evaluating the determinant constructed from the test point and
the end point co-ordinates of the other line segment will provide this classifying
value “k”. These values will be of opposite signs for pairs of test point on opposites
sides of the line. Consequently if the product of the two determinant values for each
line segment is negative for both line segments, then the two line segments must
cross within their length.

If these determinant values are labelled k1, k2, ka and kb then the line relationships
shown in Figure 13.25 can be discriminated by examining their relative k-values.

k1

k2

ka

kb

k1*k2>0
ka*kb<0

k1*k2<0
ka*kb<0 k1*k2>0

ka*kb>0

k1*k2=0
ka*kb<0

k1 k1

k1

k2

k2 k2 ka
ka

ka

kb

kb

kb

Figure 13.25 Classifying line segment end points

The advantage of this process is that if the line segments are found to cross within
their length the values of k1, k2, ka and kb can be used to calculate the intersection
point directly. Because the determinant value is proportional to the area of a triangle,
relationships based on similar triangles can be used to derive the crossing point in the
way illustrated in Figure 13.26.

Line on Line

520 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

A

D

C B

E

H

G

A

B

D

C

F

J

G

H

E

Figure 13.26 Calculating line intersection points

In Figure 13.26.a

ED
CE

GD
CH

EDGEHC

GD
CH

ABGD
ABCH

ABD
ACB

k
k

ABD
ACB

=

ΔΔ

==
Δ
Δ

=
Δ
Δ

 anglesSimilarTri

 .
 .

 Area
 Area

2
1

 Area
 Area

In Figure 13.26.b

2
1

02
10

2
1

02
10

 sSimilar

k
k

GD
CF

yy
yy

k
k

JD
CH

xx
xx

GD
CF

JD
CH

ED
CE

EJD, ECFEHC, EGD,

−==
−
−

−==
−
−

==

Δ

12
2.11.20

12

2.11.20

kk
ykyky

kk
xkxkx

−
−

=

−
−

=

The advantage of this approach is that not only can these “k” values be used to
calculate the crossing point of two lines but also when these values are zero they
signal special cases that may need special handling. For example when one of these
values is zero it means that the corresponding end point is the intersection point with
the other line. The signs and values of these “k” values can be used to identify most
of the relationships between line segments that require some form of special
treatment. For example where the lines are collinear, parallel or where one of the
lines has zero length, which can occur when some other process is automatically
generating line segments, in a sequence of operations.

a

b

p0

p1

p2

p0

p1

p2

521

Polyline on Polyline

As with points, a better approach is needed, when handling large sets of potentially
interacting line segments, than executing all the possible pair-wise tests between
individual line segments. Sets of line segments can occur as separate line segments or
as polyline arcs, where line segments are linked in chained vertex sequences. The
same approach should be applicable to both these data structures. The first attempt to
create an efficient algorithm for polylines was developed for the OBLIX program to
draw surface lines and contour lines onto cartographic block models. The aim was to
produce a drawing, in vector format rather than in the pixel grid format of chapter 9,
so that it was easy to redraw at different scales. This is more efficient where output
might be directed to different display devices. The raster size of the high-resolution
printer being different from that employed in CRT or LCD display screens.

The task was to find the intersection points between surface based line segments
and the obscuring polygon, in the way illustrated in Figure 13.27. All the surface
based line-segments were linked together into a single polyline, alternating real and
virtual segments. This allowed each line segment to be compared with only those
segments of the obscuring polygon lying directly above or below it. (P1, P2) only
needs to be tested against the sequence Pa, Pb, Pc. (P2, P3) in the opposite direction
simply requires the same set to be tested in reverse order. By controlling the testing
using the current line segment direction and end point relationships, many wasted
comparisons were avoided. The data in this case were generated in a conveniently
localised manner. To generalise this approach it is necessary to pre-process polyline
data to gain the same advantage.

Pa P1

P3

P2

P4

P5

P7

P6
P8

Pb

Pc
Pd

Figure 13.27 Sort the polyline vertices into co-ordinate order

The first step is to sort the vertices of the polylines into co-ordinate order. As

before this sequence has to be set up as a linked list, to avoid destroying the data
structure representing the lines. The second step is to take each line segment in order,
as it is located following this ordered list. These line segments are then compared
with all the line segments, whose leftmost points are encountered following the

Obscuring Polygon

Surface Polyline Coordinate Order
Linked List

Polyline on Polyline

522 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

ordered list moving from the first point of the test line segment to its second point. In
Figure 13.27 the testing sequence becomes:

 (Pa,Pb) tested against (P1,P2), (P2,P3),(P3,P4),(P4,P5),(P5,P6)
 (P1,P2) tested against (Pb,Pc)
 (P3,P2) tested against (Pb,Pc)
 (P3,P4) tested against (Pb,Pc)
 (P5,P4) tested against (Pb,Pc)
 (P5,P6) tested against (Pb,Pc), (Pc,Pd)
 (Pb,Pc) tested against (P7,P6),(P7,P8)
 (P7,P6) tested against (Pc,Pd)
 (P7,P8) tested against (Pc,Pd)

This ordered processing is a general approach used for many geometric tasks
called “plane sweep” processing, because it works as though a line or plane is swept
through an image or object space, and every object it encounters is processed in the
order in which it finds them. It localises comparisons, and consequently reduces the
number of unnecessary tests. However, although it helps, each line segment will still
have to be compared with all other lines that cross the vertical band above and below
it. An alternative approach with an even better power to reduce unnecessary
comparisons is given by binary sub-division of the image space firstly in the x-
direction and then in the y-direction. This process continued recursively until there
are only two line segments in each area, will very efficiently localise tests in the way
shown diagrammatically in Figure 13.28. The coloured rectangles are where two line
segments from different polylines are left in the quadrant. Where the colour is purple
the lines cross where it is pale yellow the lines do not cross. The uncoloured
quadrants contain line segments from only one polyline set, or no line segments.

Figure 13.28 Quad tree subdivision

523

public class PolylineIntersectonExample{

static TextWindow IO = new TextWindow(15,405,600,110);
static DisplayWindow dW =new DisplayWindow(IO,15,5,600,400,Color.white);
public static void main(String[] args){

double xmin,xmax,ymin,ymax;
Polyline p1 = new Polyline(IO,dW); p1.getPolyline();
Polyline p2 = new Polyline(IO,dW); p2.getPolyline();
List pointList = p1.intersect(p1, p2);
if(pointList!= null){

ListElement ref = pointList.start;
while(ref!=null) {dW.plotRectangle((Point)ref.object,3,Color.red); ref= ref.right;}

}
for(int j=1;j<p1.length;j++) dW.plotLine(p1.p[j-1],p1.p[j],Color.black);
for(int j=1;j<p2.length;j++) dW.plotLine(p2.p[j-1],p2.p[j],Color.black);

}
public List intersect(Polyline p1,Polyline p2){

List pc = new List(); List pd = new List();
for(int i=1;i<p1.length;i++){

Line ln = new Line();ln.p1=new Point(2); ln.p2=new Point(2);
p1.p[i-1].c("->",ln.p1);p1.p[i].c("->",ln.p2); pc.append(ln);

}for(int i=1;i<p2.length;i++) {
Line ln = new Line(); ln.p1=new Point(2); ln.p2=new Point(2);
p2.p[i-1].c("->",ln.p1); p2.p[i].c("->",ln.p2); pd.append(ln);

}Box bx1 = new Box(p1); Box bx2 = new Box(p2);
Box bx = new Box(bx1,bx2); bx.draw(dW,Color.blue);
List cP = new List(); return cP = divide(pc,pd,bx,cP,0,2);

}
private void partition(List pa,List pa1,List pa2,NTuple nt){

if ((pa==null)||(pa.length==0)) return;
ListElement ref = pa.start;
while(ref!=null){

Line a = (Line)ref.object;
Line b = new Line(); b.p1=new Point(2); b.p2=new Point(2);
a.p1.c("->",b.p1); a.p2.c("->",b.p2); Point p1= a.p1; Point p2= a.p2;
double k1= nt.n[0]*p1.xd()+nt.n[1]*p1.yd()+nt.n[2];
double k2= nt.n[0]*p2.xd()+nt.n[1]*p2.yd()+nt.n[2];
if(k1*k2<0){

Point p0 = new Point(2);
p0.x("=",(p2.xd()*k1-p1.xd()*k2)/(k1-k2));
p0.y("=",(p2.yd()*k1-p1.yd()*k2)/(k1-k2));
p0.c("->",a.p2); p0.c("->",b.p1);
if(k2<0)pa1.append(b);else pa2.append(b);

}
if(k1<=0)pa1.append(a);else pa2.append(a);
ref=ref.right;

}
}

Polyline on Polyline

524 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

public List divide(List pa,List pb,Box bx,List cP,int level,int alt){
if((pa==null)||(pb==null)) return cP; if((pa.length== 0)||(pb.length==0)) return cP;
double x = (bx.minP.xd()+bx.maxP.xd())/2; double y = (bx.minP.yd()+bx.maxP.yd())/2;
bx.draw(dW,Color.green); level = level+1; ListElement ref1= pa.start, ref2= pb.start;
if((pa.length==1)&&(pb.length==1)){

Point p = new Point(2);
if(lineCross((Line)pa.start.object,(Line)pb.start.object,p)) cP.append(p);
return cP;

}if(level==40){
while(ref1!=null){

ref2= pb.start;
while(ref2!=null){

Point p = new Point(2);
if(lineCross((Line)pa.start.object,(Line)pb.start.object,p)) cP.append(p);
ref2=ref2.right;

}ref1=ref1.right;
}return cP;

} Box bx1= new Box(bx); Box bx2= new Box(bx); NTuple nt = new NTuple(3);
switch(alt){
case 1: bx1.maxP.x("=",x); bx2.minP.x("=",x);

nt.n[0]= 1; nt.n[1]= 0; nt.n[2]= -x; alt=2; break;
case 2: bx1.maxP.y("=",y); bx2.minP.y("=",y);

nt.n[0]= 0; nt.n[1]= 1; nt.n[2]= -y; alt=1; break;
} List pa1=new List();List pa2=new List(); List pb1=new List();List pb2 = new List();
partition(pa,pa1,pa2,nt); partition(pb,pb1,pb2,nt);
cP= divide(pa1,pb1,bx1,cP,level,alt); cP= divide(pa2,pb2,bx2,cP,level,alt);
return cP;

}
private boolean lineCross(Line a,Line b,Point p){

Point p1= a.p1, p2=a.p2, pa= b.p1, pb=b.p2;
NTuple nt1 = new NTuple(3); NTuple nt2 = new NTuple(3);
nt1.n[0] = p1.yd()- p2.yd(); nt1.n[1] = p2.xd()- p1.xd();
nt1.n[2] = p1.xd()*p2.yd()-p1.yd()*p2.xd();
double k1= pa.xd()*nt1.n[0] + pa.yd()*nt1.n[1] + nt1.n[2];
double k2= pb.xd()*nt1.n[0] + pb.yd()*nt1.n[1] + nt1.n[2];
nt2.n[0] = pa.yd()- pb.yd(); nt2.n[1] = pb.xd()- pa.xd();
nt2.n[2] = pa.xd()*pb.yd()-pa.yd()*pb.xd();
double k3= p1.xd()*nt2.n[0]+p1.yd()*nt2.n[1]+nt2.n[2];
double k4 =p2.xd()*nt2.n[0]+p2.yd()*nt2.n[1]+nt2.n[2];
if(k1==0) k1=.00004; if(k2==0) k2=.00004; if(k3==0) k3=.00004; if(k4==0) k4=.00004;
if((k1*k2<=0)&&(k3*k4<=0)){

p.x("=",(p2.xd()*k3-p1.xd()*k4)/(k3-k4)); // temporary fix to
p.y("=",(p2.yd()*k3-p1.yd()*k4)/(k3-k4)); // avoid k=0 cases
return true;

}return false;
}

}

525

Figure 13.29 Binary subdivision calculating intersection points between polylines

Line and Line Sets on Polygons

In this section the interaction between lines and polygons is examined using two
forms of line representation and two polygon representations. Firstly a single line is
interacted with a single rectangle clipping it so that it is only visible in the rectangle’s
interior. Secondly a set of simple straight lines is interacted with a simple polygon to
give a generalised form of shading. A naïve approach to this task is to repeatedly
interact single lines with the polygon. However, where the lines are parallel this
algorithm can be made more efficient. Finally, replacing the simple line by a polyline
allows the subdivision algorithms described above to be used to calculate new
boundary and line intersection points, which in turn links to the next chapter
examining overlapping polygons and rectangles.

Line Rectangle Clipping

An elegant algorithm developed by Ivan Sutherland for the SKETCHPAD system in
1963 addressed the problem of clipping large line files, to fit into the refresh memory
of an interactive display for a CAD system. The problem was that most of the lines in
a large drawing would not be in the field of view, and only a few visible lines would
need to be clipped. The majority of lines could be rejected, most of the remainder
could be drawn as they were defined, and only a few would need modifying. The
algorithm was therefore designed to reject lines lying outside the rectangle of the
display space with minimum testing, and only spends resources on lines with a high
chance of crossing the edges of the rectangle.

Line Rectangle Clipping

526 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

The first step was to divide the display space up into nine regions by projecting
the four edges out to infinity. The end points of line segments were then classified by
their relationship to these four lines. A four-bit value was set up each bit associated
with an edge of the rectangle. If a point was outside a particular edge its bit position
was set 1 otherwise 0. The two values generated for a line segment were then used
together to totally reject the line, totally accept it or pass it on for further processing
and testing. If these bit values when “and-ed” together gave other than zero, the line
could be rejected because both points would be outside the same edge, and could not
therefore appear in the window. If both of these values were zero then both points
would be inside the rectangle, so the line could be drawn in directly, this could be
established by “or-ing” the two values together, and a non zero result would again
indicate further testing was necessary. Any line that failed these two tests would then
have to be tested against each edge in turn to see if it needed to be clipped to that
edge. The remaining segment after clipping could then be drawn in.

Figure 13.30 Widow line clipping

private int classify(int x, int y, Box r){
int j=0;
if(x < r.minP.xi()) j=j+1;
if(x > r.maxP.xi()) j=j+2;
if(y < r.minP.yi()) j=j+4;
if(y > r.maxP.yi()) j=j+8;
return j;

}

Top Edge

Bottom Edge

Right Edge Left Edge

1010

1000

0010

0101 1001 0001

0100 0000

0110

527

public boolean clipBox(Box cl,Point p1,Point p2){
i = classify(p1.xi(),p1.yi(),cl); j = classify(p2.xi(),p2.yi(),cl);
if((i==0)&&(j==0))return true;
if((i&j&15)!=0)return false;
if(edgeClip(p1,p2,cl.minP.xi(), 1,false)) return false;
if(edgeClip(p1,p2,cl.maxP.xi(),-1,false)) return false;
if(edgeClip(p1,p2,cl.minP.yi(), 1, true)) return false;
if(edgeClip(p1,p2,cl.maxP.yi(),-1, true)) return false;
return true;

}
private boolean edgeClip(Point p1,Point p2,double e,double d,boolean up){

double x1,x2,y1,y2,k1,k2;
if(up){x1= p1.yd(); x2=p2.yd(); y1=p1.xd(); y2=p2.xd();}
else{x1= p1.xd(); x2=p2.xd(); y1=p1.yd(); y2=p2.yd();}
k1= x1-e; k2=x2-e;
if(k1*k2<=0){

if(k1*d<0){
y1=(k2*y1-k1*y2)/(k2-k1);
if(up){p1.y("=",e);p1.x("=",y1);}else {p1.x("=",e); p1.y("=",y1);}

}if(k2*d<0){
y2=(k2*y1-k1*y2)/(k2-k1);
if(up){p2.y("=",e);p2.x("=",y2);}else {p2.x("=",e); p2.y("=",y2);}

}
} else if(k1*d<0) return true;
return false;

}
public static void main(String[] args){

double xmin, xmax, ymin, ymax;
IO.writeString("Please enter diagonal window corners\n");
Point p1 = dW.getCoord(); Point p2 = dW.getCoord();
if (p1.xd()<p2.xd()){xmin = p1.xd(); xmax= p2.xd();}
else {xmin = p2.xd();xmax= p1.xd();}
if (p1.yd()<p2.yd()){ymin = p1.yd(); ymax= p2.yd();}
else { ymin = p2.yd(); ymax= p1.yd();}
p1.x("=",xmin); p2.x("=",xmax); p1.y("=",ymin); p2.y("=",ymax);
Box bx = new Box(p1,p2); bx.draw(dW,Color.blue);
IO.writeString("Please enter 10 lines for clipping\n");
for(int j=0;j<10;j++){

p1 = dW.getCoord(); p2 = dW.getCoord();
Point p3 = new Point(2); Point p4 = new Point(2);
p3.c("<-",p1); p4.c("<-",p2);
if(dW.clipBox(bx,p1,p2)){

dW.plotLine(p1,p3,Color.green); dW.plotLine(p4,p2,Color.green);
dW.plotLine(p1,p2,Color.black);

}else dW.plotLine(p3,p4,Color.magenta);
}

}

Line Rectangle Clipping

528 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

Figure 13.31 Widow line clipping: black inside, magenta rejected, green clipped

General Polygon Shading

An alternative to colour fill for shading polygons is the more traditional line drawing
technique of hatch shading. This can be built up by overlaying grids of parallel lines.
Clipping lines where they cut the boundary of a polygon will give the hatch shading.
However, because the shading lines are parallel they can be generated by the same
approach used for polygon fill. This algorithm depends on the lines being horizontal
or vertical in order to reorder the end points of the shading lines, obtained by walking
round the polygon boundary in grid-spaces steps, into a scan line sequences. The
same sorting principle can be applied to give a more general line-shading scheme, for
vertical or horizontal shading lines applied to complex polygon shapes. However
hatching often requires oblique shading lines. Fortunately it is possible to allow the
kernel of the shading algorithm to use the same approach by rotating the polygon in
the way shown in Figure 13.32 so that the oblique lines become horizontal. These
shading line segments will all have the correct size and interrelationship with the
polygon boundary for oblique shading, so all that needs to be done is to rotate them
back to give the required orientation and position in the final display.

529

Figure 13.32 Oblique shading-lines

The bucket sorting approach was used to reorder the scan-line fill end points, as a

fast linear-complexity, sorting algorithm. Its limitation was that it was only
convenient to work with single left and right edge points. The general approach being
studied in this section, required to handle any shape, will need to use a more standard
co-ordinate sorting-algorithm. This at first sight will be rather less efficient.
However, walking round the polygon boundary to generate the end points of the
shading lines: most of these points will already be in co-ordinate order. If these
points are placed into an ordered link list as they are generated then a form of merge
sort will give very close to a linear complexity sorting performance. In the procedure
insertInOrder given below each new point t is compared to the last point entered into
the ordered list and placed before or after it depending on whether the current
boundary line segment is orientated upwards or downwards.

public ListElement insertInOrder(ListElement l, NTuple t, NTuple i){
if(l!= null){

if (((NTuple)l.object).compareTo(t,i)>0){ // t smaller than l
while((l.left!=null)&&(((NTuple)l.left.object).compareTo(t,i)>0)){

l=l.left;}
l = this.insertBefore(l,t);

}else{ // t larger then l
while((l.right!=null)&&(((NTuple)l.right.object).compareTo(t,i)<0)){

l=l.right;}
l = this.insertAfter(l,t);

}
}else l = this.append(t);
return l;

}

The rotation and reverse rotation can be combined with a scaling transformation in
the y direction to make the shading line spacing a unit step. It also is convenient to
have an offset translation from the origin to adjust the relative placement of different
grids. In practice, it is useful to add a large translation forwards and backwards, to

General Polygon Shading

530 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

maintain all the edge-point co-ordinates in the first quadrant, in other words so both x
and y values for the rotated polygon remain positive. This ensures the integer
clipping used to define the y ordinates of the shading line end-points, works in a
consistent way. The two transformations, forwards and backwards, can be
implemented using the matrix routines presented earlier, but in this case are simpler
to carry out with two specialist routines.

private Point ftransf(double spc,double sa, double ca, double off,Point p){
Point pp = new Point(2);
pp.x("=",p.xd()*ca+p.yd()*sa+2000); // +2000 all points to the first quadrant
pp.y("=",(p.yd()*ca-p.xd()*sa)/spc+off+2000);
return pp;

} // forward transformation: +2000 take all points to the first quadrant
private Point btransf(double spc,double sa, double ca, Point p){

Point pp = new Point(2);
pp.x("=",(p.xd()-2000)*ca-sa*(p.yd()f-2000)*spc);
pp.y("=",(p.yd()-2000)*ca*spc+(p.xd()-2000)*sa);
return pp;

} // backward transformation: -2000 all points returned to original space

In the transformed space used for calculating the shading lines the grid lines will
fall on integer values of y. The only problem occurs when the end points of boundary
line segments also lie on the same grid lines. Duplicate intersection points of the sort
already discussed in the case of point-in-polygon testing make the pairing of
beginning and end points for line shading more complicated.

Figure 13.33 Polygon shading-line through boundary segment end points

If all the intersection points along the shading line are coded with the orientation

of the boundary-line segment which produced them, then an accurate shading line
can be calculated. For example a simple intersection point can be tagged with a (+ −)
or (− +) property, whereas a compound intersection point can be made up from a
sequence of points tagged (+ 0) (0 0) (0 0) (0 −) for example or (+ 0) (0 +). This
labelling allows tangents to be separated from true crossing points.

531

For display purposes there is a simpler pragmatic solution to this task. If the end
point of a boundary line segment is found to lie on a shading line, moving the
boundary line end point a small Δ distance upwards, small enough not to visually
affect the display will produce correct self-consistent results. This approach can be
used to resolve similar problems in several corresponding cases however it is not
always a good idea. Sometimes it merely moves the difficulty elsewhere in the
processing. Figures 13.34 and 13.35 show the use of a single grid and two overlaid
grids. The shading is generated by the method hatch included within the polygon
class. Multiple calls to the same method with different parameters will give multiple
grids for the same polygon boundary.

public ListOfTuples hatch(double sp, double angle, double off){
ListOfTuples lnt= new ListOfTuples();
Point [] pp = new Point[this.length]; NTuple index = new NTuple(3);
 index.n[0]=0; index.n[1]=2; index.n[2]=1; // y, x co-ordinate order
double a = 3.1415962*angle/180;
double sa = Math.sin(a), ca= Math.cos(a);

for(int i=0;i<this.length;i++){ //transform boundary forward

pp[i]= this.ftransf(sp, sa, ca, off, this.p[i]);
if(pp[i].yi()== pp[i].yd())pp[i].y("=", pp[i].yd()+0.001);

}
ListElement lst = null; int d;
for(int i=1; i < this.length; i++){

Point pa= pp[i-1]; Point pb = pp[i];
double y =0, ystep=0, x=0, xstep=0;
if((pb.yi()-pa.yi()>=1) || (pb.yi()-pa.yi()<= -1)){

 if (pb.yd()>pa.yd()){y = pa.yi()+1; d=1;}
else {y = pa.yi();d= -1;}
x = ((pb.xd()-pa.xd())*y+(pa.xd()*pb.yd()-pa.yd()*pb.xd()))
x = x/(pb.yd()-pa.yd());
xstep = (pb.xd()-pa.xd())/(pb.yd()-pa.yd());
while(d*y<d*pb.yd()){

Point p = new Point(2);
p.x ("=", x); p.y ("=", y); y=y+d; x=x+xstep*d;
lst = lnt.insertInOrder(lst, p, index); // y, x co-ordinate order

}
}

}
ListElement ref = lnt.start; //transform back shading line points
while(ref!=null){

Point ppp = (Point)ref.object;
ppp =this.btransf(sp,sa,ca,off,(Point)ref.object);
ref.object= ppp;
ref=ref.right;

} return lnt;
}

General Polygon Shading

532 13 Spatial Relationships Overlap & Adjacency: Point to Line to Area

Figure 13.34 Shading using parallel lines

Figure 13.35 Polygon hatching using multiple grids

14
Spatial Relationships
Overlap & Adjacency
Polygon on Polygon

Introduction

In this chapter the general topic is an exploration of the relationships of overlap and
adjacency between areas, highlighted yellow in Table 14.1.

Table 14.1 Basic Spatial Relationships

Objects Point

Line Area Volume

Point Point on Point Point in Line Point in Area Point in
Volume

Line Line on Line Line in Area Line in
Volume

Area Area on Area Surface in
Volume

Volume Volume on
Volume

The algorithms analysed in this chapter developed from work in two application

areas. The first was in a Geographic Information System, (GIS) cartographic sub-
systems. Using stored geographical information involved supporting many ways of
combining and displaying spatial distributions in the form of maps. These ranged
from presenting the complex spatial analysis provided by regional planning and
urban simulation models, to drawing relatively traditional sieve maps, as precursors
to more sophisticated spatial correlation studies.

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_14, © Springer-Verlag London Limited 2008

534 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

The second application was in computer aided design systems. A good example
comes from the design and layout of printed circuit boards and integrated circuits.
Where conducting paths were built up from rectangular and polygonal elements it
was possible to test the layout to show that unintentional overlaps which would cause
short circuits had not been created. Alternatively where a conducting path was made
up from various materials, it was possible to create the union of their outlines and test
for circuit continuity. In a different design area testing the sweep area of door and
window swings against structural elements in an architectural plan could very
quickly highlight errors that would be expensive to rectify, if left until construction,
for discovery. By including envelopes around objects it is possible to check the
nearness of objects to each other and include the necessary working space required to
install or repair plant and pipe work, for example in narrow ducts.

Area on Area Relationships
Where areas are defined by boundary lines the area-on-area tests become extensions
of the polyline-on-polyline tests already presented. Where one or more of the areas
are rectangles with sides parallel to the coordinate axes, then different algorithms are
needed. An interesting example of this case is the window clipping of standard
polygons. Where its boundary line represents a polygon, this “line” can be clipped at
the window edges. The polygon fill or the scan-line-fill extension of this approach
can still be used to colour the portion of the polygon inside the window: each
polygon-fill scan-line being clipped by the window boundaries. Where diagonal
shading or hatching techniques are needed, then the “polygon” has to be clipped to
have a complete boundary for the area that is visible within the window.

Left Edge Right Edge Left Edge Right Edge

Top Edge

Bottom Edge

Figure 14.1 Clipping using a sequence of cutting lines

Polygon Window Clipping

In Figure 14.1 the first step of polygon window clipping is shown. A cutting edge is
defined and the points of the polygon boundary are tested to see on which side of it
they lie. Line segments with both end points inside the window can be plotted, or
saved directly. Similarly line segments with both end points outside the window can
be ignored. Any line segment with a point on each side of the cutting line can be
clipped to give the section inside the window. Where the boundary is a closed

Polygon Window Clipping 535

polyline, processing its segments sequentially will allow a new boundary to be
created as points from the original polygon are classified as inside or outside the
window. This process will automatically enter the new points where the boundary is
cut by the cutting edge to give a correct closed polyline for the new area. An
interesting side effect of this ordered processing is shown in Figure 14.2 where all
four edges of the window are processed in order, for a complex polygon that mostly
lies outside the window.

Left Edge

Right Edge

Top Edge

Bottom Edge

Left Edge

Right Edge

Left Edge

Right Edge

Left Edge

Right Edge

Top Edge

Bottom Edge

Figure 14.2 Polygon clipping on window edges

Although the final area of the polygon becomes divided into two separate regions
this algorithm still outputs a single boundary line. Sections of the new boundary
coincide with each other as well as the edges of the window. It is quite possible to
post process this new boundary to create independent loops for the resulting two
areas. However, there is a useful bye-product to the original approach. In the case of
some complex areas, retaining only the boundary sections visible inside a window, if

536 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

they are representing holes in the original area, may create problems. In other words
removing the extra information could result in the hole being shaded in as a solid
area, instead of its surround. Figure 14.3 shows the output from this polygon-clipping
algorithm followed by a polygon hatching operation to show the new area. The
program used to create this display is given below the figure.

Figure 14.3 Polygon window clipping

public static void main(String[] args){
double xmin,xmax,ymin,ymax;
IO.writeString("Please enter diagonal window corners \n");
Point p1 = dW.getCoord(); Point p2 = dW.getCoord();
if (p1.xd()<p2.xd()){xmin = p1.xd();xmax= p2.xd();}
else {xmin = p2.xd();xmax= p1.xd();}
if (p1.yd()<p2.yd()){ymin = p1.yd();ymax= p2.yd();}
else {ymin = p2.yd();ymax= p1.yd();}
p1.x("=",xmin); p2.x("=",xmax); p1.y("=",ymin); p2.y("=",ymax);
Box bx = new Box(p1,p2); bx.draw(dW,Color.blue);
IO.writeString("Please enter 20 vertices for a polygon \n");
Polygon p = new Polygon(21);
p.p[0] = dW.getCoord();
for(int j=1;j<20;j++) {

Polygon Window Clipping 537

 p.p[j] = dW.getCoord(); dW.plotLine(p.p[j-1],p.p[j],Color.red);
}
p.p[20] = new Point(2); p.p[20].c("<-",p.p[0]);
dW.plotLine(p.p[19], p.p[20], Color.red);
Polygon pp= p.clip(bx,p);
double[][] htch = new double[][]{{10,-30,4},{10,60,4}};
for(int i=0; i<2; i++){

double space = htch[i][0], angle = htch[i][1], offset = htch[i][2];
ListOfTuples ls = pp.hatch(space,angle,offset,IO);
if(ls==null)IO.writeString("null list 1\n");
else{

ListElement ref = ls.start;
if(ref==null)IO.writeString("null list 2\n");
else while(ref != null){

Point pa = (Point)ref.object; pa.y("=",pa.yd());pa.x("=",pa.xd());
ref= ref.right;
Point pb = (Point)ref.object; pb.y("=",pb.yd()); pb.x("=",pb.xd());
ref= ref.right; dW.plotLine(pa,pb,Color.magenta);

}
}

}
}
private Polygon polyClip(int edge,double ee,double dd){

boolean cut = false; int n=1;
double[] x3 = new double[1]; double[] y3 = new double[1];
double[] k1 = new double[1]; double[] k2 = new double[1];
Polygon p1 = new Polygon(p.length+20);
for(int i =1;i<this.length;i++){

double x1 = this.p[i-1].xd();double y1 = this.p[i-1].yd();
double x2 = this.p[i].xd(); double y2 = this.p[i].yd();
switch(edge){

case 1: cut = edgeCut(ee,x1,y1,x2,y2,x3,y3,dd,k1,k2); break;
case 2: cut = edgeCut(ee,y1,x1,y2,x2,y3,x3,dd,k1,k2); break;

}p1.p[n]= new Point(2);
if(cut){

p1.p[n].x("=",x3[0]);p1.p[n].y("=",y3[0]); n++;
p1.p[n]= new Point(2); }

if(k2[0]>=0){ p1.p[n].x("=",x2);p1.p[n].y("=",y2); n++; }
}
if(n==1) return null;
else{

p1.p[0]= new Point(2); n= n-1;
p1.p[0].x("=",p1.p[n].xd());
p1.p[0].y("=",p1.p[n].yd()); p1.length = n+1;
return p1;

}
}

538 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

private boolean edgeCut(double ee,double x1,double y1,double x2,double y2,
 double[] x3,double[] y3,double dd,double[] k1,double[] k2){
k1[0]= (x1-ee)*dd; k2[0]= (x2-ee)*dd;
if(k1[0]*k2[0]<0){

x3[0]=ee; y3[0]=(k2[0]*y1-k1[0]*y2)/(k2[0]-k1[0]); return true;
} return false;

}
public Polygon clip(Box bx, Polygon p1){

Polygon p2,p3,p4,p5;
if ((p2= p1.polyClip(1, bx. minP.xd(), 1)) == null) return null;
if ((p3= p2.polyClip(1, bx. maxP.xd(), -1)) == null) return null;
if ((p4= p3.polyClip(2, bx. minP.yd(), 1)) == null) return null;
if ((p5= p4.polyClip(2, bx. maxP.yd(), -1)) == null) return null;
return p5;

}

Polygon on Polygon Overlay

Figure 14.4 Selecting the intersection of two polygon regions

The first step, defining the overlap area of two polygons, represented by closed
polyline boundary lines is to intersect the polyline boundaries to locate the boundary
line crossing points. A small extension of the polyline intersection program given
above produces the output in Figure 14.5. Not only do the intersection points have to
be calculated, they also need to be inserted into the original boundaries if sub-regions
of the overlapping polygons are going to be made accessible. Figure 14.6 shows the
output of this insertion stage. Each new crossing point is linked into a linked list
representation of the boundary of each polygon. These new Point objects are
themselves then cross linked in a ring list so that boundary walks round the polygons

Polygon on Polygon Overlay 539

can transfer from one boundary to the other, depending on the sub area required.
Large blue rectangles are plotted for the vertices of the first new polygon boundary
line and smaller red rectangle for the second. This allows the new intersection points
to show up as red rectangles with a blue boundary.

Figure 14.5 Binary subdivision calculating intersection points between polygons

Figure 14.6 Polygon boundaries with intersection points inserted

540 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

Boolean Selectors
Given two polygons labelled A and B, there are four general regions that can be
obtained by overlaying them. These are the Boolean combinations A.B, !A.B, A.!B
and !A.!B. Each of these regions, because the original polygons are not restricted in
their shapes, can be made up from sets of polygons. This is the reason why the
operation is defined as the interaction of Polygons rather than two single polygon
areas. In Figure 14.7 the region with the left most vertex is selected. This makes it
easy to define this region as being labelled either A.!B or !A.B depending on which
area has the left most point.

Figure 14.7 Shading region A.!B from the overlay operation

A more complete treatment requires the set of polygons for each of the regions to
be generated and stored as polygon sets. This allows a collection of polygons to be
shaded with different crosshatched patterns and colours, in the way shown in Figures
14.8 and 14.9.

public static void main(String[] args){
double xmin,xmax,ymin,ymax; int num1= 20;int num2= 20;
IO.writeString("Please enter "+num1+" vertices for a polygon\n");
Polygon p1 = new Polygon(num1+1); p1.p[0] = dW.getCoord();
for(int j=1;j<num1;j++){

p1.p[j] = dW.getCoord(); dW.plotLine(p1.p[j-1],p1.p[j],Color.black);}
p1.p[num1] = new Point(2); p1.p[num1].c("<-",p1.p[0]);
dW.plotLine(p1.p[num1-1],p1.p[num1],Color.black);
p1.setTextWindow(IO); p1.setDisplayWindow(dW);
IO.writeString("Please enter "+num2+" vertices for a polygon \n");
Polygon p2 = new Polygon(num2+1); p2.p[0] = dW.getCoord();

541

Figure 14.8 Shading regions A.!B green, A.B red and !A.B blue

Figure 14.9 Shading regions A.B, A.!B and !A.B from the overlay operation

Boolean Selectors

542 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

for(int j=1;j<num2;j++){
p2.p[j] = dW.getCoord(); dW.plotLine(p2.p[j-1],p2.p[j],Color.black);}

p2.p[num2] = new Point(2); p2.p[num2].c("<-",p2.p[0]);
dW.plotLine(p2.p[num2-1],p2.p[num2],Color.black);
p2.setTextWindow(IO); p2.setDisplayWindow(dW);
Polygons p = new Polygons(p1,p2,IO);
for(int j=1;j<num1;j++)dW.plotLine(p1.p[j-1],p1.p[j],Color.black);
dW.plotLine(p1.p[num1-1],p1.p[num1],Color.black);
for(int j=1;j<num2;j++)dW.plotLine(p2.p[j-1],p2.p[j],Color.black);
dW.plotLine(p2.p[num2-1],p2.p[num2],Color.black);

}
class Polygons{
 public Polygon bnd= null;
 public Point[] shading = null;
 public Color colour = null;
 public Polygon[] p = null;
 public List pL = null;
 private TextWindow IO = null;
 public Polygons(){ }
 public Polygons(TextWindow tW){ this.IO=tW;}
 public Polygons(int num,TextWindow tW)

{ this.p=new Polygon[num]; this.IO=tW;}
 public Polygons(Polygon p1,Polygon p2,TextWindow tW)

{ this.IO=tW; p1.intersect(p1,p2,tW);}
 public void setPolygons(int num){ this.p = new Polygon[num];}
}
class Polygon extends java.lang.Object {

private DisplayWindow dW = null; private TextWindow IO = null;
public Point p[]; public int length=0; public List ply = null;
Polygon(int len){ p = new Point[len]; length = len;}
Polygon(int len, DisplayWindow dW){

this.dW = dW; p = new Point[len]; length = len;}
Polygon(List poly,TextWindow tW){

length= poly.length+1; ply = poly;
p = new Point[poly.length+1]; ListElement pnt = poly.start;
for(int i=0;i<poly.length+1;i++){ p[i]= (Point)pnt.object; pnt=pnt.right;}

}
public void intersect(Polygon p1,Polygon p2,TextWindow tW){

List IP = new List(); ListElement le1=null,le2=null,lf=null;
List pa = new List(); List pb = new List();
List pc = new List(); List pd = new List();
Point p = new Point(2); p1.p[0].c("->",p); pa.append(p);le1 = pa.finish;
for(int i=1;i<p1.length;i++){

p = new Point(2); Line ln = new Line();
ln.p1=new Point(2); ln.p2=new Point(2);
p1.p[i-1].c("->",ln.p1); p1.p[i].c("->",ln.p2); p1.p[i].c("->",p);
pa.append(p); le2 = pa.finish; pc.append(ln); lf = pc.finish;

543

lf.link1= le1; lf.link2= le2; le1 = le2;
}
p = new Point(2); p2.p[0].c("->",p); pb.append(p);le1 = pb.finish;
for(int i=1;i<p2.length;i++){

p = new Point(2); Line ln = new Line();
ln.p1=new Point(2); ln.p2=new Point(2);
p2.p[i-1].c("->",ln.p1); p2.p[i].c("->",ln.p2); p2.p[i].c("->",p);
pb.append(p);le2 = pb.finish; pd.append(ln); lf = pd.finish;
lf.link1= le1;lf.link2= le2; le1 = le2;

}
Box bx1 = new Box(p1);Box bx2 = new Box(p2);Box bx = new Box(bx1,bx2);
IP=divide(pa,pb,pc,pd,bx,IP,0,2);
pa.finish.left.right = pa.start; pa.start.left = pa.finish.left; // close the loops

if(pa.finish.link1!=null)

{ pa.start.link1=pa.finish.link1; pa.start.link2=pa.finish.link2;}
pb.finish.left.right= pb.start; pb.start.left =pb.finish.left; //close the loops
if(pb.finish.link1!=null)

{ pb.start.link1=pb.finish.link1; pb.start.link2=pb.finish.link2;}
Polygons ov[] = new Polygons[4];
ListElement refIP=null,refA=null,refB=null,ref=null,ref1=null,ref2=null;
Point pT=null,pA=null,pB=null;Point pnt; boolean forward=true;
ListElement refstart=null; refstart = ref = pa.start;
do{

ref.tag=-1;
if(((NTuple)ref.object).b("==",(NTuple)ref.left.object)){

if(ref.link1!= null){
ref1 = ref.link1; ref1.left.right = ref1.right;
ref1.right.left = ref1.left; ref1.left=null;ref1.right=null;

}
ref.left.right = ref.right; ref.right.left = ref.left; ref.left=null;
if(ref==refstart) {pa.start= refstart= ref.right;}

}
ref=ref.right;

}while(ref!=pa.start);
refstart = ref = pb.start;
do{

ref.tag= -1;
if(((NTuple)ref.object).b("==",(NTuple)ref.left.object)){

if(ref.link1!= null){
ref1 = ref.link1; ref1.left.right = ref1.right;
ref1.right.left = ref1.left; ref1.left=null; ref1.right=null;

}
ref.left.right = ref.right; ref.right.left = ref.left; ref.left=null;
if(ref==refstart){pb.start=refstart=ref.right;}

}ref=ref.right;
}while(ref!=pb.start);

Boolean Selectors

544 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

for(int j=0;j<4;j++){
ov[j] = new Polygons();
refIP=IP.start;
while((refIP!=null)&&(((ListElement)refIP.object).left==null))

refIP=refIP.right;
do{

boolean complete = false, first=true;
List poly = new List();
refA = (ListElement)refIP.object; refB = refA.link1;
do{

if(refA==null)tW.writeString("refA null \n");
if(refA.link1==null)tW.writeString("refA.link1 null \n");
int state=1;
switch(j){
case 0: // both forwards

if((refA.right!=null)&&
 ((Point)refA.right.object).inside(refB,dW)){

state=1;ref = refA; forward=true;
if(ref.tag==j)complete=true;ref.tag=j;

}else
if((refB.right!=null)&&

((Point)refB.right.object).inside(refA,dW)){
state=2;ref = refB;
forward=true;
if(ref.tag==j)complete=true;ref.tag=j;

}else complete = true; break;
case 1: // A forwards B backwards

if((refA.right!=null)&&
!((Point)refA.right.object).inside(refB,dW)){

state=1;ref = refA;forward=true;
if(ref.tag==j)complete=true;ref.tag=j;

}else if((refB.left!=null)&&
((Point)refB.left.object).inside(refA,dW)){

state=2;ref = refB;
forward=false;
if(ref.tag==j)complete=true;ref.tag=j;

}else complete = true; break;
case 2: // B forwards A backwards

if((refA.left!=null)&&
 ((Point)refA.left.object).inside(refB,dW)){

state=1;ref = refA;forward=false;
if(ref.tag==j)complete=true;ref.tag=j;

}else if((refB.right!=null)&&
!((Point)refB.right.object).inside(refA,dW)){

state=2;ref = refB;forward=true;
if(ref.tag==j)complete=true;ref.tag=j;

} else complete = true;break;

545

case 3: // both backwards
if((refA.left!=null)&& !((Point)refA.left.object).inside(refB,dW)){

state=1;ref = refA;
forward=false;
if(ref.tag==j)complete=true;
ref.tag=j;

} else if((refB.left!=null)&& !((Point)refB.left.object).inside(refA,dW)){
state=2;ref = refB;
forward=false;
if(ref.tag==j)complete=true;
ref.tag=j;

}else complete = true; break;
}
if(complete)break;
poly.append(ref.object);
if(forward){ref=ref.right;}
else {ref=ref.left;}
while(ref.link1==null){ //follow polyline

poly.append(ref.object);
if(forward)ref= ref.right;
else ref= ref.left;

}
if(state==1){refA= ref;refB=ref.link1;}
else {refB=ref;refA=refB.link1;}

}while(true); // complete polygon loop, assign to polygon list.
if(poly.length!=0){

poly.start.left=poly.finish; poly.finish.right=poly.start;
Polygon pol = new Polygon(poly,tW);
if(ov[j]==null) tW.writeString(" ov[j] null \n");
if(ov[j].pL==null) ov[j].pL=new List();
ov[j].pL.append(pol);
if(j==0) hatching(pol,new double[][]{{10,-30,4},{10,60,4}}, 2,Color.red);
if(j==1)hatching(pol,new double[][]{{7,0,4},{7,90,4}}, 2,Color.green);
if(j==2)hatching(pol,new double[][]{{5,0,4}, {10,60,4}}, 1,Color.blue);

}
refIP = refIP.right; // test each intersection point

while((refIP!=null)&&(((ListElement)refIP.object).left==null))
refIP=refIP.right;

}while(refIP != null); // complete each polygon set
}
bx.draw(dW,Color.blue);

}..
}

These examples still depend on calculating the intersection points between a
single pair of boundary lines. To complete this overlap operation it is necessary to
cover the situation where one polygon boundary lies totally enclosed within a second,
in the ways shown in Figure 14.10.

Boolean Selectors

546 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

Figure 14.10 Nested overlapping polygons A and B

Nested boundary loops are necessary to define doughnut shaped areas such as
those shown in Figure 14.11. To cope with these kinds of situation it is necessary to
extend the overlap operation to handle “sets” of polygon loops. If each set is given a
set label, the generalisation that is needed is to be able to process the overlap of
“sets” of “sets” of polygon loops in one efficient operation.

Figure 14.11 Nested doughnut polygon boundary loops for A and B

Where a nested boundary loop occurs there are no intersection points to relate it to

other boundary loops. A simple solution is to run a point-in-polygon test for a
starting point of such a loop on all the other polygons in the testing set. This, as well
as extending the process which has so far been developed, requires a repeated series
of pair wise tests. If large numbers of polygons are being processed a more efficient
overall method is needed.

One approach to such a unified process can be set up in the following way. If all
the polygon loops are represented by vertex list data structures, where each vertex is
labelled by the area it belongs to, then all these loop-lists can be concatenated into a
single list before calculating and cross-linking the new intersection points. This new

A !A B !B

A A.B B A.B

Polygon Sets on Polygon Sets and Polygon Networks 547

structure will contain line links between loops that are “virtual edges” and have to be
labelled as such. The advantage of doing this is that tracking the new intersection
points generated by these virtual edges implicitly provides the information otherwise
requiring multiple point-in-polygon tests. Each area-set of boundary loops can then
be traversed by sequentially walking along the original concatenated list. As this is
done the labelled boundary segments can be output, for the newly created minimum
area cells, (or land parcels as they were called in early computer cartographic
systems,) resulting from the intersection of overlapping polygons. The original areas
can then be defined as collections of these new cells, the cells themselves being
labelled by concatenating the names of the areas in which they fall in some standard
order.

Polygon Sets on Polygon Sets and Polygon Networks

The first step is to concatenate the polygon loop lists into one list and treat it as a
single polyline. This creates virtual edges in the way shown in Figure 14.12 between
p0 and p1, p1 and p8, p8 and p13, and between p13 and p18.

Figure 14.12 Concatenated polygon loop lists

Making the first vertex of each polygon-loop list have a special label and all other
vertices have their polygon, area-labels, is one way these virtual edges can be
identified and distinguished in subsequent processing. The second step is to test this
extended polyline for self-crossing points. This will require the previous code: testing
two polylines for crossing points, to be modified to process a single self crossing line.
The major problem with modifying the previous code is to avoid re-linking all the
line segment end points in the original boundary lists. If all the intersections at the
end of line segments are filtered out, then the missing point problem shown in Figure
14.13 can result.

P16
P17

P14

P13

P4

P6

P12

P3 P15

P18 P0

P8
P11

P10

P9

P5

P2

P1

A B

 p0 p1 p2 p3 p4 p5 p6 p1 p8 p9 p10 p11 p12 p8 p13 p14 p15 p16 p17 p13 p18

 -- -- A A A A A A – A A A A A – B B B B B --

548 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

Figure 14.13 Internal line intersection points in three overlaid, polygon-area sets

Figure 14.14 All intersection points in three overlaid, polygon-area sets

Possible
Missing
Crossing
Point

Line
Internal
Crossing
Points

Line
End
Point
Crossing
Points

Virtual
Edges

Internal
Crossing
Points

549

Displaying the link lines black and the boundary lines red gives Figure 14.14

ListElement refp, refq;
refp = overlayList.start; refq = refp.right;
while(refq!=null){

if(refq.name.equals("linkedge"))
dW.plotLine((Point)refp.object,(Point)refq.object,Color.black);

 else dW.plotLine((Point)refp.object,(Point)refq.object,Color.red);
refp= refp.right; refq= refp.right;

}

The use of plane sweep processing makes it easier to generate the set of line
intersection points from an extended polyline than the previous implementation of
the spatial subdivision algorithm does. The first step is to create an array of the
vertices for the new polyline from the overlaid polygon sets, and at the same time
create a corresponding array of names.

Point[] vertices = new Point[listLength];
String[] names = new String[listLength];
int n=0;
for(i=0;i<polygonSets.length;i++){

Polygons polx = polygonSets[i];
String name = "xx"+i; // temporary name for the polgon set
for(j=0;j<polx.p.length;j++){

Polygon poly = polx.p[j];
for(k=0;k<poly.p.length;k++){

vertices[n]=poly.p[k];
if (k!=0)names[n] = name;
 else names[n] = "**"; // name to indicate a virtual edge
n++;

}
}

}
ListOfTuples overlayList = new ListOfTuples();
ListOfTuples order = new ListOfTuples();
ListElement ref1,ref2;
for(i=0; i<n;i++){

overlayList.append(vertices[i]);
order.append(vertices[i]);
ref2= order.finish;
ref1= overlayList.finish;
ref1.name = names[i];
ref1.link1 = ref2; ref1.link2 = ref2;
overlayList.finish.name = names[i];
ref2.link1 = ref1; ref2.link2 = ref1;

}
order = order.sort();

Polygon Sets on Polygon Sets and Polygon Networks

550 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

From this array a linked list of the vertices can be generated with each list element
also including the name associated with its vertex. A secondary dependent link list
for these vertex-points, cross-linked to the original link list can then be created,
which can then be sorted giving a threaded list providing the coordinate order to
control the plane sweep processing of line segments to follow. The program below
implements the scheme shown in Figure 13.27.

//main

ListElement outer1, outer2, ref1,ref2;
…
ref1= order.start;
while(ref1 != null){

outer1 = ref1.link1;
outer2 = outer1.right;
if((outer2!=null)

&&(((Point)outer1.object).xd() < ((Point)outer2.object).xd())){
ref2 = outer2.link1;
innerLoop(outer1,outer2,ref1,ref2);

}
outer2 = outer1.left;
if((outer2!=null)

 &&(((Point)outer1.object).xd() < ((Point)outer2.object).xd())){
ref2 = outer2.link1;
innerLoop(outer1,outer2,ref1,ref2);

}
ref1=ref1.right;

}
…

static void innerLoop(ListElement outer1,ListElement outer2,
 ListElement ref1, ListElement ref2){

ListElement inner1, inner2;
int state = 1,count=1;
while((ref1!=null)&&(ref1!=ref2)){

inner1 = ref1.link1;
inner2 = inner1.right;
if((inner2!=null) && (((Point)inner1.object).xd() < ((Point)inner2.object).xd())){

crosstest(outer1,outer2,inner1,inner2);
}

inner2 = inner1.left;
if((inner2!=null)

&&(((Point)inner1.object).xd() < ((Point)inner2.object).xd())){
crosstest(outer1,outer2,inner1,inner2);

}
ref1 = ref1.right;

}
}

551

static void crosstest(ListElement o1,ListElement o2,ListElement i1,ListElement i2){

Point p = new Point(2);
 if(lineCross((Point)o1.object,(Point)o2.object,

(Point)i1.object,(Point)i2.object,p)){
dW.plotRectangle(p,5,Color.blue); dW.plotRectangle(p,3,Color.yellow);

}
static boolean lineCross(Point p1,Point p2,Point pa,Point pb,Point p){

NTuple nt1 = new NTuple(3);
nt1.n[0] = p1.yd()- p2.yd(); nt1.n[1] = p2.xd()- p1.xd();
nt1.n[2] = p1.xd()*p2.yd()-p1.yd()*p2.xd();
double k1= pa.xd()*nt1.n[0] + pa.yd()*nt1.n[1] + nt1.n[2];
double k2= pb.xd()*nt1.n[0] + pb.yd()*nt1.n[1] + nt1.n[2];
NTuple nt2 = new NTuple(3);
nt2.n[0] = pa.yd()- pb.yd(); nt2.n[1] = pb.xd()- pa.xd();
nt2.n[2] = pa.xd()*pb.yd()-pa.yd()*pb.xd();
double k3= p1.xd()*nt2.n[0]+p1.yd()*nt2.n[1]+nt2.n[2];
double k4 =p2.xd()*nt2.n[0]+p2.yd()*nt2.n[1]+nt2.n[2];

int j=0;
if(k1==0)j=j+1; if(k2==0)j=j+2; if(k3==0)j=j+4; if(k4==0)j=j+8;
switch (j){

case 0:
if((k1*k2<0)&&(k3*k4<0)){

p.x("=",(p2.xd()*k3-p1.xd()*k4)/(k3-k4));
p.y("=",(p2.yd()*k3-p1.yd()*k4)/(k3-k4));
return true;

}break;
case 1: if(k3*k4<0){ pa.c("->",p); return true; }break;
case 2: if(k3*k4<0){ pb.c("->",p); return true;}break;
case 4: if(k1*k2<0){ p1.c("->",p); return true;}break;
case 8: if(k1*k2<0){ p2.c("->",p); return true;}break;
default: return false;

}return false;
}

Including cases 1,2,4,8, handles end point to midpoint intersections shown in
Figure 12.25, which is sufficient to cover the cases of collinear lines in closed
boundaries.

Sorting the vertex list allows the endpoints, which match, illustrated in Figure
14.14, to be identified by a simple test.

ListElement ref1 = order.start;
ListElement ref2 = ref1.right;
Point p1=(Point)ref1.object;
while(ref2!=null){

Point p2=(Point)ref2.object;
if (p1.compareTo(p2)== 0){

Polygon Sets on Polygon Sets and Polygon Networks

552 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

dW.plotRectangle(p2,5,Color.magenta);
dW.plotRectangle(p2,3,Color.cyan);

}
ref2 = ref2.right;
p1=p2;

}

On completion of this first stage the data structure consists of a polyline, double
linked list of the sequence of points making up all the polygon area boundaries
overlaid. Each area name is associated with each vertex in its boundaries –except for
the first point in each loop, which has a special name identifying it as a virtual edge
in the overall polyline sequence. The intersection tests will have inserted copies of
crossing points into these boundary sequences and will have linked all identical
points in separate two way ring lists.

 * A A A * B B B
p1, p2, p3, p1, p4, p5, p6, p4

 * A A A A A * B B B B B
p1, p2, pa, p3, pb, p1, p4, pa, p5, p6, pb, p4

Figure 14.15 Intermediate data structure for polygon set overlay operations

This allows the second stage to be a single traversal of the polyline list outputting

the boundary sequences of the minimum network cells resulting from the overlay.
Linking the last point of the polyline back to its first point to give a single continuous
loop allows the first point in the “ordered list” of these vertices used to identify the
crossing points, to be taken as the starting point, to this traversal. The polygon area
this point originated from can be used to label the first new cell region. Then as soon
as a crossing point in the network is reached, indicated by the presence of the ring
lists (link1, link2 not null), then this label can be extended if the polyline traversal
passes into the region of a second polygon.

This stage consists of constructing the names of the new minimum network cells.
One way would be to construct a Boolean combination of all the original areas, as in
earlier examples in this chapter, however a simpler approach is to merely collect the
names of the regions each cell lies within and concatenate the names in some
standard order for these new areas. The next stage, reconstructing the boundaries of

p4

p1
p2

p6

p3
p5

pb
pa

Intersect crossing lines

p4

553

these cells, can be done in a standard way chain sorting the boundary segments into
order. If the beginning and end point pairs for boundary sequences that have the same
name are collected in lists associated with the name in a name table then the third
stage by chain sorting these endpoint pairs can generate the related cell boundaries as
new polygon loops.

The immediate advantage of this approach is that a single operation is all that
appears necessary as each cross-linked point in the polyline is traversed. When
extracting the newly labelled boundary sequences for the minimum cells in the
overlay network, every crossing point potentially changes the current cell’s name and
could therefore require new beginning or end points for boundary sequences to be
defined and listed under the appropriate names in the new cell name table.

The crossing point operation for simple crossing line segments is not complicated
and is illustrated in Figure 14. 16:

 A A A
 p1 pa p2

 B B B
 P3 pa p4

Figure 14.16 Simple crossing point

Following the boundary of area B, a point pa is reached which is cross-linked to
the same point listed in the boundary of area A. If the point p4 is tested against line
sequence p1-pa-p2, it will be classified as inside this boundary of A. This means that
the line up to this intersection point will be labelled B, but after this point will be
labelled AB.

Where intersections between boundary lines occur at existing line-segment end-
points then though the principle remains the same, the coding becomes more
complex. Similarly when virtual edges, linking polygon loops, are processed, the re-
labelling process has to be modified. The various cases for end-point intersections are
shown in Figure 14.17. Cases 1 and 2 can be treated in the same way as the simple
case in Figure 14.16. Cases 3 and 4 represent point tangents, which can potentially be
ignored, as they do not need to change the classification of boundary segments.
However, if they are ignored then new regions with multiple lobes will result. If it
proves possible to avoid this, subsequent tasks will be simpler if area boundaries can
be constructed as sets of simple polygon loops.

In Figure 14.17, the current boundary being processed is shown by a black
arrowed line. The input area it defines is labelled A, and is colour coded yellow. The
boundary line it is intersecting is shown as a red line, for area B, which is shown

B
p3

pa

p1

p2

p4

A

A.B

Polygon Sets on Polygon Sets and Polygon Networks

554 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

Figure 14.17 End point intersection point relationships

A
A

B

B

B

B

A
A

A
A

A A

A
A

A
A

A A A A

A
A A A

B B

B
B

B

B

B

B

B

B
B

B

B B B B

1 2

3 4

5 6

7 8

9 10

555

coloured blue. Where A overlaps B the colour is changed to green for the region A.B,
and the area outside both A and B is shaded grey. This makes it possible to identify
the new boundary labelling needed for the next line segment from A’s boundary in
the resulting network of edges in a reasonably simple way.

In cases 1, 3, 6, 7 and 10 this line segment will stay labelled A. In cases 2, 4, 5, 8
and 9 this line will be relabelled A.B. In order for complete boundary loops to be
generated for the minimum cells in the resulting network, it is also necessary to
generate boundaries for the region outside A. In cases 1, 3, 5, 7 and 9, where this is
shown grey in Figure 14.17 this boundary can be missed out, however, in cases 2, 4,
6, 8 and 10, where it lies inside B, this boundary line is needed to complete the B
region in the new network.

In the general case where many areas are overlaid, the label associated with the A
boundary may have become A.X.Y before it reached the current vertex, in other
words the line lies inside the X.Y region. In this case where the outer area is shown
grey the outer boundary will have to be generated for the region X.Y, while where it
is shown blue this boundary will be labelled B.X.Y. In summary the general process
handling the re-labelling starting with A.X will generate either A.B.X or A.X inside
the boundary and either X or B.X outside the boundary.

Figure 14.18 Tangent labelling problem

In cases 5 and 9 where the lines are co-linear there are potentially two ways in
which the line A.B will be generated. The first following the original A boundary the
second following the B boundary. In this case an extra test: to only generate the line
for the “greater” label of the pair is needed to avoid duplication.

Another problem, which has to be addressed in the case of tangent boundaries, is
the way vertices can be duplicated in incorrect ways. In the example shown in Figure
14.18 there are two ways in which the new vertices can be generated and inserted in
the boundary line A. In the first case only the leading point in each line segment is
processed for insertion into the other line. This approach however requires the co-
linear tangent section of the line B to be processed. This can be done but it requires
more complex testing to ensure the selected intersection point lies within the end
points of the matching co-linear line from A. An apparently simpler scheme is to
ignore the co-linear lines altogether and merely consider the endpoints of the lines
linking into and out from the tangent segments. This however can create a double
insertion problem in the situation shown in Figure 14.19, unless it is tested for
explicitly.

A B A A.B

Polygon Sets on Polygon Sets and Polygon Networks

556 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

Figure 14.19 Potential point duplicating problem

Where intersections occur through the first point in a polygon loop within the
polyline data structure, the label for the point will be for a virtual edge. The label for
the area will be found on the next vertex in order along the boundary. Where this
occurs it will be necessary to cycle through all the vertices linked to the current point
to find the matching end point to the loop from the same area. These two line
segments crossing the current line, can then be processed as a linked pair in the way

from a virtual edge, intersections with other boundary lines still need to be processed,
in order to update the current area label sequence, though no new boundary line
segment sequence will be generated. However where a virtual edge intersects a
virtual edge no action is needed.

Figure 14.20 Multiple overlaid polygons

A B
A A.B

outlined in Figure 14.17 to redefine the current line’s labels. Where the current line is

557

The relationships shown in Figure 14.17 can be transformed to local operations on
each line segment in the polyline as it is reached in sequence.

Check all boundary lines passing through point p1 to test

whether p2 lies inside the areas with these boundaries or
outside them. The boundary line segment generated should
contain A in its inside name but not in its outside name.

A linking “virtual” boundary line: checks need to be

made to determine whether p2 is entering or leaving area A,
as well as checking all other boundary line sequences
passing through p1, to identify the region p2 lies within.

The first line segment of a new boundary line. This will

require the label A to be added to the inside name sequence
for this line, but not to its outside name sequence, along with
the other names of regions that p2 lies within.

Boundary lines crossing through p1 will modify both

inside and outside name sequences for later boundary lines
from the polyline, either deleting the name if p2 is outside
the boundary or adding the name if it is inside the boundary
through p1.

The test whether these line segments lie inside or outside the boundary lines passing
through p1 depend on the relative directions of the line segments. Three triangle area
calculations provide the information needed to produce this inside/outside
classification. If the triangle (pa, p1, pb) is positive the angle is acute; if it is negative
the angle is reflexive, and if it is zero the lines lie in a straight line. If the angle is
acute both triangles (pa, p1, p2) and (p1, pb, p2) need to be positive, if it is reflexive
just one positive triangle classifies the point p2 as inside, otherwise the point p2 lies
outside the boundary (pa, p1, p2).

Figure 14.21 Inside outside testing

A

p1

ref1

A

p2

ref2

A

p1

ref1

**

p2

ref2

**

p1

ref1

A

p2

ref2

**

p1

ref1

**

p2

ref2

pa

pb

p1

p2 p2

pa

pb

p1 y

x pa

pb

p2 p1

Polygon Sets on Polygon Sets and Polygon Networks

558 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

Figure 14.22a Line intersection relationships

pa t2 < 0

pb t1 < 0

pb t1 < 0

pa t2 < 0

t0 < 0 t0 >= 0

pa t2 <0

pb t1 > 0

pb t1 > 0

pa t2 < 0

t0 < 0 t0 >= 0

pa t2 < 0

pb t1 = 0

pb t1 = 0

pa t2 < 0

t0 < 0 t0 >= 0

pa t2 > 0

pb t1 < 0

pb t1 < 0

pa t2 > 0

t0 < 0 t0 >= 0

pa t2 > 0

pb t1 > 0

pb t1 > 0

pa t2 > 0

t0 < 0 t0 >= 0

J = 8 J = 9

J = 6 J = 7

J = 4 J = 5

J = 2 J = 3

J = 0 J = 1

OUTSIDE OUTSIDE

OUTSIDE

OUTSIDE

OUTSIDE INSIDE

INSIDE

INSIDE

TANGENT

INSIDE

P1 P2
P1

P2

P1

P2

P1

P2

P1
P2

P1

P2

P1

P2

P1

P2

P1

P2

P2
P1

559

Figure 14.22b Line intersection relationships

The three triangles potentially return three values of interest: greater than, less
than and equal to zero. This could give 27 different cases. However most of the cases
where t0 = 0 can be mapped onto either the t0<0 or the t0>0 cases, giving 18 cases.
The exceptions arise when “null line segments” or “spikes of zero width” occur in a
polygon’s boundary. The current approach is to make these structures illegal, and
take care that the overlay process and other operations do not create boundary
sequences containing such features and filter them out from input data structures.

pa t2 > 0

pb t1 = 0

pb t1 = 0

pa t2 > 0

t0 < 0 t0 >= 0

pa t2 = 0

pb t1 < 0

pb t1 < 0

pa t2 = 0

t0 < 0 t0 >= 0

pa t2 = 0

pb t1 > 0

pb t1 > 0

pa t2 = 0

t0 < 0 t0 >= 0

pa t2 = 0

pb t1 = 0

pb t1 = 0

pa t2 = 0

t0 < 0 t0 >= 0

J = 16 J = 17

J = 14 J = 15

J = 12 J = 13

J = 10 J = 11

P2

P1 P2
P1

P2
P1

P2

P1

P2

P1
P2

P1

P2 P1 P2 P1

TANGENT

OUTSIDE

INSIDE

INSIDE

OPPOSITES

OPPOSITES

NULL LINE NULL LINE

Polygon Sets on Polygon Sets and Polygon Networks

560 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

TRAVERSE THE POLYLINE AND GENERATE LABELLED BOUNDARY
 SEGMENTS FROM THE OVERLAID POLYGON BOUNDARIES

Table nameTable = new Table();
NameSet outsideName = new NameSet(), newOutside = new NameSet();
NameSet insideName = new NameSet(), newInside = new NameSet();
String lineName = null, bName=null;
boolean begin = true, found=false; int count = 0;
ListElement ref=null, refa=null, refb=null, refc=null;

outsideName.add("X"); insideName.add("X");
newOutside.add("X"); newInside.add("X");
ref1 = order.start; ref1 = ref1.link1; ref1 = ref1.link2;
newOutside = outsideName.copy(); newInside = insideName.copy();

start = ref1; // traverse the extended polyline boundary sequence
do{

ref2 = ref1.right;
lineName = ref2.name;
if((((Point)ref1.object).compareTo((Point)ref2.object)!=0)){

lineName = ref2.name;
if((begin)&&(!lineName.equals("**")))

{newInside.add(lineName); begin=false;}
ref=ref1.link1;
if((lineName.equals("**"))&&(!ref1.name.equals("**"))){

newOutside.delete(ref1.name);
newInside.delete(ref1.name);

}else if((!lineName.equals("**"))&&(ref1.name.equals("**"))){
newInside.add(lineName);
newOutside.delete(lineName);

}
while((ref!=null)&&(ref!=ref1)){

refb= ref.right;
if(((Point)refb.object).compareTo((Point)ref.object)!=0){

bName= refb.name;
if((!bName.equals("**"))&&(!bName.equals(lineName))){

found=false;
if(ref.name.equals("**")){

refc=ref.link1;
while(refc!=ref){

if(refc.name.equals(bName))
{ refa = refc.left; found=true; break;}

refc=refc.link1;
}

}else{ found = true; refa = ref.left;}
if((found)&&

 (((Point)refa.object).compareTo((Point)ref.object)!=0)){

561

double t0 = triangle((Point)refa.object,
 (Point)ref.object,(Point)refb.object);
double t2 = triangle((Point)refa.object,
 (Point)ref.object,(Point)ref2.object);
double t1 = triangle((Point)ref.object,
 (Point)refb.object,(Point)ref2.object);
j=0;
if(t0>=0) j=j+1;
if(t1>0) j=j+2;
if(t1==0) j=j+4;
if(t2>0) j=j+6;
if(t2==0) j=j+12;
switch(j){

case 0:case 1:case 3:case 5:case 7: case 13:

newOutside.delete(lineName);
newOutside.delete(bName);
newInside.delete(bName);
if(!lineName.equals("**"))newInside.add(lineName);
else newInside = newOutside.copy();
break; // outside

case 2:case 6:case 8:case 9: case 10: case 14:

newOutside.delete(lineName);
if(!lineName.equals("**"))newInside.add(lineName);
if(!bName.equals("**"))

{newOutside.add(bName);newInside.add(bName);};
break; // inside

case 4:case 11:

if(lineName.compareTo(bName)<0){
newOutside.delete(lineName);
newOutside.delete(bName);
newInside = outsideName.copy();
if(!bName.equals("**")) newInside.add(bName);
if(!lineName.equals("**"))

 newInside.add(lineName);
}break; // tangent lines A.B once

case 12:case 15:

if(lineName.compareTo(bName)<0){
newOutside.delete(lineName);
newOutside.delete(bName);
if(!lineName.equals("**"))newInside.add(lineName);
if(!bName.equals("**"))newOutside.add(bName);

} break; // tangent lines A and B separately once

Polygon Sets on Polygon Sets and Polygon Networks

562 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

case 16: case 17:
newOutside.delete(lineName);
newOutside.delete(bName);
newInside = newOutside.copy();
if(lineName.compareTo(bName)<0){

if(!lineName.equals("**"))newInside.add(lineName);
if(!bName.equals("**")){newInside.add(bName);}

}
} //switch

}
}

}
ref = ref.link1;

}
}

The composite names for the inside and outside regions adjacent to each line
segment are constructed and stored in a name table. This allows a collection of line
segments to be accumulated for each different, name combination, as the polyline
linking all the original area boundaries is sequentially traversed.

if(newInside.compareTo(newOutside)!=0){

if(outsideName.compareTo(insideName)!=0){
int kk1 = nameTable.add(insideName);
refb=((NameSet)nameTable.table[kk1]).bd.append(ref1.object);
int kk2 = nameTable.add(outsideName);
refb=((NameSet)nameTable.table[kk2]).bd.insertBefore(

((NameSet)nameTable.table[kk2]).bd.finish,ref1.object);
int kk3 = nameTable.add(newInside);
refb=((NameSet)nameTable.table[kk3]).bd.append(ref1.object);
int kk4 = nameTable.add(newOutside);
refb=((NameSet)nameTable.table[kk4]).bd.append(ref1.object);

}else{
int kk5 = nameTable.add(newInside);
refb=((NameSet)nameTable.table[kk5]).bd.append(ref1.object);
int kk6 = nameTable.add(newOutside);
refb=((NameSet)nameTable.table[kk6]).bd.append(ref1.object);

}
}else{

if(outsideName.compareTo(insideName)!=0){
int kk7 = nameTable.add(insideName);
refb=((NameSet)nameTable.table[kk7]).bd.append(ref1.object);
int kk8 = nameTable.add(outsideName);
refb=((NameSet)nameTable.table[kk8]).bd.insertBefore(

((NameSet)nameTable.table[kk8]).bd.finish,ref1.object);
}

}

563

insideName = newInside;
outsideName = newOutside;
newOutside = outsideName.copy();
newInside = insideName.copy();
ref1=ref1.right;

}while(ref1!= start);

int kk1 = nameTable.add(newInside);
refb=((NameSet)nameTable.table[kk1]).bd.append(ref2.object);
int kk2 = nameTable.add(newOutside);
refb=((NameSet)nameTable.table[kk2]).bd.insertBefore(

((NameSet)nameTable.table[kk2]).bd.finish,ref1.object);

The names of the original areas are chained together to form the new area names
using the NameSet class, which allows these name sequences to be created, stored
and compared in various ways.

class NameSet implements Comparable{

ListElement ref1,ref2;
List ls= new List();
int test;
NameSet(){}
public ListElement add(String str,TextWindow IO){

ref1 = ls.start;
while(ref1 != null){

if(str.compareTo((String)ref1.object)>0)break;
ref1=ref1.right;

}
if(ref1!=null){ ls.insertBefore(ref1,str); return ref1.left;}
else{ ls.append(str);return ls.finish;}

}
public void delete(String str){

ref1 = ls.start;
while (ref1!= null){

if(str.equals((String)ref1.object)){ ls.delete(ref1);return;}
ref1=ref1.right;

}return;
}
public NameSet copy(NameSet names){

NameSet newNames = new NameSet();
ref1 = ls.start;
while(ref1!= null){

newNames.ls.append((String)ref1.object);
ref1=ref1.right;

}
return newNames;

}

Polygon Sets on Polygon Sets and Polygon Networks

564 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

public boolean equals(Object str){
if((test = this.compareTo(str))==0)return true; else return false;

}
public int compareTo(Object names){

ref1 = ls.start;
ref2 = ((NameSet)names).ls.start;
while((ref1!=null)&&(ref2!=null)){

if((test=((String)ref1.object).compareTo((String)ref1.object))<0)return-1;
if(test >0)return +1;
ref1=ref1.right; ref2=ref2.right;

}
if(ref1==null){

if(ref2==null) return 0;
else return 1;

}
else if(ref2==null)return-1;
return 0;

}
public void write(TextWindow IO){

ref1=ls.start;
while(ref1!=null){

IO.writeString((String)ref1.object+" ");
ref1=ref1.right;
if(ref1!=null)IO.writeString("/ ");

}
}

}

class Table{

int count = 100;
private Object[] table = new Object[count];
private int size = 0;

Table(){}
public int locate(Object str){

for(int i=0; i<size; i++){ if (str.equals(table[i]))return i;} return -1;
}
public int add(Object str){

int index = locate(str);
if(index== -1){ index = size; table[index]= str; size=size+1;}
if(size== count){

Object[] tbl = new Object[count + 100];
for(int i=0;i<count;i++){ tbl[i]=table[i];}
table = tbl;
count=count+100;

}return index;
}

565

public Object getElement(int i){
if((i>=0)&&(i<size))return table[i]; else return "";

}
public boolean contain(String str){

int k= locate(str);
if (k<0)return false;else return true;

}
public int getSize(){ return size;}
public void setTable(Object[] tbl){ table = tbl; size= tbl.length;}

}

The output from this process will be a set of line segments for each name
combination. These line segments can be processed to generate new polygon loops
and new polygon sets if required. The line segments can be transferred directly to the
hatching method for shading without this pre-structuring in the way shown in Figure
14.20.

Figure 14.23 Generating polygon sets as output from the overlay

Polygon Sets on Polygon Sets and Polygon Networks

566 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

for(i=0; i<nameTable.size; i++){
NameSet nm = (NameSet)nameTable.table[i];
nm.ba = new ListOfTuples();
ref= nm.bd.start;
while(ref!=null){

nm.ba.append((Point)ref.object); nm.ba.finish.link1 = ref;
ref.link1 = nm.ba.finish; nm.ba.finish.tag = ref.tag;
ref=ref.right;

}
if(nm.compareTo(exterior)!=0){

IO.writeString(" "); ((NameSet)nameTable.table[i]).write(IO);
nm.ba = nm.ba.sortn(IO);
refa = nm.ba.start; count = 0;
while(refa!=null){

if(refa.link1.tag > 0){
if(refa.link1.tag==1)match=2; if(refa.link1.tag==2)match=1;
refb=refa.right;
if(((Point)refa.link1.object).compareTo(

(Point)refb.link1.object)==0){
while((refb!=null0&&(((Point)refa.link1.object).compareTo

((Point)refb.link1.object)==0)){
if(refb.link1.tag == match)break;
refb=refb.right;

}
if(refb!=null){

switch(match){
case 2: refb.link1.right= refa.link1; refa.link1.left = refb.link1;

break;
case 1: refa.link1.right= refb.link1; refb.link1.left = refa.link1;

break;
}
refb.link1.tag= -refb.link1.tag; refa.link1.tag= -refa.link1.tag;

}
}

} refa=refa.right;
} IO.writeString("\n ");

Each name list contains a list of line segments bd making up the boundary of the

area associated with the name, but, this area may well consist of multiple polygon
loops. The first step is to generate a secondary list ba from the original list bd. This
list ba can then passed to the sortn() procedure to sort ba into an ordered list, cross
linked back to the original list bd. The original list contains point pairs defining line
segments tagged as either 1 or 2 to indicate which is the first and which is the second
in each segment pair. The ordered list is then processed to link together identical
points within the bd list where the end of one line segment tagged 2 matches the
beginning point of a second line segment tagged 1, illustrated in Figure 13.3. The
second step is then to process the bd list to output continuous chains of points. In this

567

case these chains will close to form polygon loops. Each loop can be added to a list
associated with the area name within a polygon set object: Polygons.

…
ref= nm.ba.start;
Polygons p = nm.pg;
List pgl = new List();
p.pL= pgl;
do{

refa= ref.link1;
if((ref!=null)&&(ref.link1.tag == -1)){

refa=ref.link1;
refb=refa.right;
ListElement st = refa;
Polygon ppq = new Polygon(IO,dW);
pgl.append(ppq);
List ply = new List();
ppq.ply = ply;
count = 0;
do{

count++;
ply.append((Point)refa.object);
refa.tag= - refa.tag;
 refb.tag = -refb.tag;
do{

refa = refb.right; refb = refa.right;
}while((refa!=null)&&(refa!=st)

&&(((Point)refa.object).compareTo((Point)refb.object)==0));
}while((refa!=null)&&(refa.tag <0)&&(count <64)&&(refa != st));
ppq.length = count+1;
ppq.p = new Point[count+1];
ListElement refx = ply.start;
ppq.p[count]=(Point)refx.object;
for(int ii=0; ii < count; ii++){

ppq.p[ii] = (Point)refx.object;
refx=refx.right;
IO.writeString(ppq.p[ii].xi()+" "+ppq.p[ii].yi()+" | ");
if((ii+1)%10==0)IO.writeString("\n ");

}
IO.writeString(ppq.p[count].xi()+" "+ppq.p[count].yi()+" | ");
if(i<6)n=1;else n=2;
IO.writeString("\n ");

}
if(ref!=null)ref=ref.right;

}while(ref!=null);
IO.writeString("\n\n");

}

Polygon Sets on Polygon Sets and Polygon Networks

568 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

Figure 14.24 Shading polygon sets output from the overlay program

569

public NTuple mid(TextWindow tW){

ListElement ref = this.start; if (ref == null) return null;
NTuple v = (NTuple)ref.object;
NTuple min=new NTuple(v.dimension); NTuple max=new NTuple(v.dimension);
NTuple midTuple = new NTuple(v.dimension);
for(int i=0;i<v.dimension; i++)

{min.n[i] = Double.MAX_VALUE; max.n[i] = Double.MIN_VALUE; }
while(ref != null){

v = (NTuple)ref.object;
if(v.dimension!= 0){

for(int i=0;i<v.dimension; i++){
if(v.n[i]<min.n[i])min.n[i]=v.n[i]; if(v.n[i]>max.n[i])max.n[i]=v.n[i];

}ref = ref.right;
}

}boolean test = true;
for(int i=0;i<v.dimension;i++){

if(min.n[i]!=max.n[i]) test = false;
midTuple.n[i]= (min.n[i]+max.n[i])/2.0;

}if (test)midTuple=null;
return (NTuple)midTuple;//(Comparable)midTuple;

}
public ListOfTuples joinTo(ListOfTuples b){

if(this.start==null)return b; if(b.start==null)return this;
ListOfTuples a = new ListOfTuples(); a.start = this.start; a.finish = b.finish;
this.finish.right= b.start; b.start.left = this.finish; return a;

}
public ListOfTuples sortn(TextWindow tW){

this.setLength();
NTuple test = this.mid(tW);
if(test== null)return this; if (this.start == this.finish) return this;
ListElement ref = this.start;
ListOfTuples leftList = new ListOfTuples();
ListOfTuples rightList= new ListOfTuples();
while(ref!=null){

if(((NTuple)ref.object).compareTo(test)<0){
leftList.push(ref.object);
leftList.start.link1 = ref.link1; leftList.start.link2 = ref.link2;

}else{
rightList.push(ref.object);
rightList.start.link1 = ref.link1; rightList.start.link2 = ref.link2;

}ref = ref.right;
}
if (leftList.start==null) return rightList = rightList.sortn(tW);
if (rightList.start==null)return leftList = leftList.sortn(tW);
leftList = leftList.sortn(tW); rightList = rightList.sortn(tW);
return leftList.joinTo(rightList);

}

Polygon Sets on Polygon Sets and Polygon Networks

570 14 Spatial Relationships Overlap & Adjacency Polygon on Polygon

Although the plane sweep algorithm is potentially not as efficient as the recursive
four-way subdivision it has some very convenient properties in the way it orders data
and the demands it makes on the order of input data. Developed in the OBLIX
program in 1969 to allow local processing to increase the complexity of drawings
that could be managed in a computer with a relatively small fast memory space
(compared with modern systems), it was also employed in 1970 in Utah to calculate
the display data in the order needed to feed the raster sweep of TV monitors before
frame store facilities existed. Currently it provides the same service for large
electrostatic plotters that produce high-resolution technical drawings with sizes in
excess of 1 metre wide. In practice both algorithms can be used for the first step in a
polygon overlay operation to locate line intersection points.

Set Theoretic Data Structures and Land Parcel Systems

The second stage of the process is essentially a renaming exercise. This can be a
system that creates the Boolean combination of the original names. This is useful for
data base access languages used in geographic information systems. Storing the set of
minimal area polygons, from the overlay operation allows the set operations
supporting spatial data base queries to be executed as a series of merge sort
operations, that are very fast once the initial geometrical overlay operation has been
completed.

In geographic information system databases the basic geometric overlay operation
does not have to be executed very often. However, where the same overlap testing is
needed in computer aided design systems, changes in the geometry are often required
repeatedly at great speed. This context poses problems where the data is merely
stored as sets of polygons. The reason is that if a polygon is changed then all its
neighbours in the overlay network also have to be changed.

Where the collection of polygons is large this will demand large repeated searches
to find adjacent polygons. It is necessary to include the links from one polygon to its
neighbours if these searches are to be avoided. In the overlay operation each edge is
used to generate two new boundaries, one for each of the newly defined cells lying
on each side of the line. This introduces an alternative mode of storage. Instead of
storing polygons with duplicated edges and cross-linked references to adjacent
polygons, the basic geometry can be stored as dual labelled edges. This approach is
explored in a later chapter, as a way of representing networks along with the related
topic of tessellating surfaces in different ways.

15
Spatial Relationships
Overlap &Adjacency
Rectangle-Rectangle
Window on Window

Introduction

In this chapter the general topic, highlighted yellow in Table 15.1, is again an
exploration of the relationships of overlap and adjacency between areas.

Table 15.1 Basic Spatial Relationships

Objects Point

Line Area Volume

Point Point on Point Point in Line Point in Area Point in
Volume

Line Line on Line Line in Area Line in
Volume

Area Area on Area Surface in
Volume

Volume Volume on
Volume

Rectangle Set on Rectangle Set

An overlay task that needs to be carried out very often in an interactive window
system is establishing the interrelationship of window rectangles as they are moved
relative to each other. In early systems with limited memory the way this was done

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_15, © Springer-Verlag London Limited 2008

572 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

was critical for keeping memory usage within bounds. The key operation is that
shown in Figure 15.1. The process is one of partitioning the display space into
rectangles. This allows fast block memory transfer operations to be used to update
the display. Block memory transfer operations are primitive operations, which can be
implemented at the hardware or firmware level in the display system.

D

C
A

F

E

J

B

K
H

G

D

C
A

F

E

J

B

K H

G

L

M

L

M

D

C
A

F

E

J

B

K H

G

L

M

D

C
A

F

E

J

B

K

H

G

L

M

Figure 15.1 Overlay-subdivision of multiple windows into sets of rectangles

Figure 15.1 shows four possible subdivision patterns, each giving the same
number of rectangles. Window rectangles are added serially on top of each other.
Each window subdividing the existing lower level set of rectangles, if and where they
overlap to give the configurations shown. Although this process can be implemented
in a relatively direct recursive program, it requires fairly complex linked list
structures to build a window manipulation system based on it.

An alternative approach that generates a larger number of subdivision rectangles
can be set up in the way illustrated in Figure 15.2. As the labelling in Figure 15.2
shows this subdivision scheme creates a grid of variable sized rectangles that can be
treated as an array, each cell being referenced by a pair of indexes. This makes it
unnecessary to store each cell explicitly. Its dimensions can be calculated from the
indexes used to access it. To simplify this task it is necessary to store the x and y
values of the window edges in two arrays accessible by the cell indexes of the overall
grid to give the corner values of the cells. The cells can then be systematically
processed using two nested for loops. Each window can be represented by a set of
rectangles, and each set can be reconstructed from the left and right index of the

Rectangle Set on Rectangle Set 573

window boundaries and also the top and bottom boundary indexes. These can also be
processed using two repeat loops. When windows are moved, resized, added or
deleted from this system all that needs to be done is to rearrange the entries in these
index based arrays, in practice this operation is more simply handled by a pair of
ordered linked lists. Code to implement these ideas using keyword commands can be
set up as follows.

a b c d e f

4

3

2

1

0
0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2 1,2 2,2 3,2 4,2

0,3 1,3 2,3 3,3 4,3

0,4 1,4 2,4 3,4 4,4

0 1 2 3 4 5

5
e d c b a f

0 1 2 3 4 5

X u v w x y z

0 1 2 3 4 5

Y

u

v

w

x

y

z

Figure 15.2 Overlay-subdivision of multiple windows into an array of rectangles

public class Windows{

static TextWindow IO = new TextWindow(15,405,600,110);
static DisplayWindow dW = new DisplayWindow(IO,15,5,600,400,Color.white);
static int xmin = 0, xmax = dW.c.width, ymin = 0, ymax = dW.c.height;
static List LofWs = new List(); static Win bw = null;
static ListOfEdges lx= new ListOfEdges(), ly= new ListOfEdges();
public static void main(String[] args){

Win win = null; Color cc = Color.white; String colour=null; String str = null;
int xl, yl, x1, y1, x2, y2, xr, yr,rx,ry;
Point p1=new Point(2), p2=new Point(2);Point p = null;
p1.x("=",xmin); p2.x("=",xmax); p1.y("=",ymin);p2.y("=",ymax);
int width= xmax-xmin; int height = ymax-ymin;
Picture pict = new Picture(null,cc,"rectangle",null,xmin,ymin,width,height);
bw= makeWindow(pict,Color.white); dW.repaint();
ListElement winref=null, refwn=new ListElement();

574 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

do{
IO.writeString("Please enter command code: ");
str = IO.readString(); IO.readLine();
if(str.equals("make")){

cc=getColour();
Picture pict = getWindowRectangle(cc);
win = makeWindow(pict,null);

}

The make command requires a call to getWindowRectangle() followed by a
makeWindow(..) call passing to it a new Picture object giving the location of the
window rectangle, its height, width and colour along with an array of pixel colours.

Figure 15.3 Make a new red window

if(str.equals("resize")){
p=new Point(2);
IO.writeString("Please identify the window \n");
win = (Win)(refwn = identifyWindow(p)).object;
if(win!=bw){

pict = resizeWindow(win,bw);
Color ccc= win.cc;
removeWindow(refwn);
win = makeWindow(pict,ccc);

}

Rectangle Set on Rectangle Set 575

The resize command requires a window and a corner to be identified using the
mouse. A second point is then requested to relocate the corner. The dimensions of the
window rectangle then have to be updated, ensuring that the window is never reduced
below a minimum size. This is followed by removing the image of the old version of
the window from the screen, before replacing it with the new one.

Figure 15.4 Resize the red window

if(str.equals("raise")){
p= new Point(2);
IO.writeString("Please identify a window\n");
win = (Win)(refwn = identifyWindow(p)).object;
if(win!=bw){

pict = win.pic;
removeWindow(refwn);
win = makeWindow(pict,null);

}
}

The raise command requires the target window to be identified, the visible
portions of this window to be removed, followed by entering the window back on top
of the other windows using the makeWindow(..) command. The edge index lists are
changed but then changed back again. The stack of windows has the raised window
removed from its previous location and reentered at the top of the stack.

576 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Figure 15.5 Overlay multiple windows

Figure 15.6 Raise the red window

Rectangle Set on Rectangle Set 577

if(str.equals("move")){
p= new Point(2);
IO.writeString("Please identify a window\n");
win = (Win)(refwn = identifyWindow(p)).object;
if(win!=bw){

pict = moveWindow(win,p);
removeWindow(refwn);
win = makeWindow(pict,null);

}
}

The move command requires the target window to be identified using a point

entered by the mouse. A second point is then requested to define the movement
relative to the first point. The coordinates for the rectangle at its new location are
then calculated, followed, as before, by the old version being removed before the new
rectangle is painted in. Again the index lists have to be updated for the new window
location. The background window cannot be moved using this command.

Figure 15.7 Move the green window

The repaint command requires the target window to be identified again by
entering a point using the mouse, its new colour requested from the text window,
followed by repainting the visible regions of the window in the new colour. This
command does not raise the identified window to the top of the stack. This allows the
command to be used to recolour the background window.

578 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Figure 15.8 Repaint the red window magenta

if(str.equals("repaint")){
p=new Point(2); IO.writeString("Please identify a window\n");
win = (Win)(refwn = identifyWindow(p)).object;
Color col = getColour(); win.cc = col;
repaint(p,col);

}

The copy command duplicates a window, while the remove command requires the
targeted window, again located using the mouse, to be removed. The end command
terminates the program.

if(str.equals("remove")){
p=new Point(2); IO.writeString("Please identify a window\n");
win = (Win)(refwn = identifyWindow(p)).object;
if(win!=bw)removeWindow(refwn);

}

if(str.equals("copy")){ cc=getColour(); copy(cc);}

} while(!str.equals("end"));
IO.writeString("Program complete \n");

}

Rectangle Set on Rectangle Set 579

Figure 15.9 Remove the green window

Figure 15.10 Repaint the background cyan

580 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Figure 15.11 Copying an existing rectangle

Figure 15.12 Rarranging a set of rectangles using keyword commands

Rectangle Set on Rectangle Set 581

class ListOfEdges extends List{

public ListOfEdges(){};
public ListElement enter(Integer e){

ListElement ref= this.start;
if(ref==null){ref = push(e); ref.tag++; return ref;}
Integer r = (Integer)ref.object;
if(e.intValue() < r.intValue()){ ref= push((Integer)e); ref.tag++; return ref;}
while((ref!=null)&&(r.intValue()<e.intValue())){

ref=ref.right; if(ref!=null)r = (Integer)ref.object;
}
if(ref==null){ref=append(e); ref.tag++; return ref;}
if(r.intValue()==e.intValue()){ ref.tag++; return ref;}
ref= insertBefore(ref,e); ref.tag++;
return ref;

}
public void destroy(ListElement ref){

ref.tag--; if(ref.tag <=0) delete(ref);
}

}

The ListOfEdges class manages the ordered lists of ordinate values: one for the
left and right edges, and one for the top and bottom edges of the window rectangles.
Keeping these ordinates in order allows two simple for loops to systematically access
the rectangles that are contained between each pairs of edges defining the extent of a
particular window. Duplicate elements in these lists are tagged with a count value so
that window deletion does not lose a necessary entry in the list.

class Win{

public int x1,x2,y1,y2,w,h;
public Picture pic =null;
public Color cc = null;
public int tag=0;
public ListElement rx1= null,rx2= null,ry1= null,ry2= null, rx=null, ry=null;
public Win(int x,int y, int w, int h, Color cc, Picture pict){

this.cc=cc;this.pic=pict;
this.x1=x;this.y1=y; this.x2=x+w; this.y2=y+h; this.w=w; this.h=h;
if(pict==null){

pic = new Picture(new Color[w][h],cc,"rectangle",null, x1,y1, w ,h);
for(int i=0;i<w;i++){ for(int j=0;j<h;j++){ pic.c[i][j]= cc; } }

}else this.pic=pict;
}
public void setWin(ListElement rx1,ListElement rx2,

ListElement ry1,ListElement ry2,ListElement rx,ListElement ry){
this.rx1= rx1; this.rx2= rx2; this.rx=rx;
this.ry1= ry1; this.ry2= ry2; this.ry=ry;

}
}

582 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

needed to run the examples shown in the Figures 15.3 to 15.12. By itself
manipulating rectangles is not of great use. Two properties make it important. The
first is, because a rectangle’s sides are parallel to the coordinate axes, it can be used
to manage min-max boxes used to enclose more complex shapes. This combined
with divide and conquer spatial algorithms can give very efficient programs. The
second property for raster based display systems is the way that rectangular areas can
be accessed from memory using base displacement hardware addressing schemes.
This can support a series of hardware and firmware primitive display operations that
can also be used to support fast and efficient higher-level programs.

As graphics user interfaces developed with the introduction of raster displays and
the way integrated circuit memory reduced the cost and raised the resolution of real
time refreshed displays, the desk top model emerged as the higher-level concept that
controlled their form. Nearly all text and graphic information was traditionally held
in the form of documents of one kind or another, and these were usually used in
combinations laid out on a work surface. As soon as virtual documents could be
generated using computer graphic displays, the small restriction that aligning
document boundaries with the pixel grid of the display system made, provided a
system fast enough to be used interactively, and provide interfaces such as the frame
or window based system supported, among others, by the Java language.

Geographic data held in map sheets were easy to transfer to this new environment.
Also geographic databases set up as a collection of single subject spatial distributions
could be presented in map-overlays by combining the contents of two or more map
sheets. Architectural and engineering drawings exhibited a similar arrangement:
separating out structures, services and detailed finishes into different cross-referenced
drawings. Overlays of differently sourced image components make up many graphic
art operations, for example making appliqués, montages and the compositing
techniques used in printing to combine a mixture of text and graphics elements.

Clearly to make use of the rectangle overlay system it is also necessary to be able
to draw or paint images onto the rectangles and to handle this “content” appropriately
when the rectangles are moved, changed in size, or clipped by overlaid rectangles.
There seem to be two general approaches to handling the content of images placed on
these rectangular panels. The first where the image only exists as a pixel array is to
process the source image to generate new images and place them into new display
memory positions. The second where the image has been constructed by draw and fill
commands is to redraw the image into its new display memory locations. Simple
moves can be achieved for both sources by memory transfer operations where these
are supported by the display system. Scaling and other changes to the content require
more processing.

Changing the content of a window in interactive work will only occur in one
window at once so rearranginging other windows can still be handled using pixel
array based operations. Where more than one window is active, in the case of
simulations for example, then each window may need its own program thread with
redraw capabilities to keep a complex display correctly up to date.

Windows, Map Sheets and the Desktop Model

The Win class shown above provides the basic minimum definition of a window

Rectangle Set on Rectangle Set 583

In order to hold the content of each rectangle an array of pixel colour values needs
to be generated and retained. In these examples this is done using a Picture class.
Each window rectangle contains a picture object that has to be repainted whenever
the window is moved.

class Picture{

public Object obj =null; public CoordinateFrame fm = null; public String name = "";
public Color[][] c = null; public Color cc = null; public TextWindow IO = null;
public Rectangle r= new Rectangle(); public int x=0, y =0, w=0, h =0;
public Picture(Color[][] ic,Color col,String it,Object ob, int ix, int iy, int iw ,int ih){

this.c = ic; this.cc=col; this.obj = ob;
this.x=ix; this.y= iy; this.w= iw; this.h= ih; this.name=it;
if((it!=null)&&(it.equals("rectangle"))){

if (this.c == null){ this.c = new Color[w][h];
for(int i=0;i<w;i++){for(int j=0;j<h;j++){this.c[i][j] = col;} }

}
}

}
public CoordinateFrame setScaling(int x,int y){

Point p1=new Point(2); p1.n[1]= 0 ;p1.n[2] = 0;
Point p2=new Point(2); p2.n[1]= x ;p2.n[2] = y;
return setScaling(p1,p2);

}
public CoordinateFrame setScaling(Point p1,Point p2){

Point pa=new Point(2); pa.n[1]= 0 ;pa.n[2] = 0;
Point pb=new Point(2); pb.n[1]= this.w ;pb.n[2] = this.h ;
fm = new CoordinateFrame(); fm.setScales(p1,p2,pa,pb); return fm;

}
public Color getColour(int x,int y){

if(name.equals("line")){
LineSeg ls = (LineSeg)this.obj;
if(ls.up){ if(y==ls.pnts[x])return ls.cc; else return null; }
else{ if(ls.pnts[y]==x)return ls.cc;else return null; }

}else if(name.equals("polygon")||name.equals("rectangle")) return this.c[x][y];
return null;

}
public void setColour(Color cc){

if(this.name.equals("line")){((LineSeg)this.obj).setColour(cc);}
if(name.equals("polygon")){this.cc=cc;}
if(name.equals("rectangle")){this.cc=cc;}

}
public void setColour(Color cc,int x,int y){

if((this.name==null)||(name.equals("rectangle")))this.c[x][y]=cc;
if(this.name.equals("polygon"))this.c[x][y]=cc;
if(this.name.equals("line"))this.setColour(cc);

}
}

584 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

reconstruct the contents of a rectangle. Where in contrast a window rectangle needs
to be up dated, for example to a different size, then it becomes necessary to calculate
the scaling factors that match the change in the rectangle size, so, if required, they
can be applied to create new contents for the modified window. Changing the
contents of a Picture’s array of pixel colors and also transferring this data to a
BufferedImage is a relatively fast operation. The BufferedImage is the Java system’s
interface to its display facilities that can employ block memory transfers.

The Java system can, in one form or another, provide all the window facilities that
have been discussed so far. However, because the Java system has to cope with a
large number of display operations and the large number of possible interactions
among them, it gets complex. It was decided for the purposes of this book that only
the simplest primitive display facilities offered by the language would be employed.
The remaining functionality would be provided by home-written basic Java
programs, but, set up to illustrate key ideas, rather than to build a complete system.
The choice to write programs rather than explain the existing Java libraries was made
to allow alternative approaches to be explored and show the merits of some of the
deceptively simple solutions that have emerged, that are easy to overlook unless they
are compared with less elegant alternatives.

The first basic Java display facility that has been used as a building block is the
use of the Color class. Representing colours is a complex topic that will be explored
more fully in a later chapter. Currently the set of simple colours made available by
the Color class as Color objects has been used, and it has been sufficient for the
relatively diagrammatic images constructed so far. In the antialiasing exercises and
the surface shading examples the Java facility to represent and render different
shades of grey, has been used but with its full explanation deferred to a later chapter.

Upto this point the interface between these programs and the Java system and
therefore the operating system and the display processor has been limited to the
ability to change the colour of single pixels in a display raster, one by one, selected
and modified by explicit program code. This approach is sufficient to allow the
Picture object colour arrays to be displayed, but very slowly.

In order to explore more complex interactive graphic facilities it is necessary to
take advantage of any block memory transfer operations provided that speed up
interactive raster displays. This requires the extension to the setPixel() minimum
interface used upto this point, to include the ability to transfer arrays of pixel values
to the display screen as a fast primitive operation. These extensions are made in the
WorkPanel class that provides the working display surface for the DisplayWindow
class that has been used throughout this book. The extensions are based on the
BufferedImage construct provided by the Java libraries to implement double buffered
image-refresh and fast array operations. When the repaint() command is made for the
WorkPanel the system calls its paintComponent() procedure which then transfers the
data in the BufferedImage to the display screen in one step. The WorkPanel functions
are listed below.

Rewriting Rectangular Pixel Arrays

Where there is a simple memory transfer operation then there is no need to

Rectangle Set on Rectangle Set 585

class WorkPanel extends JPanel{

private BufferedImage ds; private WritableRaster raster = null;
private ColorModel smp = null; public int width, height; public TextWindow IO;
protected boolean newMouseEvent = false; protected int mx=0, my=0;
public WorkPanel(TextWindow tw,int width,int height){

setSize(width,height); this.width = width; this.height = height; this.IO = tw;
addMouseListener(new MouseAdapter() { public void mousePressed(MouseEvent e){
mx = e.getX(); my = e.getY(); newMouseEvent = true; } });
ds = new BufferedImage(width,height,BufferedImage.TYPE_INT_ARGB);
raster = ds.getRaster(); Graphics g = getGraphics(); smp = ds.getColorModel();
generate(ds,Color.white,g);

}
public void paintComponent(Graphics g){

super.setSize(width,height); super.paintComponent(g);
g.drawImage(ds,0,0,width,height,null);

}
public void generate(BufferedImage ds,Color cc,Graphics g){

int width = ds.getWidth(); int height = ds.getHeight();
int argb = cc.getRGB(); smp = ds.getColorModel();
Object colorData = smp.getDataElements(argb,null);
for(int i=0;i<width;i++){ for(int j=0; j<height;j++){raster.setDataElements(i,j,colorData);}}

}
public int getPixel(int x,int y){ return ds.getRGB(x,y); }
public Color getPixelColor(int x,int y){ return new Color(ds.getRGB(x,y),true); }
public void setPixel(int x,int y ,Color cc){

int argb = cc.getRGB(); Object colorData1 = smp.getDataElements(argb,null);
raster.setDataElements(x,y,colorData1);

}
public void setPixels(int n,int m,int ii,int jj,int width,int height,Picture pic){

int argb=0;
for(int i=0;i<width;i++){

for(int j=0;j<height;j++){
Color cc = pic.getColour(n+i,m+j);
if(cc!=null){argb = cc.getRGB();

Object colorData1 = smp.getDataElements(argb,null);
raster.setDataElements(ii+i,jj+j,colorData1);

} } }
this.repaint();

}
public void clearDisplayPanel(Color cc){ //background colour

int width = ds.getWidth(); int height = ds.getHeight();
int argb = cc.getRGB(); smp = ds.getColorModel();
Object colorData = smp.getDataElements(argb,null);
for(int i=0;i<width;i++){

for(int j=0; j<height;j++){ raster.setDataElements(i,j,colorData); }
}this.repaint();

}

586 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

public void setColor(ListElement[] lse,Win wn,int kk,
int ii,int jj,int width,int height,Color c){

int argb = c.getRGB();
Object colorData1 = smp.getDataElements(argb,null);
wn.cc=c;wn.pic.setColour(c);
for(int i=0;i<width;i++){

for(int j=0;j<height;j++){
boolean done = false;int k=0;
while(!done &&(k<kk)){

Win w = (Win)lse[k].object;
if(w==wn){ //matching windows

wn.cc=c; wn.pic.setColour(c);
if(wn.pic.getColour(ii+i-wn.x1,jj+j-wn.y1)!=null){

raster.setDataElements(ii+i,jj+j,colorData1); done = true;
}

}else if(w.pic.getColour(ii+i-w.x1,jj+j-w.y1)!=null)done = true;
k++;

} } } this.repaint();
}
public void line(int x1,int y1,int x2, int y2,Color color,Shadings s,boolean set){

int kx,ky,dx,dy;
dx = x2-x1; dy = y2-y1; kx = 1; ky = 1;
if (dx < 0){ kx = -1; dx = -dx; } if (dy < 0){ ky = -1; dy = -dy; }
if (dx < dy) {this.octant(y1,x1,y2,x2,ky,kx,dy,dx,2,color,s);}
else {this.octant(x1,y1,x2,y2,kx,ky,dx,dy,1,color,s);}
if(set)this.repaint();

}
private void octant(int x,int y,int xend,int yend,int kx,int ky,

int dx, int dy,int dir,Color cc,Shadings s){
int argb = cc.getRGB(); Object colorData1 = smp.getDataElements(argb,null);
int d, j ; Point p = new Point(2);
d = 2*dy-dx; dx = 2*dx; dy = 2*dy;
if (ky < 0){ d = -d; dx = -dx; dy = -dy;}
while(true){

if(s==null){
if (dir == 1) raster.setDataElements(x,y,colorData1);
else raster.setDataElements(y,x,colorData1);

}else{
if (dir == 1){p.n[1] = x; p.n[2] = y;}else {p.n[2] = x; p.n[1] = y;}
s.defineEdgePoint(p);

}
if (x == xend) return;
if (d < 0)j = -ky; else j =ky;
if (j > 0){d = d+dy-dx; y = y+ky;}else d= d+dy;
x = x +kx;

}
}

Rectangle Set on Rectangle Set 587

public Color[][] setColor(int ii,int jj,int width,int height,Picture p,Color c){
int argb = c.getRGB();Color[][] pict=null;
if(p.c==null)p.c= new Color[width][height];
Object colorData1 = smp.getDataElements(argb,null);
for(int i=0;i<width;i++){

for(int j=0;j<height;j++){
p.c[i][j]=c; raster.setDataElements(ii+i,jj+j,colorData1);

}
}
if(p.c==null) p.c=pict;
this.repaint();
return pict;

}
public void setPixels(int ii,int jj,int width,int height,Picture pic){

setPixels(0,0,ii,jj,width,height,pic);
}
public Picture polygonfill(Polygon p,Color cc,Color color){

Picture pict=null;
int ymin = Integer.MAX_VALUE; int ymax = Integer.MIN_VALUE;
int xmin = Integer.MAX_VALUE; int xmax = Integer.MIN_VALUE;
for (int i= 0; i< p.length-1; i++){

if(ymin > p.p[i].yi())ymin = p.p[i].yi();
if(ymax < p.p[i].yi())ymax = p.p[i].yi();
if(xmin > p.p[i].xi())xmin = p.p[i].xi();
if(xmax < p.p[i].xi())xmax = p.p[i].xi();

}
Color[][] pic = new Color[xmax-xmin+1][ymax-ymin+1];
int len = ymax-ymin+1;
Shadings S = new Shadings(null,len,ymin,false);
for(int i= 0; i< p.length-1; i++){

this.line(p.p[i].xi(),p.p[i].yi(),p.p[i+1].xi(),p.p[i+1].yi(),cc,S,false);}
for(int j= 0;j < ymax-ymin+1;j++){

for(int i= 0;i < xmax-xmin+1;i++){
if((i>=S.leftedge[j]-xmin)&&(i<=S.rightedge[j]-xmin)) pic[i][j]=cc;

} }
pict=new Picture(pic,null,"polygon",p,xmin,ymin,xmax-xmin+1,ymax-ymin+1);
setPixels(0,0,xmin,ymin,xmax-xmin+1,ymax-ymin+1,pict);
pict.cc= cc;
return pict;

}
}

}

Based on the procedures in the WorkPanel and the Picture classes the following

procedures were written to implement the command line instructions used to generate
the displays in Figures 15.3 to 15.12, initially for simple rectangles but then extended
to display polygons and overlaid sets of polygons and rectangles.

588 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

The getWindowRectangle procedure requests two points using the mouse to locate
two diagonally opposite vertices of a new window rectangle. These are then used to
create a new Picture object to return to the calling program.

static Picture getWindowRectangle(Color cc){
IO.writeString("Please enter diagonal window corners\n");
int minx,miny,maxx,maxy;
Point p1 = dW.getCoord();Point p2 = dW.getCoord();
if(p1.xi() < p2.xi()){minx=p1.xi(); maxx = p2.xi();} else{minx = p2.xi(); maxx=p1.xi();}
if(p1.yi() < p2.yi()){miny=p1.yi();maxy=p2.yi();} else{miny = p2.yi(); maxy = p1.yi();}
Picture pic =new Picture(null,cc,"rectangle",null,minx,miny, maxx-minx, maxy-miny);
return pic;

}

The makeWindow() procedure, given the corner points of the new window in the
Picture object obtained from the getWindow() procedure, enters them into the edge
index lists, then clips them to the display frame boundary. It then places the new
window on the top of the stack of windows and draws in its visible region with the
requested colour by calling the resetRectangle() program. This in turn calls the
setPixels() procedure from the WorkPanel object, which sets up the Picture object in
the new Window object, and enters it into the BufferedImage for fast display.

static Win makeWindow(Picture pict,Color cc){
int xl=pict.x,xr=pict.x+pict.w,yl=pict.y,yr=pict.y+pict.h;
Win wint = new Win(xl,yl,(xr-xl),(yr-yl),cc,pict);
ListElement ww= LofWs.push(wint);
wint.rx1= lx.enter(new Integer(xl)); wint.rx2= lx.enter(new Integer(xr));
wint.ry1= ly.enter(new Integer(yl)); wint.ry2= ly.enter(new Integer(yr));
//drawRectangle(bw, wint, xl,yl,xr,yr,cc); // only to process rectangles
ListElement [] lse = new ListElement[1]; lse[0] = ww;
resetRectangle(bw, lse, xl,yl,xr,yr,1); // processes rectangles,polygons and lines
dW.repaint();
return wint;

}

static boolean drawRectangle(Win bw, Win ws, int xl,int yl,int xr,int yr,Color cc){

int xleft=xl; int xright=xr; int yleft=yl; int yright=yr; // only for rectangles
if(bw!=null){ // replaced by resetRectangle()

if(xr<=bw.x1)return false; if(xl>=bw.x2)return false;
if(yr<=bw.y1)return false; if(yl>=bw.y2)return false;
if(xl<bw.x1)xleft= bw.x1; if(xr>bw.x2)xright=bw.x2;
if(yl<bw.y1)yleft= bw.y1; if(yr>bw.y2)yright=bw.y2;

}
int x1 = ws.x1; int y1= ws.y1; int i = xleft-x1; int j = yleft-y1;
dW.c.setPixels(i,j,xleft,yleft,xright-xleft,xright-xleft,ws.pic.c);
return true;

}

Rectangle Set on Rectangle Set 589

The extension in this chapter is to employ the Java facilities that allow an array of
pixels to be transferred as fast as the system will allow to the display screen. In the
code given above this allows the fast rendering of rectangles, which links back to the
tiling operations introduced in Chapter 3. In particular it raises the possibility of
overlaying rectangles containing transparent, translucent and opaque areas as an
image building operation. In its most general form this requires a further extension in
the use of the colour coding facilities provided by the Java system, which will be
explored in a later chapter. It also provides an alternative approach to the topics
explored in chapter 14 where overlays of different polygons and polygon networks
are combined together to give a composite display. The binary property of
transparent or opaque is all that is needed to extend the current display facilites to
handle polygons and triangles as well as the rectangles that are already catered for.

This on or off property can be provided using the existing WorkPanel interface to
Java system facilities. If transparent areas are rendered, by leaving the color array
entries in their Picture objects null, and only copying the opaque, colour values into
the BufferedImage, the Java system treats the pixels with no value transferred to them
as transparent. Using this facility requires several of the basic procedures set up to
display overlaid rectangles to be modified. The first of these has to be the procedure
used to identify an object in the display using the mouse. It is not simply the top
window rectangle but the top window rectangle containing a visible pixel at the
mouse pointer position that needs to be identified.

The procedure identifyWindow() initially used a point input from the mouse to
identify a window by calling locateWindow() to find the top window rectangle
containing the mouse pointer coordinate. The highlighted code shows the
modification needed to extend the system to handle the transparent regions round
more complex shapes such as polygons and triangles if they are to be displayed by
the same process used for rectangles. Once the mouse identifies the top window
rectangle containing its pointer, a futher pixel level test is required to see if this point
is transparent in that window. If it is then the next window down has to be tested in
the same way, until either the base window is located or a rectangle containing a
visible pixel is found.

static ListElement identifyWindow(Point p){
Point pp = dW.getCoord(); p.n[1]=pp.n[1]; p.n[2]=pp.n[2];
ListElement refwn= LofWs.start; return refwn=locateWindow(refwn,p);

}
static ListElement locateWindow(ListElement ref,Point pc){

while(ref!= null){
Win wn=((Win)ref.object);
if((pc.xi()-wn.x2)*(pc.xi()-wn.x1)<=0)

if((pc.yi()-wn.y2)*(pc.yi()-wn.y1)<=0) //return ref to only identify the top rectangle
if(wn.pic.getColour(pc.xi()-wn.x1,pc.yi()-wn.y1)!=null)return ref;

ref=ref.right;
}return ref;

}

590 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

A keyword command “drawpolygon” to display a polygon can be added to the
main program in the following way.

if(str.equals("drawpolygon")){
cc=getColour();
pict = getPolygon(cc);
win = makeWindow(pict,null);

}

As with the rectangle “make” command, the colour of the polygon is requested. The
getColour() procedure asks for the colour to be entered by name, and then passes the
String to the setColour() procedure, which returns the matching Java Color object for
use in the display process. Then getPolygon() is called to obtain a polygon definition.

static Color getColour(){
IO.writeString("Please enter colour: ");
String colour = IO.readString(); IO.readLine();
Color cc = setColour(colour);
return cc;

}

The getPolygon() procedure enters the polygon as a series of boundary points
defined by the mouse, which it displays as a boundary outline before generating a
Polygon object. This is then passed to the polygonfill() procedure in the WorkPanel
class, where a Picture object representing the shaded polygon is created inside the
polygon’s min-max box rectangle. This rectanglar area of pixels is then rendered by
the makeWindow() procedure, extended to only paint the coloured pixels that lie
inside the polygon’s boundary leaving other pixels in the BufferedImage unchanged.

static Picture getPolygon(Color cc){
IO.writeString("Please enter the number of vertices: ");
int num=IO.readInteger(); IO.readLine();
Point [] poly = new Point[num+1];
IO.writeString("Please enter the vertices with the mouse: \n");
poly[0]=dW.getCoord();
for(int kk=1;kk<num;kk++){

poly[kk]= dW.getCoord(); dW.plotLine(poly[kk-1],poly[kk],Color.blue);
}
poly[num]=new Point("=",poly[0]); dW.plotLine(poly[num-1],poly[num],Color.blue);
dW.getCoord();
Polygon ppp= new Polygon(num+1); ppp.p=poly;
Rectangle r = new Rectangle();
Color[][] c = dW.c.polygonfill(ppp,cc,null,r);
Picture pict = new Picture(c,cc,"polygon",ppp,r.x,r.y,r.width,r.height);
pict.cc= cc;
return pict;

}

Rectangle Set on Rectangle Set 591

Figure 15.13 Draw a polygon boundary

Figure 15.14 Colour-fill the polygon boundary

592 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Figure 15.15 Overlay a second polygon

Figure 15.16 Move the top polygon

Rectangle Set on Rectangle Set 593

The moveWindow() procedure uses two points entered by the mouse. The first
point is used to identify the window, the second to give its new location. The
difference between these two points defines a movement vector, which is applied to
each corner of the old window to give the coordinates of the new window. These are
then used to generate a new Picture object which when passed back to the calling
procedure allows the old version of the window to be deleted and a new version in
the new location to be created.

static Picture moveWindow(Win win,Point p1){
IO.writeString("Please enter destination\n");
int x1,x2,y1,y2;
Point p2 = dW.getCoord();
int xmove = p2.xi()-p1.xi(); int ymove = p2.yi()-p1.yi();
x1=win.x1; y1=win.y1; x2=win.x2; y2=win.y2;
if(x2+xmove<=bw.x1)xmove=bw.x1-x2+3;
if(x1+xmove>=bw.x2)xmove=bw.x2-x1-3;
if(y2+ymove<=bw.y1)ymove=bw.y1-y2+3;
if(y1+ymove>=bw.y2)ymove=bw.y2-y1-3;
x1=x1+xmove; y1=y1+ymove;
Picture pic = win.pic;
pic.x=x1;pic.y=y1;
return pic;

}

Figure 15.17 Move the cyan polygon showing edge clipping

display
space
edge
clipping

594 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Figure 15.18 Overlay two polygons

Figure 15.19 Raise the lower polygon

Rectangle Set on Rectangle Set 595

Figure 15.20 Raise and move the yellow polygon

Figure 15.21 Repaint the lower polygon magenta

596 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

The repaint() procedure allows the displayed object selected by the mouse to be
repainted: in the rectangle examples given above this merely means having its visible
subrectangles repainted a new colour. The procedure identifies all the sub-rectangles
within the target window and where they are visible it recolours them. For simple
rectangles the list of windows is searched in stacking order from the top and the first
window to contain a target sub-rectangle is the visible one, if this matches the
selected window then this sub-rectangle can be modified. The code for this is
highlighted light brown in the procedure list given below. Again for more complex
shapes only the visible pixels in the target window’s subrectangles are changed. In
this case all the window rectangles above the target window also have to be tested at
the pixel level to see if there is a hole revealing the target window. This is done by
the WorkPanel procedure setColor(). The code for this step will handle both
rectangles and polygons and is highlighted light green below.

static void repaint(Point p,Color cc){
int llx,rrx,lly,rry; ListElement refw= locateWindow(LofWs.start,p);
Win w = (Win) refw.object; w.pic.cc=cc;
if(w.pic.name.equals("line")){w.pic.setColour(cc);}
else{

for(int i=0;i<w.w;i++){ for(int j=0;j<w.h;j++){
if(w.pic.getColour(i,j)!=null) w.pic.setColour(cc,i,j);

} } }
ListElement refx=w.rx1,strx= w.rx1,stry= w.ry1,endx= w.rx2,endy= w.ry2;
while((llx=((Integer)refx.object).intValue())<xmin)refx=refx.right;
while((lly=((Integer)stry.object).intValue())<ymin)stry=stry.right;
while((rrx=((Integer)endx.object).intValue())>xmax)endx=endx.left;
while((rry=((Integer)endy.object).intValue())>ymax)endy=endy.left;
while(((Integer)refx.object).intValue()<((Integer)endx.object).intValue()){

llx = ((Integer)refx.object).intValue(); rrx = ((Integer)refx.right.object).intValue();
ListElement refy=stry;
while(((Integer)refy.object).intValue()<((Integer)endy.object).intValue()){

lly = ((Integer)refy.object).intValue();
rry = ((Integer)refy.right.object).intValue();
Point pp = new Point(2); pp.n[1]=(llx+rrx)/2; pp.n[2]=(lly+rry)/2;
// ListElement ref= locateWindow(LofWs.start,pp); // repaint rectangles only
// drawRectangle(bw,((Win)ref.object),llx,lly,rrx,rry,((Win)ref.object).cc);
ListElement[] lse = new ListElement[LofWs.length+1];
int kk= windowList(lse,LofWs.start,pp);
dW.c.setColor(lse,w,kk,llx,lly,rrx-llx,rry-lly,cc);
refy=refy.right;

}refx=refx.right;
} dW.c.repaint();

}

The removeWindow() procedure is used to remove the old version of a window
that is being deleted or replaced by a new version, either because it is being moved or
changed in some way.

Rectangle Set on Rectangle Set 597

The remove command requires the window to be identified by a point provided by
the mouse. For a simple rectangle all the visible subrectangles for the target window
need to be visited and the next window below in the window stack repainted. Again
for non-rectangular shapes further pixel level tests need to be carried out to find the
first visible pixel below each visible pixel of the targeted window that is being
removed. The reference to the deleted window needs to be removed from the stack of
windows list LofWs, and finally the edge index lists need to be updated by removing
the entries for the target window.

static void removeWindow(ListElement refw){
int llx,rrx,lly,rry;
Win w = (Win) refw.object;
ListElement refx=w.rx1, refy= w.ry1, endx= w.rx2, endy= w.ry2;
while((llx=((Integer)refx.object).intValue())<xmin)refx=refx.right;
while((lly=((Integer)refy.object).intValue())<ymin)refy=refy.right;
while((rrx=((Integer)endx.object).intValue())>xmax)endx=endx.left;
while((rry=((Integer)endy.object).intValue())>ymax)endy=endy.left;
if(w!= bw){

LofWs.delete(refw);
ListElement stry=refy, strx=refx;
while(((Integer)refx.object).intValue()<((Integer)endx.object).intValue()){

llx = ((Integer)refx.object).intValue();
rrx = ((Integer)refx.right.object).intValue();
stry=refy;
while(((Integer)stry.object).intValue()<((Integer)endy.object).intValue()){

lly = ((Integer)stry.object).intValue();
rry = ((Integer)stry.right.object).intValue();
Point pp = new Point(2); pp.n[1]=(llx+rrx)/2; pp.n[2]=(lly+rry)/2;
// ListElement ref= locateWindow(LofWs.start,pp); //to remove rectangles only
// drawRectangle(bw,((Win)ref.object),llx,lly,rrx,rry,((Win)ref.object).cc);
ListElement [] lse = new ListElement [LofWs.length+1];
int kk = windowList(lse, LofWs.start,pp);
resetRectangle(bw,lse,llx,lly,rrx,rry,kk);
stry=stry.right;

}refx=refx.right;
}
lx.destroy(w.rx1);lx.destroy(w.rx2);ly.destroy(w.ry1);ly.destroy(w.ry2);

}dW.repaint();
}

In this case the code highlighted in light brown needs to be replaced by that

highlighted in light green. After the reference to the target window has been removed
from the stack of wndows: a list of sub rectangles containing the identifying point is
passed to the resetRectangle() procedure for repainting, rather than the new top
rectangle containing the point being repainted by the drawRectangle() procedure. To
raise a polygon or rectangle to the top layer merely requires it to be identified,
removed from its current level and repainted at the top level using makeWindow().

598 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Figure 15.22 Remove the yellow polygon

static void copy(Color cc){

Point p=new Point(2); Picture pict=null;
IO.writeString("Please identify object \n");
ListElement refwn=null; Win win = (Win)(refwn = identifyWindow(p)).object;
if(win!=bw){

int x= win.x1+12; int y= win.y1+12;
if(win.pic.name.equals("line")){

LineSeg newLs= ((LineSeg)win.pic.obj).copy(cc);
pict = new Picture(null,cc,"line",newLs, x, y,win.w ,win.h);
Win wint = makeWindow(pict,cc); return;

}else {
Color[][] col= new Color[win.pic.w][win.pic.h];
pict = new Picture(col,cc,win.pic.name,null, x, y, win.w , win.h);
for(int i=0;i<win.pic.w;i++){ for(int j=0;j<win.pic.h;j++){

if(win.pic.getColour(i,j)!=null)pict.setColour(cc,i,j);
} }
if(win.pic.name.equals("polygon")){

pict.obj = ((Polygon)win.pic.obj).copyPolygon(dW,IO);}
Win wint = makeWindow(pict,cc);
wint.pic.cc=cc; dW.c.repaint();

}
}

}

Rectangle Set on Rectangle Set 599

Figure 15.23 Enter a blue polygon

Figure 15.24 Create an orange polygon copy

600 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Copying a rectangle is a relatively simple task. At the minimum a duplicate
Picture element is created with a direct copy of its colour array, followed by
changing its location coordinate and constructing and displaying the new Window. In
the example in Figure 15.11 the extra facility to change the rectangle colour has been
added to distinguish the source and copy rectangles. Copying a polygon can be
started in the same way, however it is also necessary to duplicate the polygon
definition in the Picture object. This is done by calling the copyPolygon() procedure
from the Polygon class. The reason for doing this is that any subsequent use of a
resize operation will require the polygon to be redrawn and the new boundary filled
to give a new Color array in the copy’s Picture object. The result of applying this
operation to a polygon is shown in Figure 15.24. Again the new polygon has had its
colour changed to distinguish it from its source.

class Polygon{ ….

public Polygon copyPolygon(DisplayWindow dW,TextWindow IO){
Polygon poly = new Polygon(this.length,dW);
for(int k=0;k<this.length;k++){

Point np = new Point(2);
np.n[1]=this.p[k].n[1]; np.n[2]=this.p[k].n[2];
poly.p[k] = np;

}return poly;
}

The resize command is the simplest transformation command, but it still is more

complicated to implement than the move commands. There are two ways of viewing
the resize command when it is applied to a window rectangle. The first is to treat the
rectangle as a “viewport” through which the contents of the window can be viewed.
In this case the change in size of the rectangle will either reveal more or less of the
contents. The second is as the min-max box defining the extent of the content Picture
it contains. In this case changing the window frame will require the contents to be
scaled up or down to continue to fill the rectangle.

In the first case either selecting a sub-array of pixel values or transferring the
original Color array into a larger colour array will implement the task. In the second
case a rectangular picture will have to be scaled by mapping the values held in the
source Color array to a resized pixel array for the new window. This is a texture-
mapping task that will be revisited in a more general form in a later chapter. A
polygon however exists as a Polygon model. This can be scaled to fit the new
window using the CoordinateFrame procedures introduced in Chapter 3. In both
cases the original definition, either as a source picture-array or as a construction
model, will have to be held separately from the current transformed model or Color
array used for display.

The resizeWindow() procedure requires two points to define a movement vector.
The first is used to select a window corner. The second is used to move this corner to
a new location. Depending on which corner is moved, the rectangle vertex
coordinates are adjusted accordingly. To apply this approach to a polygon requires
the borders of the min-max box to be displayed in order for the user to identify a
corner to move.

Rectangle Set on Rectangle Set 601

static Picture resizeWindow(Win win,Win wb){
int x1=win.x1;int y1=win.y1;int x2=win.x2;int y2=win.y2;
int xa=wb.x1;int ya=wb.y1;int xb=wb.x2;int yb=wb.y2;
if((x1<xa)||(y1<ya)||(x2>xb)||(y2>yb)){ IO.writeString("cannot resize clipped object \n");
}else{

drawBoundingRectangle(win,wb);
IO.writeString("Please select a corner \n");
Point p1 = dW.getCoord(); int xx= p1.xi(), yy= p1.yi();
int [] x= new int[4]; x[0]=win.x1; x[1]=win.x2; x[2]=win.x2; x[3]=win.x1;
int [] y= new int[4]; y[0]=win.y1; y[1]=win.y1; y[2]=win.y2; y[3]=win.y2;
int j=0;int d=Integer.MAX_VALUE;int dd=0;;
for(int i=0;i<4;i++){

dd = (xx-x[i])*(xx-x[i])+(yy-y[i])*(yy-y[i]);
if(d>dd){ j=i; d=dd;}

}
IO.writeString("Please give its new location \n");
Point p2 = dW.getCoord(); xa=p2.xi(); ya=p2.yi();
int width=10,height=10;
switch(j){
case 0:if(xa>x[2]-10)xa =x[2]-10; if(ya>y[2]-10)ya =y[2]-10;

xx=xa; yy=ya; width = x[2]-xa; height = y[2]-ya; break;
case 1:if(xa<x[3]+10)xa=x[3]+10; if(ya>y[3]-10)ya=y[3]-10;

xx= x[3]; yy= ya; width = xa-x[3]; height = y[3]-ya; break;
case 2:if(xa<x[0]+10)xa=x[0]+10; if(ya<y[0]+10)ya=y[0]+10;

xx=x[0]; yy=y[0]; width = xa-x[0]; height = ya-y[0]; break;
case 3:if(xa>x[1]-10)xa=x[1]-10; if(ya<y[1]+10)ya=y[1]+10;

xx=xa; yy=y[1]; width = x[1]-xa; height = ya-y[1]; break;
}
Picture pict=null;
if(win.pic.name.equals("rectangle")){

Color[][] pic = new Color[width][height]; Color bb = Color.lightGray;
if(win.pic.cc!=null)bb= win.pic.cc;
pict = new Picture(null,bb,"rectangle",null,xx,yy,width,height);

}
else if(win.pic.name.equals("polygon")){

CoordinateFrame fm= win.pic.setScaling(width+1,height+1);
Polygon poly = ((Polygon)win.pic.obj).scalePolygon(fm);
Rectangle r= new Rectangle();
Color c[][] = dW.c.polygonfill(poly,win.pic.cc,Color.gray,r);
pict = new Picture(c,win.pic.cc,"polygon",poly ,xx,yy,c.length,c[0].length);

}
else if(win.pic.name.equals("line")){

LineSeg newLn = ((LineSeg)win.pic.obj).scaleLine(xx,yy,width,height);
pict=new Picture(null,newLn.cc,"line",newLn, xx,yy,width,height);

}return pict;
} return win.pic;

}

602 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Once the new rectangle frame has been defined it can be used to display a new
window rectangle. In the example given above this merely paints a uniform colour
into the new rectangle Picture, however if the rectangle contained an image this
would have to be scaled. In the case of the polygon the Polygon model is scaled to
the new window size and repainted a new colour. A new CoordinateFrame is
generated relating the original polygon size to the new size using the original
rectangle vertex coordinates and the new min-max box, vertex, coordinate-values.
This is then passed to the polgon’s scalePolygon() procedure to generate the new
polygon model, which is then passed to the polgonfill() procedure of the WorkPanel
class to get the new Picture object for the polygon. The resizeWindow() procedure
generates a new Picture object for both polygons and rectangles, which is then
passed back to the calling program to be rendered in a new window once the original
one has been removed. The resize operation is illustrated for both polygons and
rectangles in Figures 15.25 to 15.28.

class Polygon{ ….

public Polygon scalePolygon(CoordinateFrame fm){
Polygon poly = new Polygon(this.length,dW);
for(int k=0;k<this.length;k++){

Point np = fm.scaleWtoS(this.p[k]);
poly.p[k] = np;

}return poly;
}

Figure 15.25 Select the orange polygon for resizing

Rectangle Set on Rectangle Set 603

Figure 15.26 Display the resized polyon

Figure 15.27 Enter a rectangle

604 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Figure 15.28 Resize the rectangle

When moving from simple rectangles to rectangles with transparent entries, it is
useful to collect an ordered sub list of the window rectangles that contain a test point
to reduce the number of pixel level tests on each of the overlaid window layers. This
is done by the windowList() procedure given below. It generates an array of window
references which it passes to the resetRectangle() procedure which searches it from
the top for the visible pixels in the display-grid sub-rectangle containing the point.

static private int windowList(ListElement[] lse, ListElement ref,Point pc){

int k=0;
while(ref!= null){

Win wn=((Win)ref.object);
if((pc.xi()-wn.x2)*(pc.xi()-wn.x1)<=0){

if((pc.yi()-wn.y2)*(pc.yi()-wn.y1)<=0){
lse[k++]=ref;
if(k>= lse.length){

IO.writeString("too many layers for array length "+k+"\n");
return k;

}
int wx= ((Win)ref.object).x1; int wy=((Win)ref.object).y1;

} }
ref=ref.right;

}return k;
}

Rectangle Set on Rectangle Set 605

The resetRectangle() code is given below. Given a list of windows potentially
visible in a sub-rectangle of the screen it processes all the pixel locations within the
rectangle identifying the non-transparent, in other words the first visible pixel
encountered processing the list of windows in order from the top. This is used to
generate a Picture object for the visible pixels within the rectangle, which is then
rendered by the workPanel procedure setPixels().

static boolean resetRectangle(Win bw, ListElement[] lse,
int xl,int yl,int xr,int yr,int kk){

int xleft=xl; int xright=xr; int yleft=yl; int yright=yr;
if(bw!=null){

if(xr<=bw.x1)return false; if(xl>=bw.x2)return false;
if(yr<=bw.y1)return false; if(yl>=bw.y2)return false;
if(xl<bw.x1)xleft= bw.x1; if(xr>bw.x2)xright=bw.x2;
if(yl<bw.y1)yleft= bw.y1; if(yr>bw.y2)yright=bw.y2;

}
Win wn =null; Color cc=null; Color [][] pict = new Color[xright-xleft+1][yright-yleft+1];
for(int i=0;i<xright-xleft;i++){

for(int j=0;j<yright-yleft;j++){
int k=0; boolean transparent = true;
while(transparent && k<kk){

wn = (Win) lse[k].object; int wx= wn.x1; int wy = wn.y1;
int xa = xleft-wx+i; int ya = yleft-wy+j;
cc= wn.pic.getColour(xa,ya);
if(cc!=null){ pict[i][j]= cc; transparent = false;}
k++;

}
}

}
Picture pic = new Picture(pict,null,"rectangle",null,xleft, yleft,xright-xleft ,yright-yleft);
dW.c.setPixels(xleft,yleft,xright-xleft,yright-yleft,pic);
return true;

}

The setColour() procedure converts the name of a colour entered as a String to the

matching Color object from the Java Color class. The drawBoundingRectangle()
procedure draws a line round a window rectangle to support the resize() operation.

static void drawBoundingRectangle(Win ws,Win wb){

int x1=ws.x1;int y1=ws.y1;int x2=ws.x2;int y2=ws.y2;
int xa=wb.x1;int ya=wb.y1;int xb=wb.x2;int yb=wb.y2;
if(x1<xa)x1=xa; if(y1<ya)y1=ya;if(x2>xb)x2=xb;if(y2>yb)y2=yb;
dW.c.line(x1,y1,x1,y2-1,Color.black,null,true);
dW.c.line(x1,y2-1,x2-1,y2-1,Color.black,null,true);
dW.c.line(x2-1,y2-1,x2-1,y1,Color.black,null,true);
dW.c.line(x2-1,y1,x1,y1,Color.black,null,true);

}

606 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Drawing Lines

This system can be extended by a series of further command-line functions. The
obvious next addition is that of drawing lines. It was possible to handle lines using
the same approach used for polygons, however it required a large amount of memory
setting up a min-max box of pixels merely to represent a line segment. Since most of
such a pixel array ends up being empty or null, one possibility to save memory is to
use the edge-line representation used in the polygon fill algorithm: a one-dimensional
array of x values indexed by the lines y values, or an array of y values indexed by the
associated x values, depending on the orientation of the line. The Shadings class is
already able to generate this representation.

if(str.equals("drawline")){
cc = getColour();
pict = getLine(cc);
win = makeWindow(pict,null);

}

The drawline command can be included in the same way that the drawpolygon
command line was added. What this approach achieves is the ability to delete lines
without leaving gaps, which provides the basis for an interactive drawing system.
Previously the only option was to redraw a deleted line in the background colour, but
this clearly generated holes in any other lines or polygons that the line crossed.

static Picture getLine(Color cc){
IO.writeString("Please enter the line's end points\n");
int minx,maxx,miny,maxy,w,h;
Point p1= dW.getCoord();
Point p2= dW.getCoord();
LineSeg ln= new LineSeg(IO,dW,p1,p2,cc);
Picture pict = new Picture(null,cc,"line",ln, ln.xmin, ln.ymin,ln.w ,ln.h);
return pict;

}

There are still a variety of improvements and extensions. The test to remove the
line in Figure 15.31 had to identify a pixel point belonging to the line. In this
example this required two attempts to identify the line. Testing the pixel point
provided by the mouse for its proximity to the line in the way outlined in Chapter 13
makes this interaction easier to execute. The resize procedure had to be extended to
have the ability to redraw a scaled line. The memory space used to hold the min-max
box for each line was reduced to the linear array set up in the Shadings objects, but
this required the tests previously made on the objects Picture Color array to be
changed to a function call: both to locate which objects have visible pixels in a search
rectangle, and to allow a polygon or line object to be selected by the mouse pointer.

if(pict.cc[i][j]!=null){…} changed to if(pict.getColour (i,j)!=null){….}

The LineSeg class like the Polygon class provides line objects of the required type.

607

class LineSeg{

public boolean up = false; public Color cc = null; public int pnts [] = null;
public int length = 0,w=0,h=0; public Point p1=null;Point p2=null;
public int xmin=0,xmax=0,ymin=0,ymax=0;
public TextWindow IO; public DisplayWindow dW;
public LineSeg(TextWindow txt,DisplayWindow dw,Point pa,Point pb,Color col){

this.p1=pa;this.p2=pb;this.cc=col;this.IO=txt;this.dW=dw;
if (p1.xi()<p2.xi()){xmin = p1.xi();xmax= p2.xi();}
else {xmax = p1.xi();xmin= p2.xi();}
if (p1.yi()<p2.yi()){ymin = p1.yi();ymax= p2.yi();}
else {ymax = p1.yi();ymin= p2.yi();}
p1.n[1]= p1.n[1]-xmin; p1.n[2]= p1.n[2]-ymin;
p2.n[1]= p2.n[1]-xmin; p2.n[2]= p2.n[2]-ymin;
w= xmax-xmin+1; h=ymax-ymin+1;
this.up =true;
int len = w;
if(w<h){this.up=false;len= h;}
pnts = new int[len];
Shadings s= new Shadings(IO,len,0,up);
dW.c.line(p1.xi(),p1.yi(),p2.xi(),p2.yi(),cc,s,true);
for(int i=0;i<len;i++) this.pnts[i]= s.leftedge[i];

}
public LineSeg copy(Color col){

Point pa= new Point(2); Point pb= new Point(2);
pa.n[1]= this.p1.n[1]; pa.n[2]= this.p1.n[2];
pb.n[1]= this.p2.n[1];pb.n[2]= this.p2.n[2];
return new LineSeg(IO,dW,pa,pb,col);

}

public void setColour(Color cc){ this.cc = cc; }
public Color getColour(int x,int y){

if((x<0)||(x>=this.w)||(y<0)||(y>=this.h))return null;
if(up){if(y==pnts[x])return cc;else return null;}
else{ if(pnts[y]==x)return cc;else return null;}

}

public LineSeg scaleLine(int x,int y, int ww, int hh){

Point pc=new Point(2);Point pd=new Point(2);
if(this.p1.xi()== this.w-1){pc.n[1]=ww-1;}else{pc.n[1]=0;}
if(this.p1.yi()== this.h-1){pc.n[2]=hh-1;}else{pc.n[2]=0;}
if(this.p2.xi()== this.w-1){pd.n[1]=ww-1;}else{pd.n[1]=0;}
if(this.p2.yi()== this.h-1){pd.n[2]=hh-1;}else{pd.n[2]=0;}
LineSeg lineSg = new LineSeg(IO,dW,pc,pd,this.cc);
return lineSg;

}
}

Drawing Lines

608 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Figure 15.27 Drawing a line on top of a polygon and a rectangle

Figure 15.28 Raising the rectangle

609

Figure 15.29 Delete the rectangle

Figure 15.30 Repaint the polygon

Drawing Lines

610 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

Figure 15.31 Deleting the line at the second attempt

Figure 15.32 Resize the remaining polygon

611

Figure 15.33 The rescaled polygon

The use of the drawing system outlined in this chapter is based on a simple
command line language. This is cumbersome to use but has several merits. Each
command employed in a drawing task identifies a step in producing the current
display. If a mistake is made then if the sequence was a long one it would have to be
repeated. The alternative is to make each command reversible and then keep the
command and the data needed to undo it. This is a very necessary and powerful
facility, for interactive work, that makes it possible to return step by step to an earlier
state in preparing a display. This allows a trial and error approach to be adopted,
which greatly enhances the flexibility of much interactive work.

DisplayWindow

The DisplayWindow class has provided the display facilities used to illustrate the
graphic algorithms, up to this point with the minimum of interaction. The getCoord()
procedure from the DisplayWindow has provided this interaction using the mouse to
get point coordinates to build display objects. In the next chapter ways of improving
interactive working are explored. This starts by extending the interactive operations
that can be set into motion using the mouse. The procedures provided for the current
graphics interface are given in the DisplayWindow class listed below.

class DisplayWindow extends JFrame {

public Graphics g; public int w,h;
public TextWindow tW = null;
protected WorkPanel c;

Display Window

612 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

DisplayWindow(TextWindow tw,int x, int y, int width,int height,Color cc){
w = width; h = height;this.tW = tw;
Container pn= this.getContentPane();
pn.setLayout(new FlowLayout(FlowLayout.LEFT,2,2));
setSize(width,height); Dimension d = this.getSize();
addWindowListener(new WindowAdapter (){

public void windowClosing(WindowEvent e){ System.exit(0); } });
pn.add(c = new WorkPanel(tW,width,height));
setTitle("Animation Window"); setLocation(x,y);
pn.setBackground(Color.white);
show();

}
public void setTextWindow(TextWindow tw){ this.tW = tw; }
public boolean clipBox(Box bx,Point p1,Point p2){

int j=0, i=0; i = classify(p1.xi(),p1.yi(),bx); j = classify(p2.xi(),p2.yi(),bx);
if((i==0)&&(j==0))return true;
if((i&j&15)!=0)return false;
if(edgeClip(p1,p2,bx.minP.xi(), 1,false))return false;
if(edgeClip(p1,p2,bx.maxP.xi(),-1,false))return false;
if(edgeClip(p1,p2,bx.minP.yi(), 1, true))return false;
if(edgeClip(p1,p2,cbx.maxP.yi(),-1, true))return false;
return true;

}
private int classify(int x, int y, Box bx){

int j=0;
if(x < bx.minP.xi())j=j+1; if(x > bx.maxP.xi())j=j+2;
if(y < bx.minP.yi())j=j+4; if(y > bx.maxP.yi())j=j+8;
return j;

}
private boolean edgeClip(Point p1,Point p2,double e,double d,boolean up){

double x1,x2,y1,y2,k1,k2;
if(up){x1= p1.yd();x2=p2.yd();y1=p1.xd();y2=p2.xd();}
else{x1= p1.xd();x2=p2.xd();y1=p1.yd();y2=p2.yd();}
k1= x1-e;k2=x2-e;
if(k1*k2<=0){

if(k1*d<0){ y1=(k2*y1-k1*y2)/(k2-k1);
if(up){p1.y("=",e);p1.x("=",y1);}else {p1.x("=",e);p1.y("=",y1);}

}if(k2*d<0){ y2=(k2*y1-k1*y2)/(k2-k1);
if(up){p2.y("=",e);p2.x("=",y2);}else {p2.x("=",e);p2.y("=",y2);}

}
} else if(k1*d<0)return true;
return false;

}
public void line(int x1,int y1,int x2, int y2,Color color){ c.line(x1, y1, x2, y2, color); }
public void plotPoint(Point p){ c.setPixel(p.xi(),p.yi(),Color.black);}
public void plotPoint(Point p,Color cc){ c.setPixel(p.xi(),p.yi(),cc); }
public void plotPoint(int x, int y,Color cc){ c.setPixel(x,y,cc); }

613

public void plotPoint(Point pp,CoordinateFrame b)
{ Point p = b.scaleWtoS(pp); c.setPixel(p.xi(),p.yi(),Color.black); }

public void plotPoint(Point pp,CoordinateFrame b,Color cc)
{ Point p = b.scaleWtoS(pp); c.setPixel(p.xi(),p.yi(),cc);}

public void plotLine(Point p1,Point p2)
{ c.line(p1.xi(), p1.yi(), p2.xi(), p2.yi(),Color.black);}

public void plotLine(Point p1,Point p2,Shadings s)
{ c.line(p1.xi(), p1.yi(), p2.xi(), p2.yi(),Color.black,s); }

public void plotLine(Point p1,Point p2,Color C)
{ c.line(p1.xi(), p1.yi(), p2.xi(), p2.yi(),C); }

public void plotLine(Point p1,Point p2,Color C,Shadings s)
{ c.line(p1.xi(), p1.yi(), p2.xi(), p2.yi(),C,s); }

public void plotLine(int x1,int y1,int x2,int y2,Color C) { c.line(x1, y1, x2, y2,C);}
public void plotLine(int x1,int y1,int x2,int y2,Color C,Shadings s)

{ c.line(x1, y1, x2, y2,C,s); }
public void polygonFill(Polygon p,Color color){ c.polygonfill(p,color); }
public void polygonFill(Polygon p,Color color,CoordinateFrame b){

Polygon np = new Polygon(p.length);
for(int i =0;i< p.length;i++){ np.p[i] = b.scaleWtoS(p.p[i]); }
c.polygonfill(np,color);

}
public void plotRectangle(int x, int y,int r,Color cc){

Point p1 = new Point(2); Point p2 = new Point(2);
p1.x("=",x-r); p1.y("=",y-r); p2.x("=",x+r+1); p2.y("=",y+r+1);
plotRectangle(p1,p2,cc);

}
public void plotRectangle(Point p1,Point p2,Color cc, CoordinateFrame b){

Point pa = b.scaleWtoS(p1); Point pb = b.scaleWtoS(p1); plotRectangle(pa,pb,cc);
}
public void plotRectangle(Point p,int r,Color cc){

Point p1 = new Point(2); Point p2 = new Point(2);
p1.x("=",p.xi()-r); p1.y("=",p.yi()-r); p2.x("=",p.xi()+r); p2.y("=",p.yi()+r);
plotRectangle(p1,p2,cc);

}
public void plotRectangle(int x,int y,int w,int h,Color cc){
 Color [][] col = new Color[w][h];
 for(int i = 0;i<w;i++){ for(int k = 0; k<h; k++){ col[i][k] = cc;} }
 Picture pic= new Picture(col,null,null,null,x,y,w ,h);
 c.setPixels(0,0,x,y,w,h,pic);this.repaint();
}
public void plotRectangle(Point p1,Point p2,Color cc){

int x1,x2,y1,y2;
if (p1.xd() < p2.xd()) { x1 = p1.xi(); x2 = p2.xi(); } else {x1 = p2.xi(); x2 = p1.xi();}
if (p1.yd() < p2.yd()){ y1 = p1.yi(); y2 = p2.yi(); } else {y1 = p2.yi(); y2 = p1.yi();}
plotRectangle(x1,y1,x2-x1,y2-y1,cc);

}
public void clearDisplay(Color cc){ this.c.clearPanel(cc);}

Display Window

614 15 Spatial Relationships Overlap & Adjacency Rectangle-Rectangle Window on Window

public void plotTriangle(Point p1,Point p2,Point p3,Color color,Color cc){
Polygon p = new Polygon(4); p.p[0]=p1; p.p[1]=p2; p.p[2]=p3; p.p[3]=p1;
this.c.polygonfill(p,color); for(int i=0;i<3;i++) plotLine(p.p[i],p.p[i+1],cc);}

public void plotTriangle(Point p1,Point p2,Point p3,Color cc,Color c,
CoordinateFrame b){

Point pa = b.scaleWtoS(p1); Point pb = b.scaleWtoS(p1);
Point pc = b.scaleWtoS(p1); plotTriangle(pa,pb,pc,cc,c);

}
public Point getCoord(){

this.c.newMouseEvent = false; Point point = new Point(2);
while (!this.c.newMouseEvent)Dummy.dummy();
point.n[1] = this.c.mx; point.n[2] = this.c.my; return point;

}
public Point getCoord(CoordinateFrame b){

this.c.newMouseEvent = false; Point point = new Point(2);
while (!this.c.newMouseEvent)Dummy.dummy();
point.n[1] = this.c.mx; point.n[2] = this.c.my;
return b.scaleStoW(point);

}
public void quit(){System.exit(0);}

}

The overlay operation using matching pixel grids makes spatial operations for
many applications simpler than the approach outlined in chapter 14. Values from
matching grid cells can be combined together using what is in effect a non-spatial
algorithm. This is the same approach employed in early cartography systems that
generated graphic output for lineprinters. This was used in the Laboratory for
Computer Graphics and Spatial Analysis in Harvard University, during the 1960’s for
both the SYMAP system and the Geographic Information System used by planners
called GRID. The subsequent use of vector graphics in GIMMS and OBLIX in order
to use line plotters was motivated by the desire to change scale automatically where
grid based systems were memory intensive and the main computer system only had
32 K words of core memory.

The use of vector graphics in SKETCHPAD by Ivan Sutherland in 1963, had
introduced the fast interactive editing facilities of which rubber banding is a notable
example, to refresh cathode ray tube display systems. The return to raster displays in
the 1970’s in Utah, regained the ability to shade and colour images, but when
transferred to TV display systems lost this new capability until fast block memory
transfers and double-buffered display systems were introduced. This in turn
depended on the development of cheap, mass integrated circuit memory. The two
approaches offer different advantages. The ability to change size for polygons is best
executed using the vector model, while simple movements and overlap operations are
easiest to implement using raster systems. The interactive speed of editing has totally
changed the task of drawing and combined with the way raster systems can also use
camera captured images, provides one of the main advance that computer graphics
provides the artist, designer and animator, over traditional manual techniques.

16
GUI: Graphic User
Interfaces: Control
Design Animation &
Simulation Systems

Introduction

Having explored the initial task defined in chapter one: which was how graphic
products can be generated using a computer language, the next task is to examine the
role of graphics as a modelling medium following the explosive development of
computer based systems. The idea that graphics could provide a view of complex
computer based operations and their outcome, grew up fairly early on, programs were
designed using flow charts, tables of data were turned into graphs and pie charts, and
the desire to automate drawing for aircraft and automobile design work emerged
fairly naturally from the need to be able to understand the results from
mathematically modelling their surface shapes to improve their aerodynamic
properties by exactly defining the surfaces in a repeatable way.

The concept that a graphics display could provide the communication interface
between the different levels of processing information carried out by computer
systems and their users, was the motivation behind developing the specialised
hardware to create displays. Traditionally graphics had three roles: information
storage, information communication and for many applications information analysis.
The ability of the computer system to greatly extend the power and role of
mathematical modelling, and the consequent ability to store these models
numerically or symbolically, has left graphics the remaining role of communication
between people and machines, but this has turned out to be critical to harnessing the
developing potential of computer based systems.

A. Thomas, Integrated Graphic and Computer Modelling,
DOI: 10.1007/978-1-84800-179-4_16, © Springer-Verlag London Limited 2008

616 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Generating Displays

The artist, sculptor, designer and draughtsman, traditionally, have built up their
pictures, models, and drawings, interactively working directly with the display
medium. The main technical problem addressed in this book, so far, has been how to
create traditional graphic forms of output merely using language commands, without
interaction. The exception, perhaps, has been capturing point coordinates using the
mouse, but this is interactive in a limited sense that the position of the mouse pointer
is adjusted on the screen until it gives the required location. The convenience this
provides identifies an important requirement: in most design and construction work it
is difficult to get what is wanted without a feedback and modification cycle. The
keyword command language developed in the last chapter starts to introduce a level
of interaction but still only provides the user with a clumsy alternative to working
directly with a physical system or medium.

Windows, Icons, Mice and Pointers: WIMP Interfaces

This chapter explores some of the simple facilities that allow an interactive graphics
user interface to be built to provide better access to visual feedback. They are
implemented in a basic form to illustrate the way they work, and to examine the extra
capabilities they provide the computer system.

The light pen used in the SKETCHPAD system allowed vector graphics displays
to be interactively modified in a laboratory system in 1963. The digitising tablet
followed a series of devices developed through the 60’s from digitising tables used
for large drawings and cartographic maps, to tracker balls and joysticks. Finally the
mouse evolved as an essential component in the WIMP interfaces, composed of
Windows, Icons, Mice and Pointers, that provide the current common form of the
Graphics User Interface.

Essentially what these systems provide in one form or another is a refresh display
that contains the target image, which can be divided into a series of overlaid virtual
rectangular surfaces -- Windows -- on which text and graphics can be displayed. A
position capturing device that feeds the computer system with coordinates that can be
modified by moving the device: a pen or scribe on a sensitive panel, a tracker ball
that senses the movement of a ball, or the inverted tracker ball that was the early
Mouse, which again captures the movement of the unit from a ball that is rotated
when it moves. The inputs from these devices are transferred to control a Pointer or
cursor shown in the display. A function key either on the keyboard or on the tracking
device can capture the position of the pointer, relative to the display and this can then
be used by the computer system to control subsequent actions either in the display or
on running programs.

It is the use of Icons that gives the extra fluency over the interactive command
language explored in the last chapter and provides a less clumsy system to use. The
icon is a small symbol or image displayed on the screen that, when it is selected by
the pointer, can be used to activate a command. There is a variety of ways in which
basic interactive mechanisms are implemented in current systems using “buttons”
and “menus”, and “sliders”, and even haptic devices that allow three-dimensional
sculpture to be implemented in a hands-on manner.

Windows, Icons, Mice and Pointers: WIMP Interfaces 617

As was outlined in the chapter on hardware systems controlled by “language”
inputs, the display system has its own machine code commands, and this output unit
with input devices such as the mouse, digitising tablets or TV cameras, have to be
controlled by programs in the operating system of the host computer. The programs
managing these devices are generally run as independent processes so they can act
autonomously in their own time frame. This means that providing the feedback loop
between mouse inputs, for example, and the display system has to be provided
through the operating system or indirectly through the language system.

The original basic WIMP structure has been extended and modified in a variety of
ways but in principle remains the same and supports the wide range of applications
that now depend on man–machine communication through a graphic user interface.
The development of computer systems with interactive capabilities has extended in
the many ways summarised by the original diagram in Figure 1 in the preface.

Figure 16.1 Manual control of a machine system

Figure 16.2 Computer control of a machine system

One of the early targets using computer “intelligence” was to automate menial
repetitive tasks. The aim was the totally autonomous system in Figure 16.2. This was

Vision Action

Dials Switches

Controller

Machine

Setting
Levers

and
Switches

System

MeasurementsActions

Sensors
&

Cameras Computer Actuators

Machine

System

System
Performance

618 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

difficult to achieve in many cases. Human intervention was still necessary even
where some tasks could be automated in this way. The result was a mixed system
shown in Figure 16.3

Figure 16.3 Interactive control using a computer system

In order for this kind of system to work it was usually necessary to have a model
of the machine system within the computer system. Which comes first the machine or
its model is becoming a chicken and egg question. The role of system simulation for
estimating potential system behaviour and for design purposes is developing as an
important separate line of development.

Figure 16.4 Interactive control of a computer simulation

Vision Mouse
Action

Computer
Simulated

Setting
Virtual
Levers

and
Switches

Vision Mouse
Action

Graphic
Display ofComputer

Computer
System

Setting
Virtual
Levers

and
Switches

Measurements Actions

Machine Actuators
Sensors

&
Cameras

User Dials and
Switches

System

Graphic
Display of

Dials
Switches

Computer
User

Systems

619

The facilities needed to build the graphic interface for a simulated computer
system have already been developed using the Java libraries. Figure 16.5 shows the
use of various graphic feedback elements. Buttons, display windows for text giving
input and output data flows, switches showing the system configuration to implement
each instruction and a table giving the contents of memory seen through a view-port
that can have its field of view adjusted with a slider.

Figure 16.5 Computer based (computer) machinery simulation

Building Icons, Buttons, Menus and Sliders

Given the ability to obtain mouse inputs using the Java system, the keyword
command language of chapter 15 can be implemented in a way that is intuitively
easier to operate by using buttons, icons and menus.

For many operations, it is possible to extend the existing basic graphic algorithms
to create the icons and buttons to simplify interactive work. The first task is to extend
the polygon shading to include the procedures developed in chapter 11. This will
allow a full range of single boundary polygons to be rendered, as well as giving the
capability to draw areas with curved boundaries. The first will be input extending the
“drawpolygon” command; the second will require a new command “drawshape”.
Once this is done the next step is to implement a drawing grid to make it easier to get
horizontal and vertical lines, in diagrams. Finally a “make-icon” command is needed
to convert a polygon or curved shape into an icon. This command will scale the
polygon or shape to a standard sized rectangle, allow it to be placed in its working
position in the display space and then request an icon identifier for the new icon
object. Once all the icons are in place then a command to activate the icons will make
the act of clicking on the icon execute the command it represents. Before this is done

1
2

3

4

5

6

7

8

9

A
H

J

C

G

F

B D

E

Building Icons, Buttons, Menus and Sliders

620 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

it is necessary to implement a deactivate-icons icon, in order to return control to the
command language if so required. A final system may be set up totally using icons
however, while developing the system it proved very useful to be able to move
backwards and forwards between the two approaches.

Figure 16.6 “Drawpolygon” and “drawshape” objects

Figure 16.7 Overlaying a grid to help drawing

Icons can be set up in the way shown in Figures 16.8 to 16.11. The make-icon
command requests a shape or a polygon and then scales it to a standard size. It then
places it where ever is convenient in the display space.

621

private static Win drawPolygon(){
Color cb=getColour("please enter the boundary colour\n");
Color cc=getColour("please enter the fill colour\n");
IO.writeString("Please enter the number of vertices: ");
int num=IO.readInteger(); IO.readLine();
Point [] poly = new Point[num+1];
IO.writeString("Please enter the vertices with the mouse: \n");
poly[0]=dW.getCoord();
for(int kk=1;kk<num;kk++){

poly[kk]= dW.getCoord(); dW.plotLine(poly[kk-1],poly[kk],Color.blue);
}
poly[num]=new Point("=",poly[0]);
dW.plotLine(poly[num-1],poly[num],Color.blue);
dW.getCoord();
Polygon ppp= new Polygon(num+1); ppp.p=poly;
int nn = ppp.length*2-1;
Rectangle r = new Rectangle();
Color [][]c= dW.c.polygonfill(ppp,cc,cb,r);
Picture pict = new Picture(IO,c,cc,"polygon",ppp,r.x,r.y,r.width,r.height);
pict.cc= cc;
Win win = makeWindow(pict,cc);
win.pic.cb= cb;
return win;

}
private static Win drawshape(){

Color cb=getColour("please enter the boundary colour\n");
Color cc=getColour("please enter the fill colour\n");
IO.writeString("Please enter the number of vertices: ");
int num=IO.readInteger(); IO.readLine();
Point [] poly = new Point[num+1];
IO.writeString("Please enter the vertices with the mouse: \n");
poly[0]=dW.getCoord();
for(int kk=1;kk<num;kk++){

poly[kk]= dW.getCoord(); dW.plotLine(poly[kk-1],poly[kk],Color.blue);
}
poly[num]=new Point("=",poly[0]);
dW.plotLine(poly[num-1],poly[num],Color.blue);
dW.getCoord();
Polygon ppp= new Polygon(num+1); ppp.p=poly;
Rectangle r = new Rectangle();
Color [][]c= dW.c.shapefill(ppp,cc,cb,r);
Picture pict = new Picture(IO,c,cc,"shape",ppp,r.x,r.y,r.width,r.height);
pict.cc= cc;
Win win = makeWindow(pict,cc);
win.pic.cb=cb;
return win;

}

Building Icons, Buttons, Menus and Sliders

622 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

private static void makeicon(){
IO.writeString("is the icon curved y/n \n");
Win w =null;
String str=IO.readString(); IO.readLine();
if(str.equals("n"))w= drawPolygon();
else w= drawshape();
ListElement refwn = LofWs.start;
IO.writeString("please enter location \n");
Point p = dW.getCoord();
int xx= p.xi(); int yy= p.yi();
int width = 25, height = 25;
if((w.pic.name.equals("polygon"))||(w.pic.name.equals("shape"))){

CoordinateFrame fm= w.pic.setScaling(width+1,height+1);
Polygon poly = ((Polygon)w.pic.obj).scalePolygon(fm);
Rectangle r= new Rectangle();Picture pict=null;
if(w.pic.name.equals("polygon")){

Color c[][] = dW.c.polygonfill(poly,w.pic.cc,w.pic.cb,r);
pict = new Picture(IO,c,w.pic.cc,"polygon",poly ,xx,yy,c.length,c[0].length);

}else if(w.pic.name.equals("shape")){
Color c[][] = dW.c.shapefill(poly,w.pic.cc,w.pic.cb,r);
pict = new Picture(IO,c,w.pic.cc,"shape",poly ,xx,yy,c.length,c[0].length);

}Color ccc= w.cc;
removeWindow(refwn);
Win win = makeWindow(pict,ccc);
win.pic.cb=w.pic.cb;

}
}

Figure 16.8 Make-icon command: enter the control polygon for a curved shape

623

Figure 16.9 Make-icon command: infill the curved shape

Figure 16.10 Make-icon command: scale and place the icon

Building Icons, Buttons, Menus and Sliders

624 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Figure 16.11 A test generating icons using a make-icon command

A directly related use for these operations is to generate text characters and fonts.
Once a letter is in the form of an array of pixels it can be copied and placed in lines
as text. Figure16.9 shows that a letter A with serifs is possible to construct with the
drawshape command. Once the letter has been designed it can be converted to any
size using the resize command. The implementation of the repaint command in this
system illustration allows the self-overlaping area boundary shown in Figure 16.9 to
be rendered removing the distinction between the boundary and its fill. The same
result is given by initially making the boundary the same colour as the fill.

Figure 16.12 Generating character fonts

625

Constructing icons in the way illustrated in Figure 16.8 to 16.11 is time
consuming and once a set of commands has been established is better executed
automatically from internally stored data. However, as a developmental or
experimental system this capability to extend an existing set of commands is very
valuable. It allows alternative interface-system variations to be designed and tested.
Figure 16.13 shows a built in set of command icons matching the text commands
developed so far.

Figure 16.13 Initialising icons

private static void setIcons(){
Color[] colours=new Color[] {
Color.red, Color.green, Color.blue, Color.cyan, Color.yellow, Color.magenta,
Color.pink, Color.orange, Color.white,Color.lightGray,Color.gray,Color.black,};
String [] ics = new String[30]; Color [] cc = new Color[30]; Color [] cb = new Color[30];
int [][] xlst = new int [30][]; int [][] ylst = new int [30][];
Point [] plst = null;
Point pa = new Point(1,1,1); Point pb = new Point(1,14,14);
Point p1 = new Point(1,1,1); Point p2 = new Point(1,25,25);
int num=23;
ics[0]= "polygon";cc[0]=Color.cyan;cb[0]=Color.blue; //drawline
xlst[0] = new int[]{10,14,14,12, 6, 6, 2, 2, 4,10,10};
ylst[0] = new int[]{ 2, 2, 6, 6,12,14,14,10,10, 4, 2};
ics[1]= "polygon";cc[1]=Color.pink;cb[1]=Color.blue; //drawlrectangle
xlst[1] = new int[]{2,14,14, 2, 2}; ylst[1] = new int[]{2, 2,14,14, 2};
ics[2]= "polygon";cc[2]=Color.yellow;cb[2]=Color.black; //drawpolygon
xlst[2] = new int[]{ 6,10,14,14,10, 6, 2, 2, 6}; ylst[2] = new int[]{ 2, 2, 6,10,14,14,10, 6, 2};

Building Icons, Buttons, Menus and Sliders

626 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

ics[3]= "polygon";cc[3]=Color.green;cb[3]=Color.black; //raise
xlst[3] = new int[]{ 8,14,10,10, 6, 6, 2, 8}; ylst[3] = new int[]{ 2, 6, 6,14,14, 6, 6, 2};
ics[4]= "polygon";cc[4]=Color.orange;cb[4]=Color.red; //resize
xlst[4] = new int[]{ 8,14,10,10,14, 8, 2, 6, 6, 2, 8};
ylst[4] = new int[]{ 2, 6, 6,10,10,14,10,10, 6, 6, 2};
ics[5]= "shape";cc[5]=Color.pink;cb[5]=Color.blue; //drawshape
xlst[5] = new int[]{ 2, 7, 8, 8, 9,14,14,12,12,14,14, 9, 8, 8, 7, 2, 2, 6, 6, 2, 2};
ylst[5] = new int[]{ 2, 2, 6, 6, 2, 2, 7, 8, 8, 9,14,14,12,12,14,14, 9, 8, 8, 7, 2};
ics[6]= "shape";cc[6]=Color.yellow;cb[6]=Color.black; //copy
xlst[6] = new int[]{ 6, 6,10,10,10,14,14,14,14,10,10, 6, 6, 6, 6,10,10, 6, 6, 6, 2, 2, 2, 2, 6};
ylst[6] = new int[]{ 2, 2, 2, 6, 6, 6,10,10,14,14,14,14,10,10, 6, 6, 6, 6,10,10,10, 6, 6, 2, 2};
ics[7]= "polygon";cc[7]=Color.magenta;cb[7]=Color.black; //repaint
xlst[7] = new int[]{ 4, 7,10,13,14,11,12, 9,10, 7, 8, 5, 2, 5, 2, 4};
ylst[7] = new int[]{ 2, 5, 2, 5, 8, 7,10, 9,12,11,14,13,10, 7, 4, 2};
ics[8]= "polygon";cc[8]=Color.green;cb[8]=Color.black; //move
xlst[8] = new int[]{ 2, 8, 8,14, 8, 8, 2, 2}; ylst[8] = new int[]{ 5, 5, 2, 8,14,11,11, 4};
ics[9]= "polygon";cc[9]=Color.red;cb[9]=Color.red; //remove
xlst[9] = new int[]{ 4, 8,12,14,10,14,12, 8, 4, 2, 6, 2, 4};
ylst[9] = new int[]{ 2, 6, 2, 4, 8,12,14,10,14,12, 8, 4, 2};
ics[10]= "polygon";cc[10]=Color.black;cb[10]=Color.black; //text input
xlst[10] = new int[]{ 2,14,14, 9, 9, 7, 7, 2, 2}; ylst[10] = new int[]{ 2, 2, 4, 4,14,14, 4, 4, 2};
ics[11]= "shape";cc[11]=Color.green;cb[11]=Color.black; //colours
xlst[11] = new int[]{2,14,14, 2, 2}; ylst[11] = new int[]{2, 2,14,14, 2};
int xx= 20; int yy= 8; int width = 25, height = 25;
for(int ii=0;ii<num;ii++){

int i=ii; if(ii>=11){i=11; cc[11]=colours[ii-i]; cb[11]=Color.black;}
plst = new Point[xlst[i].length];
for(int j=0; j<xlst[i].length;j++){

Point pp= new Point(2); pp.n[1]= xlst[i][j]; pp.n[2]= ylst[i][j]; plst[j]=pp;
}
Polygon pol= new Polygon(xlst[i].length); pol.p=plst;
CoordinateFrame fm= new CoordinateFrame(); fm.setScales(p1,p2,pa,pb);
Polygon poly = pol.scalePolygon(fm);
Rectangle r= new Rectangle(); Picture pict=null;
if(ics[i].equals("polygon")){

Color c[][] = dW.c.polygonfill(poly,cc[i],cb[i],r);
pict = new Picture(IO,c,cc[i],"polygon",poly ,xx,yy,c.length,c[0].length);

}else if(ics[i].equals("shape")){
Color c[][] = dW.c.shapefill(poly,cc[i],cb[i],r);
pict = new Picture(IO,c,cc[i],"shape",poly ,xx,yy,c.length,c[0].length);

}
Win win = makeWindow(pict,cc[i],true);
win.pic.cb=cb[i]; win.tag=ii+1;
if(ii>10)yy=yy+30;else yy = yy+33;
if(ii==10){xx=55; yy= 8;}

}
}

627

Once control has been passed to the icons the basic interactive input is through the
mouse. This means if a text input is required either the current command has to
request it or an icon to receive text has to be activated. In the example given this is
done using the T shaped icon. Using text commands, choices such as the colour for a
boundary or a fill were made through the TextWindow. Changing the system to take
advantage of the more direct interaction that the use of icons and the mouse permits,
still appears to require the use of the TextWindow, but converting the function of the
text window to prompting for the next command input. The current exceptions to this
would be the requests for the number of vertices when entering polygons and for the
colour to draw lines and infill areas. To remove these cases the input of polygons and
colours is modified. Clicking colour buttons, coded as icons, is used to make colour
choices, while numbers are entered using a slider.

public static Point[] inputPolygon(int tag){
int num=100; Point [] poly = new Point[num];
if(! iconSet){

IO.writeString("Please enter the number of vertices: ");
num=IO.readInteger(); IO.readLine();
poly = new Point[num+1];

}
IO.writeString("Please enter the vertices with the mouse: \n");
Point p = getCoordinate(tag);
if(p==null) IO.writeString("point is null\n");
poly[0]= p; int kk=1;
while ((kk<num)&&(p!=null)){

p = getCoordinate(tag);
if(p!=null) {

poly[kk]= p;
dW.plotLine(poly[kk-1],poly[kk],Color.blue);
kk++;

}else num= kk;
}
poly[num]=new Point("=",poly[0]);
dW.plotLine(poly[num-1],poly[num],Color.blue);
Point []tp = new Point[num+1];
for(int i=0;i<num+1;i++){tp[i]=poly[i];}
dW.getCoord();
return tp;

}

Using icons, the boundary sequence of vertex coordinates is completed by re-

clicking on the drawpolygon or the drawshape icon to close the loop. This requires a

Building Icons, Buttons, Menus and Sliders

In both the drawpolygon and drawshape procedures given above the polygon
input uses the same code. This was highlighted and this section of the code is
replaced by a procedure inputPolygon (..) that offers two input techniques: the
existing one for the TextWindow and a modified one for icon inputs.

628 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

new version of the get coordinate procedure to check whether a new input point is
free or is on the terminating icon. The tag value is the number given to the icon that
is calling this procedure to allow it to be identified to close the boundary loop.

private static Point getCoordinate(int tag){
if(iconSet){

Win win=null;ListElement refwn=null;
Point p= new Point(2);
win = (Win)(refwn = identifyWindow(p)).object;
if(win.tag==tag)return null; else return p;

}return dW.getCoord();
}

do{ // text input

IO.writeString("Please enter command code: ");
str = IO.readString(); IO.readLine();
…
if(str.equals("activate-icons")){ // transfer to icon input

iconSet=true; icons(); if (gridset) resetgrid();}
}while(!str.equals("end"));

private static void icons(){ // icon input
 Win win=null;
 do{ListElement refwn=null;
 IO.writeString("please enter an icon command\n");
 Point p= new Point(2); win = (Win)(refwn = identifyWindow(p)).object;
 if(win.tag!=0){
 switch(win.tag){
 case 1: drawLine();if (gridset) resetgrid(); break;
 case 2: drawRectangle();if (gridset) resetgrid(); break;
 case 3: drawPolygon();if (gridset) resetgrid(); break;
 case 4: raise();if (gridset) resetgrid(); break;
 case 5: resize();if (gridset) resetgrid(); break;
 case 6: drawshape();if (gridset) resetgrid(); break;
 case 7: copy();if (gridset) resetgrid(); break;
 case 8: repaint();if (gridset) resetgrid(); break;
 case 9: move();if (gridset) resetgrid(); break;
 case 10: remove();if (gridset) resetgrid(); break;
 }
 }
 }while(win.tag!=11);

 iconSet=false; // transfer back to text input
 IO.writeString("returning to text command\n");
}

A similar approach allows colours to be input using the mouse to identify a colour
icon and then using its tag value to select the colour it represents.

629

static Color getColour(String str){
if (str==null)IO.writeString("Please enter colour\n");
else IO.writeString(str);
if(iconSet){ return Colours();}
String colour = IO.readString(); IO.readLine();
Color cc = setColour(colour);
return cc;

}

private static Color Colours(){

Win win=null;ListElement refwn=null;
Point p= new Point(2);
win = (Win)(refwn = identifyWindow(p)).object;
if(win.tag!=0){

switch(win.tag){
case 12: return Color.red;
case 13: return Color.green;
case 14: return Color.blue;
case 15: return Color.cyan;
case 16: return Color.yellow;
case 17: return Color.magenta;
case 18: return Color.pink;
case 19: return Color.orange;
case 20: return Color.white;
case 21: return Color.lightGray;
case 22: return Color.gray;
case 23: return Color.black;
default: return null;

}
}return null;

}

Figure 16.14 Overlaying two filled shapes using icon command-inputs

Building Icons, Buttons, Menus and Sliders

630 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Computer Aided Design

Figure 16.15 Abstract graphic design using icon commands

This scheme can clearly be extended with more detailed commands, however, the

current set of commands allows a picture to be composed using the mouse-pointer
very much in the way a pen, pencil and paintbrush might be used.

Figure 16.16 Simple picture composition using icon commands

631

Figure 16.17 Composing a face from separate shapes

Figure 16.18 Raising the face elements grouped as a single layer

Group, Ungroup and Layers

An important command for composing more complex displays is the group
command, with its inverse ungroup. Figures 16.17 and 18 illustrate the way a face
can be composed from five simple elements. Once these are grouped together into a
single layer then the whole face can be moved around raised and lowered and
changed in size in a single step using a single command. In order to do this, however,
it is necessary to introduce a further object type the layer. The layer object is merely
a list of its component elements. However since this list may itself contain sub layers
it creates a tree structure that has to be processed recursively by the existing
commands. This requires further refactoring to include the necessary extensions.

Group, Ungroup and Layers

632 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

private static void group(){
IO.writeString("please identify first elements in the group\n");
ListElement refwn=null; Point p = new Point(2);
Win win = (Win)(refwn = identifyWindow(p)).object;
while(win!= bw){

win.selected = true;
IO.writeString("please identify next element in the group\n");
win = (Win)(refwn = identifyWindow(p)).object;

} makegroup();
}
private static Win makegroup(){

int nx1= Integer.MAX_VALUE,ny1= Integer.MAX_VALUE;
int nx2= Integer.MIN_VALUE,ny2= Integer.MIN_VALUE;
ListElement ref = LofWs.start; List tmplst = new List();
Win win = (Win)ref.object;
while ((win!=bw)&&(ref != null)){

if(win.selected){
win.selected = false; tmplst.append(win);
if(win.x1<nx1)nx1=win.x1; if(win.y1<ny1)ny1=win.y1;
if(win.x2>nx2)nx2=win.x2; if(win.y2>ny2)ny2=win.y2;
ListElement storeref=ref.right;
lx.destroy(win.rx1);lx.destroy(win.rx2);ly.destroy(win.ry1);ly.destroy(win.ry2);
LofWs.delete(ref);
ref=storeref;

} else ref=ref.right; if(ref!=null)win = (Win)ref.object;
}
Rectangle r = new Rectangle();
r.x=nx1;r.y=ny1;r.width=nx2-nx1;r.height=ny2-ny1;
Color[][] col = new Color[nx2-nx1+1][ny2-ny1+1];
ref= tmplst.finish;
win = (Win)ref.object;
while (ref != null){

if(win!=bw){ //copy each object into the new array
Picture pc= win.pic;
int x=pc.x,y=pc.y,w=pc.w,h=pc.h;
for(int i=0;i<w;i++) for(int j=0;j<h;j++){

Color ct= pc.getColour(i,j); if(ct!=null)col[x-nx1+i][y-ny1+j]= ct;
}

}ref=ref.left;
if(ref!=null)win = (Win)ref.object;

}
Picture pict = new Picture(IO,col,null,"layer",tmplst,r.x,r.y,r.width,r.height);
win = makeWindow(pict,null,true);
win.x1=nx1;win.y1=ny1;win.x2=nx2;win.y2=ny2;
IO.writeString("group complete\n");
return win;

}

633

The simplest change is that required by the move command. All the elements
grouped into a layer have to have their locations updated when the layer is moved in
the way illustrated below.

private static void move(){
ListElement refwn=null; Point p= new Point(2);
IO.writeString("Please identify a window\n");
refwn = identifyWindow(p);
moveWindow(refwn,p);

}
private static void moveWindow(ListElement refwn,Point p1){

Win win = (Win)refwn.object;
if(win!=bw){IO.writeString("Please enter destination\n");
int x1,x2,y1,y2;
Point p2 = dW.getCoord();
int xmove = p2.xi()-p1.xi(); int ymove = p2.yi()-p1.yi();
x1=win.x1; y1=win.y1; x2=win.x2; y2=win.y2;
if(x2+xmove<=bw.x1)xmove=bw.x1-x2+3;
if(x1+xmove>=bw.x2)xmove=bw.x2-x1-3;
if(y2+ymove<=bw.y1)ymove=bw.y1-y2+3;
if(y1+ymove>=bw.y2)ymove=bw.y2-y1-3;
x1=x1+xmove; y1=y1+ymove;
x2=x2+xmove; y2=y2+ymove;
Picture pict = win.pic;
pict.x = x1; pict.y = y1;
if(pict.name.equals("layer"))moveLayer((List)pict.obj,xmove,ymove);
removeWindow(refwn);
win = makeWindow(pict,win.pic.cc,true);
win.x1=x1; win.y1=y1; win.x2=x2; win.y2=y2;
}

}
private static void moveLayer(List ls,int xmove,int ymove){

ListElement ref= ls.start;
while(ref !=null){

Win wn = (Win)ref.object;
wn.pic.x = wn.x1= wn.pic.x+xmove; wn.pic.y = wn.y1 = wn.pic.y+ymove;
wn.x2= wn.x2+xmove; wn.y2=wn.y2+ymove;
if(wn.pic.name.equals("layer"))

moveLayer((List)wn.pic.obj,xmove,ymove); //recursive call
ref=ref.right;

}
}

The same kind of change has to be carried out for the copy and the resize

commands except in their cases the change is more complicated in that duplicate
copies of all the elements need to be generated and kept in the case of copy, but the
original deleted in the case of the resize command.

Group, Ungroup and Layers

634 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

private static void copy(){
ListElement refwn=null; Point p= new Point(2);
IO.writeString("Please identify a window\n");
refwn = identifyWindow(p);
Win wint = copyWindow(refwn,50 ,50);
int xl= wint.x1,yl= wint.y1,xr= wint.x2 ,yr= wint.y2;
ListElement ww= LofWs.push(wint);
wint.rx1= lx.enter(new Integer(xl)); wint.rx2= lx.enter(new Integer(xr));
wint.ry1= ly.enter(new Integer(yl)); wint.ry2= ly.enter(new Integer(yr));
ListElement [] lse = new ListElement[1]; lse[0] = ww;
resetRectangle(bw, lse, xl,yl,xr,yr,1);
dW.c.repaint();

}
static Win copyWindow(ListElement refwn,int incx,int incy){

Point p=new Point(2); Picture pict=null;
Win win = (Win)refwn.object; Win wint=null;
if(win!=bw){

int x= win.x1+incx; int y= win.y1+incy;
if(win.pic.name.equals("line")){

LineSeg newLs= ((LineSeg)win.pic.obj).copy(win.cc);
pict = new Picture(IO,null,win.cc,"line",newLs, x, y,win.w ,win.h);
wint = new Win(IO,x,y, win.pic.w, win.pic.h, win.pic.cc, pict);

}else {
Color[][] col= new Color[win.pic.w][win.pic.h];
pict = new Picture(IO,col,win.cc,win.pic.name,null, x, y, win.pic.w , win.pic.h);
pict.cb=win.pic.cb;
for(int i=0;i<win.pic.w;i++){

for(int j=0;j<win.pic.h;j++)pict.setColour(win.pic.getColour(i,j),i,j);
}
if(win.pic.name.equals("layer")){

List nls= new List();
List ls = (List)win.pic.obj; ListElement ref= ls.start;
while(ref !=null){

wint = copyWindow(ref,incx,incy); //recursive call
nls.append(wint);
ref=ref.right;

}pict.obj = nls;
}
if(win.pic.name.equals("polygon"))

{pict.obj = ((Polygon)win.pic.obj).copyPolygon(dW,IO);}
if(win.pic.name.equals("shape"))

{pict.obj = ((Polygon)win.pic.obj).copyPolygon(dW,IO);}
wint = new Win(IO,x,y, win.pic.w, win.pic.h, win.pic.cc, pict);
wint.pic.cb=win.pic.cb;

}
}return wint;

}

635

private static void resize(){
ListElement refwn=null; Point p=new Point(2);
IO.writeString("Please identify the window \n");
Win win = (Win)(refwn = identifyWindow(p)).object;
Picture pict= win.pic;
if(win!=bw){

int x1=win.x1;int y1=win.y1;int x2=win.x2;int y2=win.y2;
int xa=bw.x1;int ya=bw.y1;int xb=bw.x2;int yb=bw.y2;
if((x1<xa)||(y1<ya)||(x2>xb)||(y2>yb)){

IO.writeString("cannot resize clipped object \n");
}else{

drawBoundingRectangle(win,bw);
IO.writeString("Please select a corner \n");
Point p1 = dW.getCoord(); int xx= p1.xi(), yy= p1.yi();
int [] x= new int[4]; // identify the corner to be moved
x[0]=win.x1;x[1]=win.x2;x[2]=win.x2;x[3]=win.x1;
int [] y= new int[4];
y[0]=win.y1;y[1]=win.y1;y[2]=win.y2;y[3]=win.y2;
int j=0;int d=Integer.MAX_VALUE;int dd=0;;
for(int i=0;i<4;i++){

dd = (xx-x[i])*(xx-x[i])+(yy-y[i])*(yy-y[i]);
if(d>dd){j=i;d=dd;}

}
IO.writeString("Please give its new location \n");
Point p2 = dW.getCoord(); xa=p2.xi(); ya=p2.yi();
int width=10, height=10;
switch(j){ // define the new rectangle

case 0:if(xa>x[2]-10)xa =x[2]-10; if(ya>y[2]-10)ya =y[2]-10;
xx=xa; yy=ya; width = x[2]-xa; height = y[2]-ya; break;

case 1:if(xa<x[3]+10)xa=x[3]+10; if(ya>y[3]-10)ya=y[3]-10;
xx= x[3]; yy= ya; width = xa-x[3]; height = y[3]-ya; break;

case 2:if(xa<x[0]+10)xa=x[0]+10; if(ya<y[0]+10)ya=y[0]+10;
xx=x[0]; yy=y[0]; width = xa-x[0]; height = ya-y[0]; break;

case 3:if(xa>x[1]-10)xa=x[1]-10; if(ya<y[1]+10)ya=y[1]+10;
xx=xa; yy=y[1]; width = x[1]-xa; height = ya-y[1]; break;

}
CoordinateFrame fm= win.pic.setScaling(width+1,height+1);
win= scaling(win,xx,yy,win.x1,win.y1,fm);
Color ccc= win.cc;
removeWindow(refwn);
win = makeWindow(win.pic,ccc,true);

}
}

}

It is convenient to divide the resize procedure into two the first identifying the
change in size the second executing the change, in order to allow the recursive calls
to work.

Group, Ungroup and Layers

636 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

private static Win scaling(Win win,int x, int y,int bx, int by,CoordinateFrame fm){
Picture pict=null;
int xx= fm.scaleX_WtoS(win.x1-bx), yy= fm.scaleY_WtoS(win.y1-by);
int x2= fm.scaleX_WtoS(win.x2-bx), y2= fm.scaleY_WtoS(win.y2-by);
int width=x2-xx, height= y2-yy;
if(win.pic.name.equals("rectangle")){

Color[][] pic = new Color[width][height];
Color cb = win.pic.cb; Color bb = Color.lightGray;
if(win.pic.cc!=null)bb= win.pic.cc;
pict = new Picture(IO,null,bb,"rectangle",null,xx+x,yy+y,width,height); pict.cb=cb;

}else if(win.pic.name.equals("polygon")){
Polygon poly = ((Polygon)win.pic.obj).scalePolygon(fm);
Rectangle r= new Rectangle();
Color c[][] = dW.c.polygonfill(poly,win.pic.cc, win.pic.cb,r);
Color cb= win.pic.cb;
pict = new Picture(IO,c,win.pic.cc,"polygon",poly ,xx+x,yy+y,c.length,c[0].length);
pict.cb=cb;

}else if(win.pic.name.equals("shape")){
Polygon poly = ((Polygon)win.pic.obj).scalePolygon(fm);
Rectangle r= new Rectangle();
Color c[][] = dW.c.shapefill(poly,win.pic.cc,win.pic.cb,r);
Color cb= win.pic.cb;
pict = new Picture(IO,c,win.pic.cc,"shape",poly ,xx+x,yy+y,c.length,c[0].length);
pict.cb=cb;

}else if(win.pic.name.equals("line")){
LineSeg newLn = ((LineSeg)win.pic.obj).scaleLine(xx,yy,width,height);
pict=new Picture(IO,null,newLn.cc,"line",newLn, xx+x,yy+y,width,height);

}else if(win.pic.name.equals("layer")){
List nls= new List();
List ls = (List)win.pic.obj; ListElement ref= ls.finish;
Color col[][] = new Color[width][height];
while(ref !=null){

Win wn= (Win)ref.object;
Win wint =scaling(wn,x,y,bx,by,fm); //recursive call
Picture pc= wint.pic;
int ax=pc.x,ay=pc.y,aw=pc.w,ah=pc.h;
for(int i=0;i<aw; i++) for(int j=0;j<ah;j++){

Color ct= pc.getColour(i,j);
if(ct!=null)col[ax-x+i][ay-y+j]= ct;

} nls.push(wint); if(ref!=null)ref=ref.left;
} pict = new Picture(IO,col,win.cc,win.pic.name,nls, x+xx, y+yy,width ,height);
pict.obj = nls;

}
Win wint = new Win(IO,xx+x,yy+y,width,height, win.pic.cc, pict);
wint.pic.cb=win.pic.cb;
return wint;

}

637

Figure 16.19 Duplicating elements

A powerful application of the group

and copy commands is the ability to
create a large number of duplicate
objects. The first copy creates two.
When these are grouped together and
copied the number is four. This can
then be increased to eight, sixteen and
so on, in the way illustrated for 64
objects in Figure 16.19, executed by six
group commands

Figure 16.20 Grouping, copying, resizing and then copying an object layer

Group, Ungroup and Layers

638 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Active and Passive Graphic Elements

The ability to compose a drawing in a traditional way and output it as hardcopy
merely creates a passive entity that still needs human interpretation. What is powerful
about a computer graphics system is that the elements in a display are actively
coupled to computer models representing their presence in the display. Not only this
but they can also be coupled to a model that simulates the behaviour of the system
they represent, in time.

Initially computer aided design systems were developed to generate the drawings
needed to pass to manufacturers or builders to get a new product constructed.
Carefully cross- referenced drawings ensured that the spatial relationships needed to
construct the product were correct. However, the possibility for two extensions
quickly became apparent: firstly the behaviour of the new product could be modelled
and many further aspects of its structure and performance tested before committing to
building a real system. Secondly once a design was checked out its computer model
could be used to control the manufacturing process initially through the use of
numerically controlled (NC) tools, and then more recently through more and more
sophisticated robotic systems.

The use of icons for commands is the first example of this step to create active
graphic elements. Other elements in a display can also be made active. Where a
window is completely covered or is made too small to be practical, an icon can
replace it. Clicking on this icon can recover the window to the top of the stack of
windows when it is needed.

Figure 16.21 Active graphic elements: sliders to enter numerical values

Sliders can be constructed to allow numerical values to be entered into a program.
In this case a group of elements need to be combined in a layer. Clicking on the
various elements in the layer can then be used to input differing values. In the
example shown in Figure 16.21 a simplified version of a slider is shown. When a
numerical input value is required, clicking on the arrows moves the vertical marker
along the scale and the current value it represents can be shown in the TextWindow.
Once the required value has been set, it can be returned to the calling program by
clicking on the red button. In order to implement this scheme it is necessary to have a
makeslider command.

639

private static Win makeslider(int n,int nx1,int ny1){
int nx2= nx1+n; int ny2= ny1+52; int num=6;
String [] ics = new String[num];
Color [] cc = new Color[num];
Color [] cb = new Color[num];
int [][] xlst = new int [num][];
int [][] ylst = new int [num][];
int [] x= new int[num]; int [] y= new int[num];
Picture pict =null; Point [] plst = null;
ics[0]= "polygon";cc[0]=Color.lightGray; cb[0]=Color.black; x[0]=0; y[0]=0;
xlst[0] = new int[]{1, n, n, 1, 1}; ylst[0] = new int[]{1, 1, 52, 52, 1};
ics[1]= "polygon";cc[1]=Color.white;cb[1]=Color.black; x[1]= 42; y[1]=24;
xlst[1] = new int[]{1, n-120, n-120, 1, 1}; ylst[1] = new int[]{1, 1, 4, 4, 1};
ics[2]= "polygon";cc[2]=Color.green;cb[2]=Color.black; x[2]= 8; y[2]=8;
xlst[2] = new int[]{0,32,32, 0}; ylst[2] = new int[]{16,0,32, 16};
ics[3]= "polygon";cc[3]=Color.blue;cb[3]=Color.black; x[3]= n-76; y[3]= 8;
xlst[3] = new int[]{0, 32, 0, 0 }; ylst[3] = new int[]{0, 16, 32,0 };
ics[4]= "shape";cc[4]=Color.red;cb[4]=Color.black; x[4]= n-42; y[4]= 8;
xlst[4] = new int[]{16,32,16,0,16 }; ylst[4] = new int[]{ 0,16,32,16,0};
ics[5]= "polygon";cc[5]=Color.black;cb[5]=Color.black; x[5]= 42; y[5]=8;
xlst[5] = new int[]{0,2, 2, 0,0}; ylst[5] = new int[]{0,0,32,32,0};
int xx= nx1; int yy= ny1; int width = n, height = 52;
for(int ii=0;ii<num;ii++){

xx=x[ii]+nx1;yy=y[ii]+ny1;
int i=ii;
plst = new Point[xlst[i].length];
for(int j=0; j<xlst[i].length;j++){

Point pp= new Point(2); pp.n[1]= xlst[i][j]; pp.n[2]= ylst[i][j];
plst[j]=pp;

}
Polygon poly= new Polygon(xlst[i].length);
poly.p=plst;
Rectangle r= new Rectangle();
if(ics[i].equals("polygon")){

Color c[][] = dW.c.polygonfill(poly,cc[i],cb[i],r);
pict = new Picture(IO,c,cc[i],"polygon",poly ,xx,yy,c.length,c[0].length);

}else if(ics[i].equals("shape")){
Color c[][] = dW.c.shapefill(poly,cc[i],cb[i],r);
pict = new Picture(IO,c,cc[i],"shape",poly ,xx,yy,c.length,c[0].length);

}
Win win = makeWindow(pict,cc[i],true);
winb.selected=true;
win.pic.cb=cb[i];
win.tag=ii+1;

}Win wint= makegroup(lst,nx1,ny1,nx2,ny2);
return wint;

}

Active and Passive Graphic Elements

640 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

public static int readslider(){
Win win = makeslider(500,50,50);
Point p1 = new Point(2);
IO.writeString("please set the slider\n");
ListElement refwn= identifyWindow(p1);
if(LofWs.start==refwn){

List ls= (List)win.pic.obj;
ListElement ref = ls.start;
int count = 0;
Win components[] = new Win[6];
ListElement elements[] = new ListElement[6];
while(ref!=null){

Win wn = (Win)ref.object;
LofWs.insertBefore(refwn,wn);
components[count]= wn;elements[count++]= refwn.left;
wn.rx1= lx.enter(new Integer(wn.x1));
wn.rx2= lx.enter(new Integer(wn.x2));
wn.ry1= ly.enter(new Integer(wn.y1));
wn.ry2= ly.enter(new Integer(wn.y2));
ref=ref.right;

}
lx.destroy(win.rx1);lx.destroy(win.rx2);
ly.destroy(win.ry1);ly.destroy(win.ry2);
LofWs.delete(refwn);
int value= 0;
while(true){

ref= locateWindow(LofWs.start,p1);
if(ref==elements[0]){

Point p2 = dW.getCoord(); int xmove = p2.xi()-p1.xi(); int ymove = 0;
value = movePointer(components,elements,xmove,ymove);
IO.writeString("value = "+value+"\n");

}else if(ref==elements[1]){
for(int i=0;i<6;i++){ ref=elements[i]; removeWindow(ref);}
return value;

}else if(ref==elements[2]){
int xmove = 1; int ymove = 0;
value = movePointer(components,elements,xmove,ymove);
IO.writeString("value = "+value+"\n");

}else if(ref==elements[3]){
int xmove = -1; int ymove = 0;
value = movePointer(components,elements,xmove,ymove);
IO.writeString("value = "+value+"\n");

}
p1= dW.getCoord();

}
}else return -1;

}

641

private static int movePointer(Win[] c,ListElement[] refs, int xmove,int ymove){
Win sc= c[4]; Win win= c[0];
ListElement ref= refs[0];
int x1,x2,y1,y2; x1=win.x1; y1=win.y1; x2=win.x2; y2=win.y2;
if(x1+xmove<=sc.x1)xmove=sc.x1-x1; if(x2+xmove>=sc.x2)xmove=sc.x2-x2;
x1=x1+xmove; x2=x2+xmove;
Picture pict = win.pic; pict.x = x1; pict.y = y1;
removeWindow(ref);
win = makeWindow(pict,win.pic.cc,true);
win.x1=x1; win.y1=y1; win.x2=x2; win.y2=y2;
c[0]=win; refs[0]=LofWs.start;
return win.pic.x-sc.pic.x;

}
private static void slider(){

IO.writeString("please enter a points to locate the slider\n");
Point p = dW.getCoord();
IO.writeString("please enter a points to give the slider width\n");
Point q = dW.getCoord();
int nx1 = p.xi(),ny1= p.yi() ,nx2= q.xi(),ny2= q.yi();
if(p.xi()>q.yi()){nx1=q.xi();nx2=p.xi();} if(p.yi()>q.yi()){ny1=q.yi();ny2=p.yi();}
int n = q.xi()-p.xi();
if(n<126)n=126;
makeslider(n,nx1,ny1);

}

int value = readslider();
IO.writeString(" value returned from the slider is "+value+"\n");

Figure 16.22 Reading values from a

slider

Clicking the mouse on the
green arrow reduces the value by
one. Clicking the mouse on the
blue arrow increases the value by
one. Selecting the vertical marker
with the mouse and relocating it
with a second mouse click gives
a new value, which can then be
fine-tuned with the coloured
arrows. Once the value is
selected it can be returned by
clicking on the red button

Active and Passive Graphic Elements

.

642 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

private static void ungroup(){
IO.writeString("please identify the group\n");
ListElement refwn=null; Point p = new Point(2);
Win win = (Win)(refwn = identifyWindow(p)).object;
if(win.pic.name.equals("layer")){
List ls = (List)win.pic.obj; ListElement ref = ls.start;
while(ref!=null){

Win wn = (Win)ref.object;
LofWs.insertBefore(refwn,wn);
wn.rx1= lx.enter(new Integer(wn.x1)); wn.rx2= lx.enter(new Integer(wn.x2));
wn.ry1= ly.enter(new Integer(wn.y1)); wn.ry2= ly.enter(new Integer(wn.y2));
ref=ref.right;

}
lx.destroy(win.rx1);lx.destroy(win.rx2);ly.destroy(win.ry1);ly.destroy(win.ry2);
LofWs.delete(refwn);
}

}

The ungroup command separates out the components in a layer and, in the same
order, places them back in the window stack in the position previously occupied by
the layer.

Computer Aided Electronic Logic Circuit Design System ECAD

Graphic user interfaces allows graphic displays to be constructed interactively. They
can also create a model of a system that is being designed to show how it will work
as an active system once it is built. An example of a computer aided design system
that depends on a graphics user interface to design electronic logic circuits, which
illustrates the main point being made here, is presented in outline below.

Logic circuits can be designed using simple two-dimensional diagrams. So they
can be constructed using the relatively simple facilities developed so far in this and
earlier chapters. Linking together graphic components representing function blocks in
a diagram to represent a circuit, can in parallel, link together the elements of the
model needed to simulate the behaviour of the circuit. Icons can be set up to
represent and-gates, or-gates, not gates and latches or memory register cells. They
can also generate free input and output elements that can be used to feed the circuit
new values, and present the results when the circuit is run. Circuits can be designed
and then encapsulated as a new function icon in the display, which allows multiple
copies of a sub-circuit to be used in a hierarchical system layout. An icon to generate
wires between these components to link out ports to in-ports, and a similar icon to
provide clock signals to latches completes a basic circuit design system. .

The icons for this system are set up by the command line makecircuit. This
command also initialises the model of the circuit that will be used to simulate its
behaviour. Each construction command using the icons to place components in a new
circuit will add to this model. A wire must link each output from a function block,
either to an input port for another function block or a free output port. Each input to a

643

function block must be linked to an output from another block or to a free input port.
When the free input units are clicked with the mouse they toggle the input values
from true to false and back again, allowing different input configurations to be
interactively entered into the circuit.

List wires = null;
List functions = null;
List latches = null;
List inports = null;
List outports = null;
List clocks = null;
List clockwires = null;
private static void circuit(){

andgate(40,40,2);
orgate(40,100,2);
notgate(40,160,2);
latch(40,220,2);
inport(40,280,2);
outport(40,340,2);
clock(40, 400,2);
wire(40,460,2);
clockwire(40,520,2);
circuiticon(40,580,2);
runcircuit(40,640,2);
moveicon(160,40,2);
removeicon(220,40,2);
exiticons(280,40,2);
dW.c.repaint();
if (gridset) resetgrid();
iconSet = true;
ecadicons();

}

Figure 16.23 Setting up the circuit design icons

if(str.equals("makecircuit")){circuit();if (gridset) resetgrid();}

Figure 16.23 illustrates the first step: which is to set up the command icons needed

to construct and run the circuit. The icons representing components will create a copy
of themselves in the display space when clicked with a mouse. In effect they are an
extension of the copy command with the extra code needed to create the function
block that is associated with its graphic representation. The code to create the icons is
fairly repetitive and is given below. When a component is copied and placed in the
display workspace, it is given a different tag value so that when the mouse clicks on
it a different action is carried out.

Computer Aided Electronic Logic Circuit Design System ECAD

644 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

static int [] xx=new int[]{0, 12, 12, 0, 0};
static int [] yy=new int[]{0, 0, 4, 4, 0};

private static void andgate(int x1,int y1, int scale){

IconImage a = new IconImage(4); a.ics[0]= "shape";
a.cc[0]=Color.red; a.cb[0]=Color.black; a.x[0]=8; a.y[0]=0;
a.xlst[0] = new int[]{0, 0, 16, 24, 24, 16, 0, 0, 0};
a.ylst[0] = new int[]{0, 0, 0, 8, 16, 24, 24, 24, 0};
a.ics[1]= "polygon";a.cc[1]=Color.blue;a.cb[1]=Color.black;
a.x[1]= 0; a.y[1]=4; a.xlst[1] = xx; a.ylst[1] = yy;
a.ics[2]= "polygon";a.cc[2]=Color.blue;a.cb[2]=Color.black;
a.x[2]= 0; a.y[2]=16; a.xlst[2] = xx; a.ylst[2] = yy;
a.ics[3]= "polygon";a.cc[3]=Color.black;a.cb[3]=Color.black;
a.x[3]= 28; a.y[3]= 10; a.xlst[3] = xx; a.ylst[3] = yy;
a.nam[0] = "body"; a.nam[1] = "inport"; a.d[0]=0; a.d[1]=0; a.d[2]=0;a.d[3]=0;
a.nam[2] = "inport";a.nam[3] = "outport";
Win wint = makeobject(4,a,x1,y1,scale); wint.name="andgate"; wint.tag=20;

}
private static void orgate(int x1,int y1, int scale){

IconImage a = new IconImage(4); a.ics[0]= "shape";
a.cc[0]=Color.green; a.cb[0]=Color.black;a.x[0]=8; a.y[0]=0;
a.xlst[0] = new int[]{0, 0, 16, 26, 26, 16, 0, 0, 4, 0};
a.ylst[0] = new int[]{0, 0, 0, 12, 12, 24, 24, 24, 12, 0};
a.ics[1]= "polygon";a.cc[1]=Color.blue;a.cb[1]=Color.black;
a.x[1]= 0; a.y[1]=4; a.xlst[1] = xx; a.ylst[1] = yy;
a.ics[2]= "polygon";a.cc[2]=Color.blue;a.cb[2]=Color.black;
a.x[2]= 0; a.y[2]=16; a.xlst[2] = xx; a.ylst[2] = yy;
a.ics[3]= "polygon";a.cc[3]=Color.black;a.cb[3]=Color.black;
a.x[3]= 28; a.y[3]= 10; a.xlst[3] = xx; a.ylst[3] = yy;
a.nam[0] = "body"; a.nam[1] = "inport";a.d[0]=0;a.d[1]=0;a.d[2]=0;a.d[3]=0;
a.nam[2] = "inport";a.nam[3] = "outport";
Win wint = makeobject(4,a,x1,y1,scale); wint.name="orgate"; wint.tag=21;

}
private static void latch(int x1,int y1, int scale){

IconImage a = new IconImage(4); a.ics[0]= "polygon";
a.cc[0]=Color.orange; a.cb[0]=Color.black; a.x[0]=8; a.y[0]=0;
a.xlst[0] = new int[]{0, 24, 24, 0, 0}; a.ylst[0] = new int[]{0, 0, 24, 24, 0};
a.ics[1]= "polygon";a.cc[1]=Color.blue;a.cb[1]=Color.black;
a.x[1]= 0; a.y[1]=4; a.xlst[1] = xx; a.ylst[1] = yy;
a.ics[2]= "polygon";a.cc[2]=Color.magenta;a.cb[2]=Color.black;
a.x[2]= 0; a.y[2]=16; a.xlst[2] = xx; a.ylst[2] = yy;
a.ics[3]= "polygon";a.cc[3]=Color.black;a.cb[3]=Color.black;
a.x[3]= 28; a.y[3]= 10; a.xlst[3] = xx; a.ylst[3] = yy;
a.nam[0] = "body"; a.nam[1] = "inport";a.d[0]=0;a.d[1]=0;a.d[2]=0;a.d[3]=0;
a.nam[2] = "clock";a.nam[3] = "outport";
Win wint = makeobject(4,a,x1,y1,scale);wint.name="latch"; wint.tag=23;

}

645

private static void circuiticon(int x1,int y1, int scale){
IconImage a = new IconImage(3);
a.ics[0]= "polygon";a.cc[0]=Color.white; a.cb[0]=Color.black;
a.x[0]=8; a.y[0]=0; a.x[1]= 8; a.y[1]=0; a.x[2]= 22; a.y[2]=0;
a.xlst[0] = new int[]{0, 24, 24, 0, 0}; a.ylst[0] = new int[]{0, 0, 24, 24, 0};
a.ics[1]= "polygon";a.cc[1]=Color.black;a.cb[1]=Color.black;
a.xlst[1] = new int[]{0, 10, 10, 4, 4, 10, 10, 0, 0};
a.ylst[1] = new int[]{0, 0, 4, 4, 20, 20, 24, 24, 0};
a.ics[2]= "polygon";a.cc[2]=Color.black;a.cb[2]=Color.black;
a.xlst[2] = new int[]{0, 10, 10, 0, 0, 6, 6, 0, 0};
a.ylst[2] = new int[]{0, 0, 24, 24, 20, 20, 4, 4, 0};
a.nam[0] ="body"; a.nam[1] ="body"; a.nam[2] = "body";a.d[0]=0;a.d[1]=0;a.d[2]=0;
Win wint = makeobject(3,a,x1,y1,scale); wint.name="circuit"; wint.tag=29;

}
private static void notgate(int x1,int y1, int scale){

IconImage a = new IconImage(3);a.ics[0]= "polygon";
a.cc[0]=Color.magenta; a.cb[0]=Color.black;
a.x[0]=8; a.y[0]=0; a.x[1]= 0; a.y[1]=10; a.x[2]= 28; a.y[2]=10;
a.xlst[0] = new int[]{0, 24, 0, 0}; a.ylst[0] = new int[]{0, 12, 24, 0};
a.ics[1]= "polygon";a.cc[1]=Color.blue;a.cb[1]=Color.black;
a.xlst[1] = xx; a.ylst[1] = yy; a.xlst[2] = xx; a.ylst[2] = yy;
a.ics[2]= "polygon";a.cc[2]=Color.black;a.cb[2]=Color.black;
a.nam[0] = "body"; a.nam[1] = "inport"; a.nam[2] = "outport";a.d[0]=0;a.d[1]=0;a.d[2]=0;
Win wint = makeobject(3,a,x1,y1,scale); wint.name="notgate"; wint.tag=22;

}
private static void inport(int x1,int y1, int scale){

IconImage a = new IconImage(3); a.ics[0]= "shape";
a.cc[0]=Color.magenta; a.cb[0]=Color.black; a.x[0]=8; a.y[0]=0; a.x[1]= 28; a.y[1]=10;
a.xlst[0] = new int[]{0, 24, 24, 0, 0}; a.ylst[0] = new int[]{0, 0, 24, 24, 0};
a.ics[1]= "polygon";a.cc[1]=Color.blue;a.cb[1]=Color.black; a.xlst[1] = xx; a.ylst[1] = yy;
a.nam[0] = "body"; a.nam[1] = "outport";a.nam[2] = "button";
a.ics[2]= "shape";a.d[0]=0;a.d[1]=0;a.d[2]=0;
a.cc[2]=Color.red; a.cb[2]=Color.black; a.x[2]=12; a.y[2]=4;
a.xlst[2] = new int[]{4, 20, 20, 4, 4}; a.ylst[2] = new int[]{4, 4, 20, 20, 4};
Win wint = makeobject(3,a,x1,y1,scale); wint.name="inport"; wint.tag=25;

}
private static void outport(int x1,int y1, int scale){

IconImage a = new IconImage(3); a.ics[0]= "shape";
a.cc[0]=Color.pink; a.cb[0]=Color.black; a.x[0]=8; a.y[0]=0; a.x[1]= 0; a.y[1]=10;
a.xlst[0] = new int[]{0, 24, 24, 0, 0}; a.ylst[0] = new int[]{0, 0, 24, 24, 0};
a.ics[1]= "polygon";a.cc[1]=Color.blue;a.cb[1]=Color.black; a.xlst[1] = xx; a.ylst[1] = yy;
a.nam[0] = "body"; a.nam[1] = "inport";a.nam[2] = "led";
a.ics[2]= "shape";a.d[0]=0;a.d[1]=0;a.d[2]=0;
a.cc[2]=Color.white; a.cb[2]=Color.black; a.x[2]=12; a.y[2]=4;
a.xlst[2] = new int[]{4, 20, 20, 4, 4}; a.ylst[2] = new int[]{4, 4, 20, 20, 4};
Win wint = makeobject(3,a,x1,y1,scale); wint.name="outport"; wint.tag=26;

}

Computer Aided Electronic Logic Circuit Design System ECAD

646 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

private static void runcircuit(int x1,int y1, int scale){
IconImage a = new IconImage(3);
a.ics[0]= "polygon";a.cc[0]=Color.cyan; a.cb[0]=Color.black;
a.x[0]=8; a.y[0]=0; a.x[1]= 10; a.y[1]=2; a.x[2]= 14; a.y[2]=6;
a.xlst[0] = new int[]{0, 24, 24, 0, 0}; a.ylst[0] = new int[]{0, 0, 24, 24, 0};
a.ics[1]= "shape";a.cc[1]=Color.red;a.cb[1]=Color.black;
a.xlst[1] = new int[]{0, 20, 20, 0, 0}; a.ylst[1] = new int[]{0, 0, 20, 20, 0};
a.ics[2]= "polygon";a.cc[2]=Color.white;a.cb[2]=Color.black;
a.xlst[2] = new int[]{4, 12, 4, 4, 0, 0, 4, 4}; a.ylst[2] = new int[]{0, 6, 12, 8, 8, 4, 4, 0};
a.nam[0] = "body"; a.nam[1] = "body"; a.nam[2] = "body";a.d[0]=0;a.d[1]=0;a.d[2]=0;
Win wint = makeobject(3,a,x1,y1,scale); wint.tag=30;

}
private static void clock(int x1,int y1, int scale){

IconImage a = new IconImage(3);
a.ics[0]= "polygon";a.cc[0]=Color.gray; a.cb[0]=Color.black;
a.x[0]=8; a.y[0]=0; a.x[1]= 8; a.y[1]=0; a.x[2]= 28; a.y[2]=10;
a.xlst[0] = new int[]{0, 24, 24, 0, 0}; a.ylst[0] = new int[]{0, 0, 24, 24, 0};
a.ics[1]= "polygon";a.cc[1]=Color.yellow;a.cb[1]=Color.black;
a.xlst[1] = new int[]{6, 18, 18, 24, 24, 14, 14, 10, 10, 0, 0, 6, 6};
a.ylst[1] = new int[]{0, 0, 20, 20, 24, 24, 8, 8, 24, 24, 20, 20, 0 };
a.ics[2]= "polygon";a.cc[2]=Color.magenta;a.cb[2]=Color.black;
a.xlst[2] = xx; a.ylst[2] = yy; a.nam[0] ="body"; a.nam[1] ="body";
a.nam[2] = "clockoutport";a.d[0]=0;a.d[1]=0;a.d[2]=0;
Win wint = makeobject(3,a,x1,y1,scale); wint.name="clock"; wint.tag=27;

}
private static void wire(int x1,int y1, int scale){

IconImage a = new IconImage(2);
a.ics[0]= "polygon";a.cc[0]=Color.lightGray; a.cb[0]=Color.black;
a.x[0]=8; a.y[0]=0; a.x[1]= 8; a.y[1]=0;
a.xlst[0] = new int[]{0, 24, 24, 0, 0}; a.ylst[0] = new int[]{0, 0, 24, 24, 0};
a.ics[1]= "polygon";a.cc[1]=Color.blue;a.cb[1]=Color.black;
a.xlst[1] = new int[]{10, 24, 24, 14, 14, 0, 0, 10, 10};
a.ylst[1] = new int[]{ 0, 0, 4, 4, 24, 24, 20, 20, 0};
a.nam[0] ="body"; a.nam[1] ="body";a.d[0]=0;a.d[1]=0;
Win wint = makeobject(2,a,x1,y1,scale); wint.name="wire"; wint.tag=24;

}
private static void clockwire(int x1,int y1, int scale){

IconImage a = new IconImage(2);
a.ics[0]= "polygon";a.cc[0]=Color.lightGray; a.cb[0]=Color.black;
a.x[0]=8; a.y[0]=0; a.x[1]= 8; a.y[1]=0;
a.xlst[0] = new int[]{0, 24, 24, 0, 0}; a.ylst[0] = new int[]{0, 0, 24, 24, 0};
a.ics[1]= "polygon";a.cc[1]=Color.magenta;a.cb[1]=Color.black;
a.xlst[1] = new int[]{10, 24, 24, 14, 14, 0, 0, 10, 10};
a.ylst[1] = new int[]{ 0, 0, 4, 4, 24, 24, 20, 20, 0};
a.nam[0] ="body"; a.nam[1] ="body";a.d[0]=0;a.d[1]=0;
Win wint = makeobject(2,a,x1,y1,scale); wint.name="clockwire"; wint.tag=28;

}

647

private static Win makeobject(int num,IconImage a,int nx1,int ny1,int sc){
Point [] plst = null; Picture pict =null; int xx= nx1; int yy= ny1;
for(int i=0;i<num;i++){

xx=a.x[i]*sc+nx1; yy= a.y[i]*sc+ny1;
plst = new Point[a.xlst[i].length];
for(int j=0; j<a.xlst[i].length;j++){

Point pp= new Point(2);
pp.n[1]= a.xlst[i][j]*sc; pp.n[2]= a.ylst[i][j]*sc; plst[j]=pp;

}
Polygon poly= new Polygon(a.xlst[i].length);
poly.p=plst;
Rectangle r= new Rectangle();
if(a.ics[i].equals("polygon")){

Color c[][] = dW.c.polygonfill(poly,a.cc[i],a.cb[i],r);
pict = new Picture(IO,c,a.cc[i],"polygon",poly ,xx,yy,c.length,c[0].length);

}else if(a.ics[i].equals("shape")){
Color c[][] = dW.c.shapefill(poly,a.cc[i],a.cb[i],r);
pict = new Picture(IO,c,a.cc[i],"shape",poly ,xx,yy,c.length,c[0].length);

}
Win winb = makeWindow(pict,a.cc[i],false);
winb.dir = a.d[i]; winb.name = a.nam[i];
winb.selected=true; winb.pic.cb=a.cb[i]; winb.tag = i+1;

}
Win wint = makegroup(null);
return wint;

}

This scheme sets up the icons needed to build a circuit. The ecadicons() procedure
activates the icons so a circuit can be built in the display space. The tag values are the
links to the procedures that execute the various commands. The tag value of 0 covers
any click on the background window. The tags between 1 and 11 cover the drawing
commands developed in the beginning of this chapter. The tag value of 12 returns the
system to text window input commands. The new icons with tags in the range 20 to
30 create circuit-building icon-commands in the display. The tag values from 100
upwards, cover the actions of the circuit elements themselves. In the code given
below this covers the in-port and out-port circuit elements which can have the logic
value they represent toggled when clicked by the mouse to interactively provide
different input signals to the circuit, and the clock input button.

The procedures used to generate the circuit elements are extensions of the copy
command with the exception of the wire and clockwire commands and the circuiticon
and runcircuit commands. The wire and clockwire commands however are more
complicated and allow the wiring elements to be placed and linked together in the
way illustrated in Figure 16.24. As the circuit elements are placed in the circuit
layout these commands also have to set up the corresponding function objects needed
to build the computer model that will be used to simulate the behaviour of the final
circuit when the runcircuit command is given.

Computer Aided Electronic Logic Circuit Design System ECAD

648 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

private static void ecadicons(){
FunctionBlock circuit = new FunctionBlock(IO,null,null); circuit.name="component";
Win win=null; int circuitNumber =1;
do{ListElement refwn=null;

IO.writeString("please enter an icon command\n");
Point p= new Point(2); win = (Win)(refwn = identifyWindow(p)).object;
switch(win.tag){

case 0: break;
case 1: drawLine(); break;
case 2: drawRectangle(); break;
case 3: drawPolygon(); break;
case 4: raise(); break;
case 5: resize(); break;
case 6: drawshape(); break;
case 7: copy(); break;
case 8: repaint(); break;
case 9: move(); break;
case 10: remove(); break;
case 11: raise(); break;
case 12: iconSet=false; break;
case 20: andgate(circuit,refwn,p); break;
case 21: orgate(circuit,refwn,p); break;
case 22: notgate(circuit,refwn,p); break;
case 23: latch(circuit,refwn,p); break;
case 24: wire(circuit,Color.black,"wire"); break;
case 25: inport(circuit,refwn,p); break;
case 26: outport(circuit,refwn,p); break;
case 27: clock(circuit,refwn,p); break;
case 28: clockwire(circuit,Color.magenta,"clockwire"); break;
case 29: circuit=circuitIcon(circuit, circuitNumber);circuitNumber++; break;
case 30: runcircuit(circuit); break;
case 31: circuitBlock(circuit,refwn,p); break;
case 104: inportExec(circuit,refwn); break;
case 105: outportExec(circuit,refwn); break;
case 106: clockExec(circuit,refwn); runcircuit(circuit); break;

} if (gridset) resetgrid();
}while(iconSet);
IO.writeString("returning to text command\n");

}
private static void andgate(ListElement refwn,Point p1){

setComponent(refwn, p1,100,”andgate”) }
private static void orgate(ListElement refwn,Point p1){

setComponent(refwn, p1,101,”orgate”) }
private static void notgate(ListElement refwn,Point p1){

setComponent(refwn, p1,102,”notgate”) }
private static void latch(ListElement refwn,Point p1){

setComponent(refwn, p1,103,”latch”) }

649

private static void inport(ListElement refwn,Point p1){
setComponent(refwn, p1,104,”inport”) }

private static void outport(ListElement refwn,Point p1){
setComponent(refwn, p1,105,”outport”) }

private static void clock(ListElement refwn,Point p1){
setComponent(refwn, p1,106,”clock”) }

Private static void setComponent(ListElement refwn,Point p1,int tag,String str){
IO.writeString("please locate the “+str+” with the mouse\n");
Point p2 = dW.getCoord(); int dx = p2.xi()-p1.xi(); int dy = p2.yi()-p1.yi();
Win win= copyWindow(refwn,dx,dy);
FunctionBlock fn = new FunctionBlock();
win.fref=fn; win.tag = tag; entercopy(win); //enters the window into the display space
fn.refwn=LofWs.start; fn.wn=win;

}
private static void outportExec(ListElement refwn){

Win wint= (Win)refwn.object;
List ls = (List)wint.pic.obj; ListElement rf=ls.start;
while(!((Win)rf.object).name.equals("led")){rf=rf.right;}
if(rf!=null){

Win win =(Win)rf.object;
int nx1= wint.x1;int ny1=wint.y1;
if(win.name.equals("led")){

Picture pc= win.pic; Polygon poly = (Polygon)win.pic.obj;
Rectangle r= new Rectangle();
if(win.cc==Color.red)win.cc=Color.green; else win.cc=Color.red;
win.pic.c = dW.c.shapefill(poly,win.cc,win.pic.cb,r);
Color cb= win.pic.cb; int x=pc.x, y=pc.y, w=pc.w, h=pc.h;
dW.c.setPixels(0,0,x,y,w,h,win.pic);

}
}

}
private static void inportExec(ListElement refwn){

Win wint= (Win)refwn.object;
List ls = (List)wint.pic.obj; ListElement rf=ls.start;
while(!((Win)rf.object).name.equals("button")){rf=rf.right;}
if(rf!=null){

Win win =(Win)rf.object; int nx1= wint.x1;int ny1=wint.y1;
if(win.name.equals("button")){

Picture pc= win.pic; Polygon poly = (Polygon)win.pic.obj;
Rectangle r= new Rectangle();
if(win.cc==Color.red)win.cc=Color.green; else win.cc=Color.red;
win.pic.c = dW.c.shapefill(poly,win.cc,win.pic.cb,r);
Color cb= win.pic.cb; int x=pc.x, y=pc.y, w=pc.w, h=pc.h;
dW.c.setPixels(0,0,x,y,w,h,win.pic);

}
}

}

Computer Aided Electronic Logic Circuit Design System ECAD

650 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Figure 16.24 Graphically constructing the adding circuit from Figure 5.37

Function Blocks

As a circuit is being set up graphically, in the display space, a corresponding
FunctionBlock is set up to capture its structure as a computer model for the circuit.
This is a similar step to that taken when setting up the maze problems in Chapter 4,
where the array of colours representing the maze was matched with an array of
integers used to automate the maze solving process. In this case as each active
element is placed in the display, a matching FunctionBlock to model its behaviour, is
collected in lists in the overall circuit FunctionBlock.

class FunctionBlock{
public Win wn = null; public ListElement refwn = null; // reference to associated window
public int[] in= null; //list of input wire references
public int[] out =null; // list of output wire references
public List functions=null; public FunctionBlock[] fncts= null; // list of function blocks
public List wires=null; public Wire[] wrs= null; // list of wires
public List inPorts=null; public FunctionBlock input[]=null; // list of free inPorts
public List outPorts=null; public FunctionBlock output[]=null; // list of free outPorts
public List clock=null; public FunctionBlock[] clck=null; // list of clocks
public List clckwrs=null; public Wire[] clwrs= null; // list of clock wires
public String name ="functionblock"; public int tag=0;

A

B

C in

C out

S

CBCABAC

CBACBACBACBAS

out ...

........

++=

+++=

651

public FunctionBlock(){ }
public FunctionBlock(TextWindow IO, Win w, ListElement rfn){ //constructor for circuits

this.wn = w; this.refwn= rfn; this.IO=IO;
functions=new List(); // list of function blocks in this function block
wires=new List(); // list of wires in this layer of function blocks
inPorts=new List(); // list of free inports
outPorts=new List(); // list of free outPorts
clock=new List(); // list of clock buttons
name ="component"; // item name.

}
public FunctionBlock(TextWindow IO,String nam, Win w, ListElement rfn){

this.wn = w; this.refwn= rfn; this.IO=IO;
List ls = (List)wn.pic.obj; // list of elements in the component's window icon.
ListElement ref = ls.start;
int i=0,j=0,k=0;
while(ref!=null){ //give the function icon tabs identifiers for cross linking to wires

Win tab = (Win)ref.object;
if (tab.name.equals("inport")) {tab.tag=i; i++;}
if (tab.name.equals("outport")){tab.tag=j; j++;}
if (tab.name.equals("clockinport")){tab.tag=k; k++;}
ref=ref.right;

}
in = new int[i]; out = new int[j]; // index links to circuit or component wire arrays
this.name =nam; // item name.

}

Wire Links

Setting up the make-wire process has many possibilities. However, the complexity
grows very fast as more options are added. In line with the policy adopted in earlier
chapters the simplest schemes that illustrate the key ideas have been adopted. This
involves starting a wire link at an out-port for a function block, a free in-port or on a
an existing wire. Similarly the end of a wire is restricted to be linked, to either an in-
port to a function block or a free out-port. The direction of a link to an in-port or an
out-port has to be the same as that of the port tab in question. Wire links are made up
from horizontal or vertical rectangles. The tricky part is to make sure that the links to
in-ports and from out-ports are correctly aligned. These rules allow a wire to be
constructed as a tree structure with one input and multiple outputs. This is in contrast
to the simple function blocks, which can have multiple inputs but only single outputs.

The finite state diagram in Figure 16.25 defines the make-wire function. The main
steps are relatively simple and the task of laying out the circuit in a reasonable way is
left to the designer. However where links that are impossible to make are attempted a
basic level of error checking is provided. The action that cannot be implemented is
replaced by a “try again” message put out on the text window. The clockwires are
placed using the same construction and display procedures the only difference being
that the type of function blocks, they can link to, is restricted to latches, and the
colour of the wires is magenta instead of black.

Wire Links

652 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Figure 16.25 Wiring state transition diagram

private static int transitionA(Win wn, Point p2,Color cc){

Point p1=new Point(2);
if(p2.xi()>wn.x1) {

p1.n[1]= (wn.x1+wn.x2)/2; p1.n[2]=(wn.y1+wn.y2)/2 ; p2.n[2]= p1.n[2];
Win wnt= drawwire(p1,p2,cc); wnt.selected=true; wnt.name="wire";
return 3;

} IO.writeString("try again \n"); return -1;
}
private static int transitionB(Win wt,Point p1,Point p2,Color cc){

if((wt.dir == 1)||(wt.dir == 2)){ p1.n[1]=(wt.x1+wt.x2)/2; }
if((wt.dir == 0)||(wt.dir == 3)){ p1.n[2]=(wt.y1+wt.y2)/2; }
int dir=direction(p1,p2);
if((dir == 1)||(dir == 2)){ p2.n[1]= p1.n[1]; }else{ p2.n[2]= p1.n[2]; }
Win wnt=drawwire(p1,p2,cc); wnt.selected=true;wnt.name="wire"; return 3;

}
private static int transitionC(Point p1,Point p2,Color cc){

Point pa=new Point(2); Point pb= new Point(2);
int dir = direction(p1,p2);
if((dir==1)||(dir==2)){p2.n[1]=p1.n[1];}else{p2.n[2]=p1.n[2];}
Win wnt= drawwire(p1,p2,cc);wnt.name="wire";
wnt.selected=true;return 3;

}
private static int transitionE(Win wt,Win wn,Color cc){

Point p1= new Point(2); Point p2= new Point(2);
if(wt.y1 == wn.y1){

p1.n[1]= (wt.x1+wt.x2)/2; p1.n[2]=(wn.y1+wn.y2)/2 ;
p2.n[1]=(wn.x1+wn.x2)/2;; p2.n[2]= p1.n[2];
Win wnt= drawwire(p1,p2,cc); wnt.selected=true;wnt.name="wire";return 4;

}IO.writeString("try again \n"); return -1;
}

B

A
C

G

D

F

E

Free-point
3

END
5

In-port
4

Wire
2

Out-port
1

START
0

653

private static int transitionD(Point p1, Win wn,Color cc){
Point pa= new Point(2);
if((p1.yi()!=(wn.y1+wn.y2)/2)&&(p1.xi()<wn.x1-2)){
 pa.n[2]= (wn.y1+wn.y2)/2; pa.n[1]=p1.n[1];
 Win wnt= drawwire(p1,pa,cc);wnt.selected=true;wnt.name="wire";
 p1.n[1]=(wn.x1+wn.x2)/2;p1.n[2]=(wn.y1+wn.y2)/2;
 wnt= drawwire(pa,p1,cc);wnt.selected=true;wnt.name="wire";
 return 4;
}else if(p1.xi()<wn.x1-2){
 pa.n[1]=(wn.x1+wn.x2)/2;pa.n[2]=(wn.y1+wn.y2)/2;
 Win wnt= drawwire(p1,pa,cc);wnt.selected=true;wnt.name="wire";
 return 4;
} IO.writeString("try again \n"); return -3;

}
private static int transitionF(Point p,Point p2,Win wt, Win wn,Color cc){

Point p1=new Point(2);
if((wt.dir==1)||(wt.dir==2)){ //vertical

p1.n[1]= (wt.x1+wt.x2)/2; p1.n[2]= p2.n[2]; ;
int k=transitionD(p1,wn,cc);if(k<0)return -2; else return k;

}else{
p1.n[1]= p2.n[1]; p1.n[2]= (wt.y1+wt.y2)/2;
int k=transitionD(p1,wn,cc);if(k<0)return -2; else return k;

}
}
private static Win drawwire(Point pa,Point pb,Color c){

Point p1=new Point(2); Point p2=new Point(2); p1.c("<-",pa); p2.c("<-",pb);
Color cc= c; Color cb= c; int minx,miny,maxx,maxy;
int dir=direction(p1,p2);
int w= p1.xi() - p2.xi(); int h= p1.yi() - p2.yi();
if(w<0)w= -w; if(h<0)h= -h;
if(w<h){

p2.n[1] = p1.xi();
if(p1.yi()<p2.yi()) miny = p1.yi()-2; else miny = p2.yi()-2;
minx= p1.xi()-2; w= 4; h=h+4;

}else{
p2.n[2] = p1.yi();
if(p1.xi()<p2.xi()) minx= p1.xi()-2; else minx = p2.xi()-2;
miny= p1.yi()-2; h= 4; w=w+4;

}
Picture pict =new Picture(IO,null,cc,"rectangle",null,minx,miny,w,h);
if(cb!=null){

for(int i=0;i<w;i++){pict.c[i][0] = cb; pict.c[i][h-1] = cb;}
for(int j=0;j<h;j++){ pict.c[0][j] = cb; pict.c[w-1][j] = cb;}

}
Win win = makeWindow(pict,cc,true); win.name="wire"; win.dir= dir; pict.cb=cb;
return win;

}

Wire Links

654 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

private static Win wire(FunctionBlock circuit,Color cc,String type){
String id=""; Point p1 =new Point(2); Point p2 =new Point(2);
ListElement ref1=null,saveref=null;
int x1=0,y1=0,x2=0,y2=0,xa=0,ya=0,xb=0,yb=0;Wire wr=null;
Win win=null,wnt=null,wint=null, wn=null,lstwn=null; int state =0;
do{

Point p =new Point(2);
ref1=identifyWindow(p); win = (Win)ref1.object; if(win.tag == 10)state=5;
wnt = findElement(win,p); if(wnt!=null)id=wnt.name;
switch(state){

case 0: if(wnt!=null){
if(id.equals("output")||id.equals("outport")){

wn=wnt; // save for later
state = 1;
wr = new Wire(wnt.tag); //outports for simple functions
FunctionBlock fb= (FunctionBlock)win.fref;
wr.tag=circuit.wires.length;
if(win.name.equals("component")) fb.output[wnt.tag].out[0]=wr.tag;
else fb.out[wnt.tag]=wr.tag;
circuit.wires.append(wr);

} else if(id.equals("wire")){ wr = win.wref; saveref= ref1; state = 2; }
}else state = 0; break;

case 1: if(wnt!=null){
if(id.equals("input")||id.equals("inport")){

state=transitionE(lstwn ,wnt,cc);
} else{IO.writeString("try again \n");state=-1;}break;

}else {state =transitionA(wn, p,cc);} break;
case 2: if(wnt!=null){

if(id.equals("input")||id.equals("inport")){
state = transitionF(p,p1,lstwn ,wnt,cc);

} else {state = -2; IO.writeString("try again \n");}break;
}else {state=transitionB(lstwn,p1,p,cc);} break;

case 3: if(wnt!=null){
if(id.equals("input")||id.equals("inport")){state= transitionD(p1,wnt,cc);
} else {state = -3; IO.writeString("try again \n");}

}else {state =transitionC(p1,p,cc);} break;
}
if(state<0) state= -state; else {p1=p; lstwn =wnt;}

}while (state<4);
if(state==4){

wint = transitionG(saveref,type); wint.wref=wr; wr.wn=wint;
ListElement rf= LofWs.start; wr.winref=rf;
if(win.name.equals("component"))win.fref.input[wnt.tag].in[0]=wr.tag;
else((FunctionBlock)((Win)ref1.object).fref).in[wnt.tag]= wr.tag;

}
wint.wref = wr; return wint;

}

655

private static Win transitionG(ListElement ref,String type){
Win wint=null;
if (ref!=null){

Win win = (Win)ref.object;
if(win.name.equals(type))wint = makegroup(ref);
else wint = makegroup(null);

}else wint = makegroup(null);
wint.name= type; wint.tag=2; return wint;

}
public static int direction(Point p1,Point p2){

int w =p2.xi()-p1.xi(); int h =p2.yi()-p1.yi(); int j=0; if(w<h)j=j+1; if(w< -h)j=j+2; return j;
}

When the mouse is clicked on an outport tab for a function icon the tab is

identified by searching the elements grouped in the single window-layer that is the
function icon. The tab has had its tag set to identify which output it represents in the
out[] array when its function icon was created and placed in the display. Each new
wire is pushed down into the circuit’s list of wires and its position in the list is placed
in the out[] array of the function it is being linked to, ready for when the circuit is run
as a simulation. In a similar way when the wire is terminated on an inport its location
in the list of circuit wires is placed in the function’s in[] array in the position that
corresponds to the input tab the wire is linked to. If a wire is started, linked to an
existing wire, then it adopts the identity of the existing wire. This arrangement
ensures that each function block obtains references to the wires linking its inports
and its outports as the circuit is constructed in the display space.

Circuit Simulation

Given the capability to represent the circuit graphically and structurally, the next task
is to explore the way the same circuit can be modelled as a computer model that
simulates its behaviour. There are again several levels at which this task can be done.
The simplest is to treat the display model as an example of a more general diagram
called a flow chart. This is possible because though the wires have no implicit
direction to the way signals or electricity flows through them the gates or “function
blocks” in this case do. If the internal elements in the gates the transistors and
resistors were to be modelled then this directionality could not be assumed and a
more complex modelling scheme would have to be adopted.

Each function block as the name suggests can be modelled as a function that takes
the input values presented to it on its in-port tags and calculates the value to be
placed on its out-port tag. This makes it possible to represent a whole circuit as a list
of in-port values and a list of out-port values. One step in running the circuit will
clearly be to take all the input values for a list of function blocks and calculate their
output values that need to be placed in their out-port list of values. A second step is
then to transfer the out-port values to the in-port cells that they are linked to by wires.
If this is repeated until inputs at the front of the system have had a sufficient number
of cycles to reach the backend of the system then the behaviour of the whole system
with the appropriate values on all the wires will have been evaluated.

Circuit Simulation

656 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

One way of achieving this in a general way is to keep cycling the transfers until
there has been no change in any of the input values or output value. This will
accommodate any circuit layout but clearly handles time in a rather unrealistic way.
The order in which things occur will be correct but how long it takes will vary. One
restriction has to be placed on this scheme. Feedback routes through the wires and
function blocks have to be avoided or handled with care. It opens up the kind of
problems that real circuits can exhibit producing races, hazards and oscillations that
will never finish if the only terminating test is “when nothing changes”. These circuit
design problems can be found treated in more specialised texts.

One of the solutions to create correct behaviour with feedback loops is to
introduce latches controlled by clock signals and to only allow feedback through
loops containing a clocked latch. The circuits can still create oscillating behaviour
but the results will be correct, and not depend on the arbitrary timing this simplified
scheme can create when feedback is not controlled by the timing framework imposed
by a clock signal.

Figure 16.26 An alternative adding-circuit constructed graphically

For the circuit shown in Figure 16.26 setting up the associated computer model is

relatively simple. When components that contain internal circuitry are introduced the
task becomes more interesting! The nature of the computer model in this case
appears to offer a relatively simple approach. The behavioural model of the overall
circuit can be constructed from the graphic model, but it does not have to reflect the
hierachical arrangments of components in the graphic display. This can be done
because each wire can only hold a single value at any moment in time. If a
connection is made up from a series of separate wire objects, then as long as they all

A

B

C in

C out

S

() CBAS

CBCABACout

⊕⊕=

++=

...

657

refer to the same value-variable then, on one hand, there is no need to modify the
graphic model, and on the other hand, to match the graphic model with the computer
model element by element. Consider the circuit shown in Figure 16.27.

Figure 16.27 Hierarchical wiring problem

In this diagram there are five distinct wiring elements in the graphic model. The

internal wires in circuit C1 linked to the outport shown; the three internal wires
linked to the input ports in C2, C3 and C4; and the external wire labelled W linking
these elements together. When the wire W is set up it is started from the output port
for C1. Because this port is linked to the internal wires C1w the reference this wire
has to its value variable can be transferred to the new wire W and then from W to all
the internal wires C2w C3w and C4w linked to the input ports that W is subsequently
attached to, giving the arrangement shown diagrammatically in Figure 16.28. This
way of handling the wires should makes it easy to compose the computer model
made up from collections of basic gates and subcircuit components. It merely
consists of concatenating the function-block lists for all the components into a single
list and doing the same with the lists of wires.

The difficulty with this approach arises if specific references are made from the
function blocks to the wires that link them together. If circuit components need to be
duplicated it makes it necessary to duplicate these references. This could be done
using the object-oriented facilities of the Java language setting up a new class for
each new circuit, but this requires a complex setting up process. A related scheme
using the facilities of Java that have already been introduced can be set up based on
separating the data that identifies a particular circuit from the functions that are
needed to simulate its actions. Using arrays rather than linked lists to hold the
references to wires, used by the functions to access the values held on particular
wires, does this. A logic function and() can then be represented by the combination
of the input values specified by array location indexes for the array of wires, rather
than direct references to the wires in question.

and(){ wire.value[0][out[0]]= wire.value[1][in[0]]&&wire.value[1][in[1]];}

W

C1

C4

C3

C2

Circuit Simulation

658 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Where out[0] and in[0] and in[1] hold indexes to the array of wires that represent
this particular instance of the circuit in question. This makes it possible to duplicate
function blocks of the same type as the same object but with different value pairs for
each of its wires. In other words there is a class of FunctionBlocks where new
functionblocks are objects with a different internal arrangement of wires and basic
functions, but duplicates of the same type of functionblock are the same class object
but distinguished by being associated with different wire data-values. Essentially it is
the wire values that define the duplicated circuit components.

List of
Function
Blocks

IO Port
links to
wires

List
Of

 Wires

Wires linked to a
common Value block

F0 Outport a wire C1w
F1 Inport b wire C2w
F2 Inport b wire C2w
F3 Inport b wire C2w
F4 Inport c wire C3w
F5 Inport c wire C3w
F6 Inport c wire C3w
F7 Inport d wire C4w
F8 Inport d wire C4w
F9 Inport d wire C4w

 wire W

Figure 16.28 Labelling wires

Value In

Value Out

a

d

c

b

F0
C1w

F3

F2

F1C2w

F6

F5

F4
C3w

F9

F8

F7
C4w

Value out

Value in

659

private static void runcircuit(FunctionBlock cb){
FunctionBlock c= makecircuit(cb,false);
boolean exit = false;
while(!exit){

for(int i=0;i<c.fncts.length;i++){ c.fncts[i].execute(dW,c.wrs); }
exit = true;
for(int i=0;i<c.wrs.length;i++){

Wire wr= c.wrs[i];
if(wr.transfer())exit=false;
if(wr.v[1])repaintWindow(wr.wn,Color.red);
else repaintWindow(wr.wn,Color.green);

}
}for(int i=0;i<c.output.length;i++){

boolean a = c.wrs[c.output[i].in[0]].v[1];
outportExec(dW,c.output[i].wn,a);

}
}

A circuit set up in this way can then be simulated by two loops the first evaluating

the functions and the second transferring values from one end of a wire to the other,
in the way shown for the adding circuits in Figures 16.29 to 16.32. A simple solution
to handling hierarchically structured circuits is to convert the free- imports and free
outports into function elements that transfer inputs to outputs.

public void execute(DisplayWindow dW,Wire[] wr){

boolean exit = false;
if(this.name.equals("component")){

for(int i=0;i< this.input.length;i++){ this.input[i].linkIn(this.wrs,wr); }
while(!exit){

for(int i=0;i<this.fncts.length;i++){ fncts[i].execute(dW,this.wrs); }
exit = true;
for(int i=0;i<wrs.length;i++){

Wire wrr= this.wrs[i];
if(wrr.transfer())exit=false;

}
}
for(int i=0;i<this.output.length;i++){ this.output[i].linkOut(this.wrs,wr); }
return;

} if(this.name.equals("andgate")){
boolean a=false,b=false; a=wr[in[0]].v[1]; b=wr[in[1]].v[1]; wr[out[0]].v[0]= a&&b;

} if(this.name.equals("orgate")){
boolean a=false,b=false; a=wr[in[0]].v[1]; b=wr[in[1]].v[1]; wr[out[0]].v[0]= a||b;

} if(this.name.equals("notgate")){ boolean a=false; a=wr[in[0]].v[1]; wr[out[0]].v[0]= !a; }
return;

}
public void linkIn(Wire[] wrs, Wire[] wr){ wrs[out[0]].v[0] = wr[in[0]].v[1]; }
public void linkOut(Wire[] wrs, Wire[] wr){ wr[out[0]].v[0] = wrs[in[0]].v[1]; }

Circuit Simulation

660 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Figure 16.29 Adding circuit entered as a graphic display

Figure 16.30 Running the adding circuit with initial input values

661

Figure 16.31 Changing the input values and rerunning the simulation

Figure 16.32 Changing the input values and rerunning the simulation

Circuit Simulation

662 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Encapsulating a Circuit as a Component-generating Icon

Once a simple circuit can be modelled in this way the next necessary step in
developing a design system is to introduce hierarchy, in this case implementing the
circuit-icon command. The system discussed so far is capable of setting up a circuit
design of the form shown in Figure 16.26 for a one-bit adder. The annotation was
added afterwards to explain the circuit. Although characters and therefore text can be
generated in this system as Figure 16.9 demonstrated, only key operations are
illustrated in these examples to keep the tasks as simple as possible. What is clear
from the image in Figure 16.26 is that a relatively simple circuit has filled the display
space. The next necessary step is to encapsulate circuit units such as this as circuit-
icons so that more complex circuits such that shown in Figure 16.33 can be built up in
the same display space. A circuit can be reduced to a simple box-icon with the
appropriate number of in-port tags and out-port tags in the way shown in Figure 16.33.

private static void makeCircuit(int In, int Out,int circuitNumber,Point p){
int dim = In +Out + 1 +circuitNumber;
int [] xx=new int[]{0, 12, 12, 0, 0}; int [] yy=new int[]{0, 0, 4, 4, 0};
int [] xxx=new int[]{0, 4, 4, 0, 0}; int [] yyy=new int[]{0, 0, 4, 4, 0};
int span =In; if(Out>span)span = Out; int height = 12* span; int width = 24;
IconImage a = new IconImage(dim);
a.ics[0]= "polygon";a.cc[0]=Color.pink; a.cb[0]=Color.black;
a.x[0]=8; a.y[0]=0; a.nam[0] ="body"; a.d[0]=0;
a.xlst[0] = new int[]{0, width, width, 0, 0}; a.ylst[0] = new int[]{0, 0, height, height, 0};
for(int i= 1;i<=In;i++){

a.ics[i]= "polygon";a.cc[i]=Color.blue; a.cb[i]=Color.black;
a.x[i]= 0; a.y[i]=12*i-8; a.nam[i] ="inport"; a.d[1]=0; a.xlst[i] = xx; a.ylst[i] = yy;

} for(int i= 1+In;i<=In+Out;i++){
a.ics[i]= "polygon";a.cc[i]=Color.blue; a.cb[i]=Color.black;
a.x[i]= 28; a.y[i]=12*(i-In)-8; a.nam[i] = "outport"; a.d[i]=3; a.xlst[i] = xx; a.ylst[i] = yy;

} for(int i=1+In+Out;i<=In+Out+circuitNumber;i++){
a.ics[i]= "polygon";a.cc[i]=Color.red; a.cb[i]=Color.black;
a.x[i]= 14; a.y[i]=8*(i-In-Out)-4; a.nam[i] ="id"+circuitNumber; a.d[1]=0;
a.xlst[i] = xxx; a.ylst[i] = yyy;

} Win wint = makeobject(dim,a,p.xi(),p.yi(),2);
wint.name="circuit"; wint.tag=31;

}
private static void circuitIcon(){

IO.writeString("circuiticon\n");
IO.writeString("please enter the number of inports\n");
int numIn = IO.readInteger(); IO.readLine();
IO.writeString("please enter the number of outports\n");
int numOut = IO.readInteger(); IO.readLine();
IO.writeString("please use the mouse to locate the circuit\n");
Point p = dW.getCoord();
makeCircuit(numIn,numOut,2,p);

}

663

makeCircuit” into an icon command is done using the “encapsulate”
icon []. For the example in Figure 16.33 this was initially setup using the circuitIcon
procedure given above. This requests the number of in-ports and the number of out-
ports from the text window in order to calculate the correct size for the icon. It also
gives it an arbitrary circuit number: 2 in this case. This is shown by the two red
squares on the icon, which allows the circuit component to be identified in a larger
layout. The next stage is to replace a circuit constructed in the display space by such
a circuit icon, in which case these parameters, obtained for test purpose from the text
window, must be obtained from the displayed circuit FunctionBlock.

 .
Figure 16.33 Using an encapsulated circuit in a graphic display of a four-bit adder

The ability to encapsulate a circuit makes it necessary to match the in-port and

out-port tabs to the free in-ports and free out-ports in the original circuit before it is
replaced by the new component, This is shown in progress in Figures 16.34 to 16.36.
The reason this has to be done is that the order in which the original circuit is
constructed will be reflected by the order in which components are placed in lists.
This can be arbitrary and need not reflect the spatial order of the final layout that
makes the unit easy to use. All circuit icons are given the tag value of 31. When any
circuit icon is clicked by the mouse it calls the procedure circuitBlock() to generate a
working copy of the circuit component it represents, with the new tag value of 110.
This identifies the copy as a circuit element and not a component-generating icon,
requiring a new, copied FunctionBlock. This unit can then be added to the list of
functions in the current circuit as a new active component.

C out

S1

C out

C out

C out

S2

S3

S4

B2

A1

B1

C in

A2

A3

B3

A4

B4

S
B
A

BAS

 1100
 0101
 0111

+=

Encapsulating a Circuit as a Component-generating Icon

Executing the “

664 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

private static FunctionBlock circuitIcon(FunctionBlock fn, int circuitNumber){
FunctionBlock fb= makecircuit(fn,false); // convert lists to arrays leave the existing wires
int numIn = fb.input.length; int numOut= fb.output.length;
IO.writeString("please use the mouse to locate the component\n");
Point p = dW.getCoord(); Win wnn = makeCircuit(numIn, numOut, circuitNumber, p);
ListElement refwn= LofWs.start; //window placed ontop of the pile
fb.wn = wnn; fb.refwn = refwn; wnn.fref= fb; fb.name="component";
fb.input = new FunctionBlock[numIn]; //new arrays for input tabs
fb.output = new FunctionBlock[numOut]; //new arrays for output tabs
IO.writeString("please match new inport tabs with circuit free inports\n");
ListElement ref = fn.inPorts.start;
while(ref!=null){

IO.writeString("click on the tab matching the highlighted inport\n");
repaintWindow(((FunctionBlock)((ListElement)ref).object).wn,Color.cyan);
Point p1 = dW.getCoord(); Win wnt = findElement(wnn,p1); // new icon tab
while((wnt==null)||!(wnt.name.equals("inport"))){

IO.writeString("try again\n"); p1 = dW.getCoord(); wnt = findElement(wnn,p1); }
fb.input[wnt.tag]=new FunctionBlock(IO,1,1,((FunctionBlock)ref.object).wn,ref);
fb.input[wnt.tag].out[0] = ((FunctionBlock)ref.object).out[0];
fb.input[wnt.tag].in[0] = 0; fb.input[wnt.tag].name = "input";
repaintWindow(((FunctionBlock)((ListElement)ref).object).wn,Color.yellow);
ref=ref.right;

}IO.writeString("please match new outport tabs with circuit free outports\n");
ref = fn.outPorts.start;
while(ref!=null){

IO.writeString("click on the tab matching the highlighted outport\n");
repaintWindow(((FunctionBlock)((ListElement)ref).object).wn,Color.orange);
Point p1 = dW.getCoord(); Win wnt = findElement(wnn,p1);
while((wnt==null)||!(wnt.name.equals("outport"))){

IO.writeString("try again\n"); p1 = dW.getCoord(); wnt = findElement(wnn,p1); }
fb.output[wnt.tag]=new FunctionBlock(IO,1,1,((FunctionBlock)ref.object).wn,ref);
fb.output[wnt.tag].in[0] = ((FunctionBlock)ref.object).in[0];
fb.output[wnt.tag].out[0] = 0; // to be defined externally
fb.output[wnt.tag] = ((FunctionBlock)ref.object); fb.output[wnt.tag].name = "output";
repaintWindow(((FunctionBlock)((ListElement)ref).object).wn,Color.yellow);
ref=ref.right;

} ref=fn.wires.start;
while(ref!=null){ removeWindow(((Wire)((ListElement)ref).object).winref);ref=ref.right;}
removeComponent(fn.functions.start);
removeComponent(fn.inPorts.start);
removeComponent(fn.outPorts.start);
return new FunctionBlock(IO,null,null);

}
private static void removeComponent(ListElement ref){

while(ref!=null){
removeWindow(((FunctionBlock)((ListElement)ref).object).refwn); ref=ref.right; }

}

665

Figure 16.34 Encapsulating a one bit carry circuit

Figure 16.35 Encapsulating an exclusive or

Encapsulating a Circuit as a Component-generating Icon

666 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Figure 16.36 Encapsulating the one bit adder

Duplicating Circuit Components

private static void circuitBlock(FunctionBlock circuit,ListElement refwn,Point p1){
IO.writeString("please locate the circuit with the mouse\n");
Point p2 = dW.getCoord();
int dx = p2.xi()-p1.xi(); int dy = p2.yi()-p1.yi();
Win win= copyWindow(refwn,dx,dy);
FunctionBlock oldfb = ((Win)refwn.object).fref;
FunctionBlock fn = oldfb.copy(IO);
fn.name = "component"; win.fref=fn; win.tag = 110;
entercopy(win); fn.refwn = LofWs.start; fn.wn=win;
circuit.functions.push(fn);

}
public FunctionBlock copyfunct(TextWindow IO, String nam, int[] ins, int[] outs){

FunctionBlock fn = new FunctionBlock();
fn.in = new int[ins.length]; fn.out = new int[outs.length];
for(int i=0;i<ins.length;i++){ fn.in[i] = ins[i]; }
for(int i=0;i<outs.length;i++){ fn.out[i] = outs[i]; }
fn.name= nam;
return fn;

}

Once a circuit icon has been set up it can be used to create working units in the

way illustrated in Figures 16.34-36 sequentially developing the one bit adding circuit.

667

public FunctionBlock copy(TextWindow IO){
if(!this.name.equals("component")){

FunctionBlock fn= copyfunct(IO,this.name,this.in, this.out); return fn; }
int ff= this.fncts.length, ww= this.wrs.length;
int ii= this.input.length, oo= this.output.length, cc=0;
if(this.clock!=null) cc= this.clock.length;
FunctionBlock fn = new FunctionBlock(IO,ff,ww,ii,oo,cc,wn,refwn);
for(int i=0;i<ff;i++){

fn.fncts[i]= this.fncts[i].copy(IO); } // needs new wires
for(int i=0;i<ww;i++){ fn.wrs[i]= new Wire(0,"wire"); }
for(int i=0;i<ii;i++){

fn.input[i]= this.input[i].copy(IO);}
for(int i=0;i<oo;i++){

fn.output[i]= this.output[i].copy(IO);}
name ="component"; // item name.
return fn;

}

These copy operations employ alternative FunctionBlock constructors:

public FunctionBlock(TextWindow IO,int f,int w,int i, int o,int c,Win wn, ListElement rfn){

 //constructor for components
this.wn = wn; this.refwn= rfn; this.IO=IO;
fncts=new FunctionBlock[f]; // list of function blocks in this function block
wrs =new Wire[w]; // list of wires in this layer of function blocks
input=new FunctionBlock[i]; // list of free inports
output=new FunctionBlock[o]; // list of free outPorts
clck = new FunctionBlock[c]; // list of clock sources
name ="component"; // item name.

}

public FunctionBlock(TextWindow IO, int ins, int outs, Win w, ListElement rfn){
 //constructor for functions

this.wn = w; this.refwn= rfn; this.IO=IO;
in = new int[ins];
out = new int[outs];
List ls = (List)wn.pic.obj; // list of elements in the component's window icon.
ListElement ref = ls.start;
int i=0,j=0;
while(ref!=null){ //setting up the IO tabs linked to wires

Win tab = (Win)ref.object;
if (tab.name.equals("input")) { in[i] = i; tab.tag=i; i++;}
if (tab.name.equals("output")){ out[j] = j; tab.tag=j; j++;}
ref=ref.right;

}
this.name= w.name;

}

Duplicating Circuit Components

668 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Figure 16.37 Running a four-bit adder circuit

Figure 16.38 Running a four-bit adder circuit

669

Figure 16.39 Running a four-bit adder circuit

Figures 16.37 to 39 illustrate the use of the new components to build a four-bit
adder and then run it in simulation.

The final step in this sequence of examples is to implement latches and clock
circuits to give a simple but complete logic design and simulation system. The clock-
generating icon can be created and used in the same way as the in-port icon. It acts as
a button, when it is clicked with the mouse it changes colour from yellow to green
and back again. The difference being that the clock signal’s effect, in this scheme is
modelled directly. Rather than setting values on the clock wires used to link it to the
latches it controls, it acts directly on the latches. When the clockwires are placed in
the display linking the latches to the clock-generator, a list of the latches is created in
the clock’s function-block. When the clock button is clicked this list is used to
activate all the latches it contains. When a latch is activated it transfers the value
from the standard wire linked to its input tab to the wire linked to its output tab.

When the circuit is run the latches are processed as FunctionBlocks between the
Wire value transfer-cycles, but they do nothing. It is only when they are activated by
the clock circuit that data is transferred from their inputs to their outputs. The clock
button, after reseting the latches, has to rerun the circuit to transfer the results through
the rest of the circuit. The Figures 16.40 to 16.49 show a simulation of a four bit
counting circuit using these facilities. The first step is to create the one bit adding and
carry circuit for two inputs, shown in Figure 16.40 being encapsulated. The following
sequence shows a count from zero to eight.

Duplicating Circuit Components

670 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

private static void clockExec(FunctionBlock cf,ListElement refwn){
FunctionBlock c= makecircuit(cf,false); IO.writeString("toggle input\n");
Win wint= (Win)refwn.object;
ListElement latchref = ((FunctionBlock)wint.fref).clock.start;
if(latchref==null) return;
List ls = (List)wint.pic.obj; ListElement rf=ls.start;
while(!((Win)rf.object).name.equals("button")){rf=rf.right;}
if(rf!=null){

while(latchref!=null){
ListElement lstch = ((Wire)latchref.object).clk.start;
while(lstch!=null){

FunctionBlock latch= ((FunctionBlock)lstch.object);
c.wrs[latch.out[0]].v[0] = c.wrs[latch.in[0]].v[1];
lstch=lstch.right;

}latchref=latchref.right;
}
Win win =(Win)rf.object;
int nx1= wint.x1;int ny1=wint.y1;
if(win.name.equals("button")){

Picture pc= win.pic; Polygon poly = (Polygon)win.pic.obj;
Rectangle r= new Rectangle();
if(win.cc==Color.yellow){win.cc=Color.green;} else {win.cc=Color.yellow; }
win.pic.c = dW.c.polygonfill(poly,win.cc,win.pic.cb,r);
Color cb= win.pic.cb; int x=pc.x, y=pc.y, w=pc.w, h=pc.h;
dW.c.setPixels(0,0,x,y,w,h,win.pic);

}
}

}
private static Win clockwire(FunctionBlock circuit,Color cc,String type){

String id=""; Point p1 =new Point(2); Point p2 =new Point(2);
ListElement ref1=null,saveref=null;
int x1=0,y1=0,x2=0,y2=0,xa=0,ya=0,xb=0,yb=0;Wire wr=null;
Win win=null,wnt=null,wint=null, wn=null,lstwn=null; int state =0;
do{

Point p =new Point(2);
ref1=identifyWindow(p); win = (Win)ref1.object; if(win.tag == 10)state=5;
wnt = findElement(win,p); if(wnt!=null)id=wnt.name;
switch(state){

case 0:
if(wnt!=null){

if(id.equals("clockoutport")){
wn=wnt; state = 1; wr = new Wire(wnt.tag,"clockwire");
FunctionBlock fb= (FunctionBlock)win.fref;
fb.clock.push(wr);

} else if(id.equals("clockwire")){
wr = win.wref; saveref= ref1; state = 2; }

}else state = 0; break;

671

case 1:
if(wnt!=null){

if(id.equals("clockinport")){state=transitionE(lstwn ,wnt,cc,type);}
else{IO.writeString("try again \n");state=-1;}break;

}else {state =transitionA(wn, p,cc,type);} break;
case 2:

if(wnt!=null){
if(id.equals("clockinport")){state = transitionF(p,p1,lstwn ,wnt,cc,type);}
else {state = -2; IO.writeString("try again \n");}break;

}else {state=transitionB(lstwn,p1,p,cc,type);} break;
case 3:

if(wnt!=null){
if(id.equals("clockinport")){ state= transitionD(p1,wnt,cc,type);
} else {state = -3; IO.writeString("try again \n");}

}else {state =transitionC(p1,p,cc,type);} break;
} if(state<0) state= -state; else {p1=p; lstwn =wnt;}

}while (state<4);
if(state==4){

wint = transitionG(saveref,type); wint.wref=wr; wr.wn=wint;
ListElement rf= LofWs.start; wr.winref=rf;
wr.clk.push((FunctionBlock)((Win)ref1.object).fref);

} wint.wref = wr; return wint;
}

Figure 16.40 Creating a one-bit counting circuit component

Duplicating Circuit Components

672 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Figure 16.41 Setting up the four-bit counter

Figure 16.42 Pressing the clock button and running the four-bit counter

673

Figure 16.43 Pressing the clock button and running the four-bit counter

Figure 16.44 Pressing the clock button and running the four-bit counter

Duplicating Circuit Components

674 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Figure 16.45 Pressing the clock button and running the four-bit counter

Figure 16.46 Pressing the clock button and running the four-bit counter

675

Figure 16.47 Pressing the clock button and running the four-bit counter

Figure 16.48 Pressing the clock button and running the four-bit counter

Duplicating Circuit Components

676 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

Figure 16.49 Pressing the clock button and running the four-bit counter

This presentation of the simulation employs conventional graphic images and to
show the action of the circuit has to give a time series of nine separate Figures. If this
system is run as a live simulation then the benefit of using computer graphics is clear.
Though the graphics are the same in both cases, the use of the computer to model the
display makes it possible to have one active image as opposed to many passive
images to work with.

To make this scheme into a robust system will require more work. In its current
state of development if a component is misplaced and deleted as an image the
corresponding element in the computer model is not removed, and the whole circuit
construction has to be started over again. What is presented demonstrates the kernel
of an operational system and shows the relationship between the graphic model and
the functional model and the way the two together give a more powerful modelling
scheme.

The graphic model in this case is a variation on a flow chart, and consequently this
form of graphics user interface can be used for a number of related applications,
where a similar diagram can be used to represent a system. Computer programs
themselves can be constructed within the same kind of framework, as can control
system simulation models. Even mathematical equations and formulae can be
presented in a related way where the structure of the display is directly coupled to the
computer model of the equations and can consequently be used to manipulate or
evaluate them.

677

Conclusions

In this book what has been covered is the way standard graphic production can be
modelled by the computer system. Two approaches have been outlined the first based
on line drawing techniques the second on infill and area painting effects. Both these
approaches depend on primitive hardware operations that affect the way they are
implemented. It is possible to scale and transform the line based models much more
easily than the pixel array schemes. However the pixel array schemes, now that there
is sufficient memory to support them, provide a powerful and fast range of image
manipulation effects. The use of overlay and transparency, by matching standard
manual picture building techniques, provides an intuitive and natural way of working
with a picture building system.

Three-dimensional Models

Figure 16.50 A Grapic User Interface for three dimensional modelling

The design of real world objects traditionally used sets of cross-referenced drawings
as the most manageable way of handling the information. Three-dimensional
physical models often had to be built to resolve complex spatial problems but they
were cumbersome to store and still often required geometry worked out on paper to
determine how they could be built. The automation of drawing was a great advantage
when drawings needed to be edited and changed, but computer models of these
drawings did not allow the properties of the final product to be modelled by the
computer. Drawing sets still needed human interpretation to understand the three

PLAN SIDE
ELEVATION

FRONT
ELEVATION

PROJECTED
VIEW

TEXT

Three-dimensional Models

678 16 GUI: Graphic User Interfaces: Control Design Animation & Simulation Systems

dimensional interrelationships they contained. It was only by changing the modelling
process to build a three dimensional model and then working out how to generate the
two dimensional images from it, for communication purposes, that the advantages of
the new technology could provide the three dimensional designer the same
advantages that have been demonstrated for the circuit simulation using a two
dimensional diagram. The interface to generate these models still employs the two
dimensional projections discussed in chapter 1 as a standard graphic model
containing a plan, two elevations and a projected drawing in four connected windows
shown in Figure 16.50. The development and use of three-dimensional models and
their graphic display is explored in the next book.

Figure 16.51 Application areas for real and virtual environmental modelling

The integration of graphic and computer modelling is now supporting many
application areas. Figure 16.51 gives a selection of related topics that can be grouped
round the subject emerging from these studies that has been given the title of “Real
and Virtual Environment” modelling. The framework is provided by the computer
system the content by computer models suitable for the application areas in question.

Real
And Virtual Environment

Modelling

TV
Games

Entertainment
Cinema

e-Books
Publishing

CAL
Education

Applications

Pilot
Training

Simulators

CAD
CAM
CAE

Environmental
Planning &
Monitoring

Geographical
Information

Systems

Medical
Epidemiological

Studies

CAT
MRI
PET

Scanners

Index

A
ABSOLUTE coordinates, 144, 321
Abstract data Types, 69
Abstraction, 70
Acceleration (animation), 409
ActionListener, (Java, events), 194
ActionPerformed (Java, events), 194
Active (graphic elements), 638, 676
Acute angles, 557
Adding circuits, 157, 600–669, 656
Addressing circuits, 154
Address mapped registers, 218, 219
Adjacency (or overlap), 499–532, 533–570,

571–614
Affine transformations, 479
Algebraic models, 31
Algorithms and data structures, 57
Ambiguity (grammars), 285
Analogue models, 1, 30
Analysis, 615
And-gate (ECAD), 643
AndTable (grammars), 278
Antialiased curves, 426–431
Antialiased lines, 350–357
Application level (systems), 137
Appliqué, 582
Arabic numerals, 146
Architectural drawings, 582
Area based painting systems, 677
Area fill, 359, 405, 435–450
Area fill (on-off algorithm), 441
Area fill (winding number scheme), 441
Argument (functions), 53
Arithmetic expressions, 35, 250
Array (lists, trees), 60, 61, 67, 316
Array model (mazes), 108
Array processing (machine code), 204
Array processing (MiniJC), 311
Array subdivision (windows), 371

Assembly language, 33, 223–272
Assignment expressions, 34
Associative operators, 451
Asynchronous interrupts, 221
Automata, 146
Autostereo (display systems), 141
Averages (program), 49
Axonometric, 129

B
Babbage, Charles, 146
Back trace, 119
Back track, 108, 119, 278
Backward stepping (line following), 330
“Ball of string” (mazes), 108, 118
Baricentric co-ordinates, 460
Base displacement addressing, 60, 144,

210, 321, 582
Base displacement registers, 208
Base map (cartography), 92
BitBlt operations, 90, 320
Block memory transfer (bitblt), 572
Block model (class), 372
Block models (surfaces), 366–376
Block structure (hierarchy), 34, 39
Boolean expression (assembly code), 267
Boolean expressions, 43, 266
Boolean operations (areas), 540–568
Boolean operators (sets), 69
Bottom Up design, 117
Boundary lines, 359
Boundary lines (curved), 429
Branch and bound searching, 122
Breadth first searching, 126
Bresenham (line following concept), 372
Brunnell, Isimbard Kingdom, 12
Bubble sort (machine code), 206
Bucket sorting, 360, 384, 529
BufferedImage (Java class), 584, 590

680 Index

“Bugstore”, 377
Busses, 172
Buttons (interactive icons), 619

C
CAD systems, 570
Call (macro expansions), 312
Call (subroutine), 241
Camera images (TV), 146
Cartesian coordinates, 461
Case statements, 111
Celsius (program), 39
Chain sorting (line segments), 503
Character literals, 34
Character strings, 34
Circles, 22–24, 378
Circuit simulation (ECAD), 653
Circumcircle (triangles), 22
CISC computers, 222
Class, 57
Clock, 152
Collections (Java package), 68
Color (Java class), 584
Colours, 584
Command statements, 34
Commutative operators, 451
Compilers, 272, 273–320
Compositing, 582
Computer models, 32, 80
Concatenation, 83, 547
Concurrent languages, 32
Concurrent programs, 216
Conditional statements, 34, 104
“Connection machine”, 172
Constructors, 36, 315
Continuous line (display systems), 140
Contour models, 366
Control systems, (computer based), 617
CoordinateFrame (class), 79, 602
CoordinateFramework (class), 75
Coordinate sorting (plane sweep), 385, 503,

521, 550
Co-ordinate systems, 457–498
Copy commands, 35
Cosine (cos), 8
Cosine law, 10
Counter circuit (ECAD), 671–676
C (programming language), 52, 71
Critical path, 124
“Critical regions”, 221
Cross product (vector), 466
CRT (display systems), 139

Curves (pixel grid interpolation), 419
Curvilinear morphing, 450

D
Data models, 136
Data structures and Algorithms, 57
DDA line interpolator, 323, 324
Deceleration, (animation), 409
Decimal computer simulator, 182
Decision tables, 45, 110, 327
Declarations, 36
Delete lines, 606
Depth buffer, 372
Depth first searching, 120
Deque (data structure), 67
Descriptive geometry, 12
Design, 1
Desk top GUI, 582
Determinants, 455
Development system (graphics), 71
“Digital convergence”, 1
“Dimensionless products”, 2
Direction cosines, 464
Direct-view (display systems), 138
Display technologies, 138, 146
Divide and conquer, 55
Dot product (vectors), 466
Double points, 421
Doughnut areas, 546
Do-while (loop command), 47
Dragging (display objects), 143, 321
Duality (point-line), 454
Dual port display memory, 169
Dummy (class), 196
Duplicating circuit components, 646
Dynamic data structure (lists, trees),

55, 316

E
ECAD system (logic design and

simulation), 642–676
Eight neighbours (line following), 334
Elevations (plan section), 12, 678
Encapsulate a circuit, 662
Encapsulation, 69
Engineering drawings, 582
Equal subdivision (recursion), 416
Equal subdivisions (curves), 412
Equations, 39, 451
Exceptions, 71
Exclusive or, 91, 267, 320
Executive programs, 214

Index 681

Explicit models, 136
Expressions, 39, 252

F
Factorial (program), 242
Fahrenheit (program), 39, 48
Fetch Execute Cycle, 181, 198
FIFO, (data structure), 67
Finite state machine, 50, 110, 115, 262, 652
Fixed point fractions, 323
Flood fill (shading), 399
Flow charts, 615, 655, 676
“Footsteps in the snow” (mazes), 108
For (loop command), 46
Forward stepping (line following), 330
Four neighbours (line following), 324
Frame-store, 145
Frankenstein, 72
Function blocks, (ECAD), 650
Functional languages, 32
Functional models, 136
Functions (look up tables), 156
Functions, 52

G
Gamma correction function, 165
Gates (logic), 150
Geometric models (graphical), 31
Geometric models (scaled), 2
Geometric relationships, 3–13
GIMMS, 377, 614
GIS Geographic information system, 92
Grammar (maze model), 277
Grammars, 32, 273
Graphic model (computer), 179, 182
Graphic models, 615
GraphicWindow (class), 73
Grey codes (ordering), 159
Grey scale (lines and shading), 584
GRID, 370, 612
Grid cell processing, 375
Grid (class), 92
Ground Line, 15
GUIs, (Graphics User Interfaces), 615–678

H
Hanging edges, 445
Hardcopy systems, 138
Hardware level (systems), 137
Heap (data structure), 67, 316
“Hello World” (program), 36, 72
Hexadecimal Codes, 190

Hidden area removal, 359, 375
Hidden line removal, 359, 375
Hierarchy, 70
Hierarchy data storage, 215
Hill climbing, 129
Homogeneous coordinates, 492–498
Horizontal shading, 364
Hyper-cube, 160

I
Icon generation, (ECAD), 643
Icons (WIMP), 616–678
Image scanners, 81
Imperative languages, 32
Implicit models, 136
Inbetweening (animation), 403
Inbetweening (polylines), 406
Indirect references (pointers), 35, 71
Informatics, 1
Information System, 1
Inheritance, 70
Inlets and spurs (shading), 392
Inline code (substitution), 238
Inner circle (triangles), 22
Input (class), 37
Integrated circuits, 145, 171
Interactive systems, 221
Interface, 67
Intermediate languages, 223, 272
Interpreters, 272, 296
Interrupts (simulator), 220
Inverse operators, 454

J
Java, 33–70
Join (Tiles class), 83

K
Karnaugh map, 160
Keyframe (animation), 403–456
Keywords, 281

L
Laboratory for Computer Graphics and

Spatial Analysis, Harvard, 614
Lambert’s law (light reflection), 367
Land parcels (GIS), 570
Language models, 31
Language translation, 224
Latches (memory cells), 151, 642
Layers, (grouping), 631
LED (display systems), 139

682 Index

Leibniz, 146
Lenticular lens (display systems), 141
Libraries (Java), 179, 183, 214, 246
Libraries (programs), 137, 210
LIFO (data structure), 67
Line based systems, 677
Line clipping, 375, 526
Line following, 324, 347
Line generators, 141
Line interpolation, 322–358
Line labels, 223
Line-line (intersection tests), 516–520
Line (parametric equations), 142, 404
Line-polygon (shading or tests), 525–532
Line rectangle clipping, 526
Line sweep, 385, 521, 550
Line weights, 343, 346
Line widths, 357
Linked list Programs, 176
Liquid crystal (display systems), 140
List (class), 55, 62, 64
Literals, 34, 229
Loading (programs), 198, 202, 230
Logic functions, 147
Look ahead (line following), 331
Look up table (commands), 172, 173
Look up table (LUT, colours), 165
Loops (and cusps), 425
Lovelace, Lady, 146

M
Machine language, 33, 176–222
Macro, (expansions), 238
Manhattan distances, 122
Mapping (inbetweening points), 406
Map sheets, 582
Masking (hidden areas), 371
Master slave (memory cells), 152
Mathematical models, 31, 613
Matrix, 316, 452
Matrix concatenation, 479
Matrix equations, 453
Mazes (class), 92, 112–134
MDAC, 142
Mealy machine (automata), 173
Measuring point (perspective), 16, 28–30
Merge-sort (algorithm), 56, 387, 529, 570
Meta Symbols, 40
Methods, 52
Mexican hat surface, 134
Micro-code Programming, 33, 154
Micro-code (simulator), 209
Micro-program Circuits, 174

MiniJC, 33, 297–320
Models, 1–32
Modula–2, 52
Monge, Gaspard (mathematician), 12
Montage, 582
Moore machine (automata), 173
Morph, 405
Mouse (WIMP), 616
Multi panel displays, 171
Multi-tasking Systems, 222

N
Names (objects elements, collections), 34, 58
Name table (symbol table), 224
Narasinham, S (author “On To Java”), 72
New, 36
NMOS (memory cell), 153
Notgate (ECAD), 642
NTuple (class), 76

O
Object oriented, 32, 62
Objects, 57, 315
OBLIX, 377, 570, 614
Obscuring polygon, 374
Octants (interpolation), 338, 378
Off Screen (display systems), 138
Offset (displacement) Address, 60
On To Java (textbook), 72
One-shot operations, 45
Opaque, 589
Operating systems, 214
Operator precedence (Boolean), 43
Operator Trees, 286
Operators, 281
Optimum route finding, 119
Ordering (sorting), 41–43
Or-gate (ECAD), 642
Or-table (grammars), 278
Orthographic projections, 12
Orthographic rotation, 13
Output (class), 37
Overlap (and adjacency), 499–532,

533–570, 571–614
Overlay (polygon on polygon), 538–570
Overlay (rectangle on rectangle), 90
Overlay display memory, 168
Overlays (programs), 215

P
Paged virtual memory, 215
Painter’s algorithm, 132, 367

Index 683

Parabola, 409
Parallax, 141
Parallel IO processors, 214
Parallel lines, 3
Parameters (functions: pass by), 53
Parametric curves (higher order), 423
Parametric curves (quadratic), 408
Pascal (programming language), 52
Passive (graphic elements), 638
Patterns, 111
PC personal computers, 145
Pencil (of planes), 17
Perspective (graphic construction), 26–27
Perspective (one, two, three point), 24
Picture plane, 15
Picture subroutines, 144
Piecewise curves, 419
Piecewise modelling, 359
Pie charts, 615
Pipelined processing, 153
Pixels, 135
Pixel sampling, 351–353
Plane sweep (algorithms), 570
Plan (section, elevation), 12, 676
Plasma panels (display systems), 139
Point3D (class), 76
Point (class), 75, 77
Pointer (WIMP), 615
Point-line (testing), 504
Point-point (matching), 500
Point in polygon (testing), 508
Point set (display systems), 141
Polar coordinates, 461
Polar coordinates, 461
Polar coordinates (cylindrical), 463
Polar coordinates (spherical), 463
Polygon (angles, areas), 11, 359
Polygon (class), 362
Polygon fill, 360, 396
Polygon network (labelling), 552
Polygon-polygon (tests), 533–570
Polygon sets on polygon sets, 547
Polygons (loop sets), 405
Polygon window clipping, 534–537
Polyline-polyline (intersection tests), 521–525
Polylines, 358, 405
Portable software, 222, 272
Precedence (of Boolean operators), 43
Primitive operations (hardware), 135–176,

177–222
Problem space, 111
Procedures, 52
Processes, 220

Profile block models, 366–373
Programmable systems, 171
Programming level (systems), 137
Program overlays, 215
Program running state, 217
Projections (orthogonal), 15
Projections (perspective), 11, 14
Projection systems (displays), 138
Pseudo code, 40, 223, 238
Pythagoras (theorem), 5

Q
Quadrants (line interpolation), 328, 334
Queue (data structure), 67

R
Railway sidings (algorithm), 251
Raster (display systems), 139, 145, 163–172
RAVE modelling, 678
Rectangle-rectangle (relationships), 571
Recursion (forwards, backwards), 289
Recursive functions, 52, 54
Reflection (interpolation), 332, 339, 380
Reflection rays, 490
Reflection (transformation), 469
Reflexive angles, 557
Refresh (display systems), 139, 145
Relative coordinates, 144
Relays, 147
Renaissance (perspective), 14
Rens, Frank, 370
Repetition statements, 46
Reverse polish (ordering), 252–255, 293
Rigid body, 404, 471–476
RISC computers, 222
Rotation (arbitrary 3D axis), 489
Rotation (transformation), 468
Routing circuits, 154
RPoint3D, 76
RPoint (class), 75
Rubber banding (lines), 143, 321

S
Scaling, 19–21
Scan-line-fill, 360
Scripting, 273
Search patterns, 117
Sections (plan, elevations), 12, 678
Selection circuits, 162
Self-crossing polygon boundaries, 391,

397, 513
Self loading programs, 198, 230, 232

684 Index

Self modifying programs, 203
Semi-infinite line (test), 509
Separators, 281
Sequential processing, 162
Services (engineering plans), 92
Sets (data structures), 69
Shading complex polygons, 383
Shading within curved boundaries, 435–450
Shading (hatching polygons), 525–532
Shading, shadings (classes), 362–365, 606
Shadow mask (display systems), 140
Shortest route (algorithm), 120
Similar triangles, 9, 477
Simulation (computer based), 616
Sine law, 9
Sine (sin), 8
Singleton points, 446
SKETCHPAD, 525, 614, 616
Sliders (interactive icons), 619, 638
Solenoid (switches), 148
Space search (tree structured), 108, 117
Spatial partitions, 359
Spatial relationships (conditionals), 499–532,

533–570, 571–614
Spurs and inlets (shading), 393, 445
Stack (data structure), 54, 242
Stack simulation, 270
Statement sequences, 39
State transition diagram, 51, 111, 115
Static (Java qualifier), 36
Stationary points, 395
Steepest ascent, 123, 129
Steepest descent, 123, 129
Stereo (display systems), 141
Storage tube (displays), 139
Stored Program Computer, 177–222
Strings (characters), 34
StringTable (class), 226
Striping (polygons), 385–386
Subprograms, 34, 52
Sum (program), 49
Supervisor State, 215
Sutherland, Ivan, 525, 614
Switch circuits, 147
Switch statement, 44, 52, 110
SYMAP, 370, 614
Symbol table (name table), 224
SYMVU, 370, 377, 614
Sync function, 132, 134, 367–377
Synchronous (clock based), 152
Synthetic images, 145
Systolic processing, 153

T
Tangent continuity, 419
Tangent labelling, 555
Technical drawings, 92
Terminal cells, 276
Thick curved lines, 434
Thick line (class), 382
Thick line interpolation, 359, 378
Thick polyline interpolation, 381
Threads (processes), 220
Three dimensional models, 678
Tiles (class), 82, 589
Time sharing systems, 221
Tokenise, 262
Top down design, 117
Trajectory, 404
Transformations, 457–498, 600
Transistors, 149
Translation, 224, 264, 296, 298
Translucency, 91, 587
Transparency, 91, 587, 677
Tree (addressing circuit), 155
Tree (data structure), 55, 64
Tree pruning, 120
Tree searching 3D, 126
Tree traversal (algorithms), 65, 293
Tree wave-front searching, 125
Triangle (angles), 3–23, 359
Triangle fill, 360
Triangle frame of reference, 459
Triangulation (polygons), 384
Trigonometric functions, 8
Truth tables, 43
TV (display systems), 139
Type, 36, 57

U
Unary minus, 262
Unconditional commands (maze), 103
Unicode (Java, character codes), 178
Unit cube, 159
Unit vector, 465
Utah, 614

V
Vanishing point, 16–18
Variance (program), 49
Vector generator, 142
Vector graphics systems, 319
Vectors, 316, 462
Vertical shading, 364
Viewing rays, 15–16

Index 685

Virtual documents, 582
Virtual machines, 222
Virtual memory, 215
Void, 52
Volumes, 482–487
Von Neumann architecture, 178
Voxel, 81

W
Wait state, 221
Wave front searching, 123, 125

While, statements, 47
WIMP systems, 614
Winding Number, 393, 514
Windows (WIMP), 616
Window-window (relationships), 571–614
Winston, P (Author “On To Java”), 72
WriteString (program), 37

	chapter00-Preface.pdf
	chapter01x.pdf
	chapter02x.pdf
	chapter03x.pdf
	chapter04x.pdf
	chapter05x.pdf
	chapter06x.pdf
	chapter07x.pdf
	chapter08x.pdf
	chapter09x.pdf
	chapter10x.pdf
	chapter11x.pdf
	chapter12x.pdf
	chapter13x.pdf
	chapter14x.pdf
	chapter15x.pdf
	chapter16x.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

